AWARD NUMBER: W81XWH-15-1-0390

TITLE: Theranostics Targeting Metastatic Breast Cancer

PRINCIPAL INVESTIGATOR: Zheng Li

CONTRACTING ORGANIZATION: Methodist Hospital
Houston, TX 77030

REPORT DATE: October 2016

TYPE OF REPORT: Annual Report

PREPARED FOR: U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release; Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
REPORT DATE
October 2016

DATE COVERED
30 Sep 2015 - 29 Sep 2016

TITLE AND SUBTITLE
Theranostics Targeting Metastatic Breast Cancer

AUTHOR(S)
Zheng Li

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Methodist Hospital
Houston, TX 77030

SPONSOR / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited

ABSTRACT

The emphasis of this first year of the award, as planned, has been on synthetic chemistry to obtain materials to test in histology, PET (positron emission tomography) and PDT (photodynamic therapy) studies. We have been successful in preparing samples for the testing studies that begin in year 2. However, as anticipated, the synthetic chemistry work was not without problems and must continue and adapt to overcome challenges that now become evident. For instance, one of the molecules first prioritized, compound 1, was prepared, but only after a great deal of effort; in retrospect it is now clear that this compound has stability issues that make it hard to make, and inappropriate for further studies. Another target compound (2) was then prepared, much more efficiently than the first because it does not have stability issues, and because of the experience we gained from making the first target. This compound has poor solubility characteristics despite the fact that it contains two sulfonic acid groups and may required delivery in micelles; this is something that could not have been predicted until the compound was made. Both structures 1 and 2 are based on the aza-BODIPY dye fragment; as a back-up we have also initiated work on a compound based on a different-dye type, eg compound 3. The original proposal outlined plans to add cytotoxic entities other than PDT agents; for this we entered into a collaboration with a biotechnology company who have provided us a small sample of the previous, highly cytotoxic, compound maytensin A. We have also prepared an agent intended solely for PET, ie compound 4; this takes advantage of very recent advances in the field that enable more efficient capture of 18F- than was possible before, via so-called *Perrin capture agents.*
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>4</td>
</tr>
<tr>
<td>2. Keywords</td>
<td>4</td>
</tr>
<tr>
<td>3. Accomplishments</td>
<td>4</td>
</tr>
<tr>
<td>4. Impact</td>
<td>11</td>
</tr>
<tr>
<td>5. Changes/Problems</td>
<td>12</td>
</tr>
<tr>
<td>6. Products</td>
<td>12</td>
</tr>
<tr>
<td>7. Participants & Other Collaborating Organizations</td>
<td>13</td>
</tr>
<tr>
<td>8. Special Reporting Requirements</td>
<td>13</td>
</tr>
<tr>
<td>9. Appendices</td>
<td>14</td>
</tr>
</tbody>
</table>
A. Introduction (1 paragraph)

The emphasis of this first year of the award, as planned, has been on synthetic chemistry to obtain materials to test in histology, PET (positron emission tomography) and PDT (photodynamic therapy) studies. We have been successful in preparing samples for the testing studies that begin in year 2. However, as anticipated, the synthetic chemistry work was not without problems and must continue and adapt to overcome challenges that now become evident. For instance, one of the molecules first prioritized, compound 1, was prepared, but only after a great deal of effort; in retrospect it is now clear that this compound has stability issues that make it hard to make, and inappropriate for further studies. Another target compound (2) was then prepared, much more efficiently than the first because it does not have stability issues, and because of the experience we gained from making the first target. This compound has poor solubility characteristics despite the fact that it contains two sulfonic acid groups and may required delivery in micelles; this is something that could not have been predicted until the compound was made. Both structures 1 and 2 are based on the aza-BODIPY dye fragment; as a back-up we have also initiated work on a compound based on a different-dye type, eg compound 3. The original proposal outlined plans to add cytotoxic entities other than PDT agents; for this we entered into a collaboration with a biotechnology company who have provided us a small sample of the previous, highly cytotoxic, compound maytensin A. We have also prepared an agent intended solely for PET, ie compound 4; this takes advantage of very recent advances in the field that enable more efficient capture of 18F$^{-}$ than was possible before, via so-called “Perrin capture agents.”

B. Keywords (limit to 20 words)

reagents for histology of TrkC$^{+}$ tumors • photodynamic therapy (PDT) • positron emission tomography (PDT)

C. Accomplishments

What were the major goals of the project?

1. Design and synthesis of second-generation fluorescent, PDT and PET/PDT agents that absorb >700 nm, bind TrkC, are localized in TrkC$^{+}$ cells, generate singlet oxygen under conditions for PDT, and have TrkC$^{+}$ selective photocytotoxicities.

begins in year 1 and continues throughout grant period (about 40% of total work required achieved this year)

2. Validation of a fluorescent form of one of these agents in histochemistry for diagnosis of patients with TrkC$^{+}$-expressing tumors.

year 2 and then continues throughout grant period

3. Validation of the iodinated second-generation agent PET imaging human breast cancer tumors in mice, and ablation of these tumors via PDT. This study will involve determination of toxicity in vivo, pharmacokinetics and -dynamics (using PET) to ascertain distribution and clearance of the labels.

only in years 2 and 3
What was accomplished under these goals?

Synthesis Of Compound 1

Compound 1 was a structure in the original proposal.

Compound 1 was prepared via the following route.
EDC, HOAt, iPr2NEt, DMF
0 °C - 25 °C, 24 h

\[
\text{H}_2\text{N} \to \text{NH}_2
\]

\[
\text{MeO} \to \text{MeO}
\]

\[
\text{BF}_2\text{O}
\]

\[
\text{SO}_3\text{H}
\]

\[
\text{HO}\text{At}
\]

\[
\text{EDC}, \text{HOAt}
\]

\[
\text{iPr}_2\text{NEt}, \text{DMF}
\]

\[
0 \text{ °C} - 25 \text{ °C, 24 h}
\]

\[
46\%
\]

\[
\text{Boc}\text{HN}
\]

\[
\text{SO}_3\text{H}
\]

\[
\text{HO}_3\text{S}
\]

\[
\text{EDC, HOAt}
\]

\[
\text{iPr}_2\text{NEt}, \text{DMF}
\]

\[
0 \text{ °C} - 25 \text{ °C, 24 h}
\]

\[
62\%
\]

\[
\text{BF}_3\text{EtO}_2
\]

\[
\text{iPr}_2\text{NEt}, \text{CH}_2\text{Cl}_2
\]

\[
25 \text{ °C, 12h}
\]

\[
66\%
\]

\[
\text{BF}_3\text{EtO}_2
\]

\[
\text{iPr}_2\text{NEt, CH}_2\text{Cl}_2
\]

\[
25 \text{ °C, 12h}
\]

\[
87\%
\]
As proposed, the control compound 1' (bearing an isomeric sequence that does not bind TrkC) was prepared from an intermediate in the above sequence, ie via this route.

The photocytotoxicity of compound 1 on TrkC+ cells was determined to be 1.2 µM, whereas little photocytotoxicity was observed for TrkC- cells (Figure 1). The control compound 1' was not toxic on the same TrkC+ stable transfectant cells but, surprisingly, it did show some photocytotoxicity on mouse 4T1 breast cancer cells.

Figure 1. Cytotoxicity of 1 on TrkC expressing cells in light and dark.

Part of the revised SOW was to determine the maximum tolerated dose of compound 1. We did this: >40 mg/Kg (23 micromole/Kg) in mice.

Many photophysical properties of 1 were determined too, but these studies were curtailed as it became clear that the iodine atoms in 1 are labile, ie this compound is insufficiently stable for high yield synthesis and presumably not in vivo either. Consequently, we moved on to target 2.
Synthesis Of Compound 2

Compound 2 was conceived from a very recent literature reports on a similar structure without targeting groups. That compound was reported to have favorable photophysical properties, good PDT properties, and the PDT effect was enhanced in the slightly acidic media of cancer cells. Our design 2 is similar, but with an extra attachment point for targeting groups.

Compound 2 was prepared via the following route:
(i) Boc-cysteic acid, EDC, HOAt, iPr2NEt
DMF, 25 °C, 16 h

(ii) 4N HCl/dioxane, MeOH, 25 °C, 1 h

L-tyrosine (OtBu) azide,
EDC, HOAt, iPr2NEt
DMF, 25 °C, 12 h
We are still working with compound 2 though its solubility is a concern. As a back-up plan this material may be formulated as a micelle and tested in cellular studies.

Targeted PET Label 4

In the last two years, fluoride capture agents pioneered by Perrin have been tested in other laboratories and found to be highly efficient 18F capture agents.

Part of our back-up plans was to prepare a targeted PET agent 4. This is not a theranostic, it does not have optical imaging or PDT characteristics, but it is probably the simplest probe imaginable for imaging TrkC$^+$ metastatic tumors.

The synthesis of 4 is not shown here, but it is considerably shorter than those described above, so not too many resources were spent on this project. This compound is currently with our collaborator, Dr Li, awaiting her second year funding to initiate PET studies.

What opportunities for training and professional development has the project provided?

Two graduate students and one postdoctoral research associate were supported on this project.
How were the results disseminated to communities of interest?
I presented the following presentations:
Active Targeting of Cancer Cells, Georgia State University, Atlanta, Georgia, September 2015.
Small Molecules that Bind Proteins, University of Regensburg, Regensburg, GERMANY, June 2016.
Active Targeting of Cancer Cells, Masaryk University, CZECH REPUBLIC, May 2016.

What do you plan to do during the next reporting period to accomplish the goals?
During the next reporting period we will:

(i) initiate in vivo studies (PDT and PET) on some of the compounds already prepared; and,

(ii) continue the synthetic studies to produce agents with superior solubility and PDT characteristics.

D. Impact

What was the impact on the development of the principle(s) of the project?
At this early stage, the impact is mostly on improvement of the chemical design of the agents being developed. For instance, we have learned that aza-BODIPY dyes have many desirable properties, but they can be unstable when substituted with iodine at a certain position, and solubilities can be an issue. Consequently, we revised our plans that use aza-BODIPYs and have introduced a back-up option.

What was the impact on other disciplines?
Too early to impact other disciplines.

What was the impact on technology transfer?
A patent application is still in process for the I-Y-IY targeting groups.

What was the impact on society beyond science and technology?
Too early to impact society outside science, but eventually the goal of this work is to produce a lead compound that will be iteratively improved to form a “theranostic” for diagnosis, imaging, and therapy.

E. Changes/Problems

Changes in approach and reasons for change
Compounds 1 and 2 are both based on azaBODIPY dyes. Since their properties so far have not been ideal, our plan is to broaden the scope of our work so that we are no longer 100% dependent on the azaBODIPY framework.

It recently came to our attention that cyanine dyes with combinations of trimethylammonium and sulfonic acid groups are water soluble, have superb optical characteristics, and can be functionalized. We have embarked on a plan to do this. This work is at an early stage, but our initial target is compound 5.

Compound 5 is anticipated to have appropriate optical and PET properties. We will introduce bromine atoms in a modified synthesis to induce PD properties.
Actual or anticipated problems or delays and actions or plans to resolve them
Problems are nearly always encountered in chemical syntheses, but we have anticipated the obvious weak links and constantly consider alternative routes.
If the solubility of compound 2 is insufficient, we plan to deliver it in a micellar system.

Changes that had a significant impact on expenditures
Postdoctoral salaries are more than before as a result of the new labor laws. This will be a problem going forward, but it has not been a problem so far.

Significant changes in use or care of human subjects, vertebrate animals, biohazards, and/or select agents
none

Significant changes in use of care of human subjects
n/a

Significant changed in use of care of vertebrate animals
none

Significant changes in use of biohazards and/or select agents
none

F. Products
Publications, conference papers, and presentations

Active Targeting of Cancer Cells, Georgia State University, Atlanta, Georgia, September 2015.
Websites or other Internet sites
none

Technologies or techniques
Only the novel syntheses already described.

Inventions, patent application, and/or licenses
A patent application covering the targeting ligands is still in progress.

Other Products
none

G. Participants & Other Collaborating Organizations

What individuals have worked on the project?
Name: Zhengyang Jiang
Project Role: graduate student at TAMU
ORCID ID: 0000-00002-1725-2883
Nearest person month worked: 12 months.
Contribution: Mr. Jiang prepared the original aza-BODIPY lead compound and tests of its photophysical properties; resynthesis on a scale sufficient for in vivo toxicity studies; and, initiated synthesis of second BODIPY lead compound.

Name: Syed Usama
Project Role: graduate student at TAMU
ORCID ID: 0000-00002-7487-1568
Nearest person month worked: 3 months.
Contribution: Mr. Usama performed the syntheses of new targeted agents designed for PET and optical imaging based on cyanine dyes.

Name: Dr. Jaya Shrestha
Project Role: postdoctoral associate at TAMU
ORCID ID: 0000-00002-1357-0251
Nearest person month worked: 2 months
Contribution: Dr. Shrestha initiated a synthesis of a new potential lead compound based on squariene dye framework.

Has there been a change in the active other support of the PD/PI(s) or senior/key personnel? None

What other organizations were in involved as partners?
None yet, but Dr Li’s role as co-PI at Methodist is about to begin.

Special Reporting Requirements
none
H. Appendices (attached journal articles, reprints, CV, patent applications)
Small Molecules for Active Targeting in Cancer

Chin S. Kue,1 Anyanee Kamkaew,2 Kevin Burgess,2 Lik V. Kiew,1 Lip Y. Chung,3 and Hong B. Lee3

1Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842
3Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia

Published online in Wiley Online Library (wileyonlinelibrary.com).
DOI 10.1002/med.21387

Abstract: For the purpose of this review, active targeting in cancer research encompasses strategies wherein a ligand for a cell surface receptor expressed on tumor cells is used to deliver a cytotoxic or imaging cargo. This area of research is more than two decades old, but in those 20 and more years, how many receptors have been studied extensively? What kinds of the ligands are used for active targeting? Are they mostly naturally occurring molecules such as folic acid, or synthetic substances developed in campaigns for medicinal chemistry efforts? This review outlines the most important receptor or ligand combinations that have been used in active targeting to answer these questions, and therefore to address the most important one of all: is research in active targeting affording diminishing returns, or is this an area for which the potential far exceeds progress made so far?

Key words: drug delivery; active targeting; cancer therapeutics; cancer imaging; small-molecule ligands

1. INTRODUCTION

A. Specific Aims of This Review

Effective cancer treatment hinges around (i) early diagnosis, (ii) location of the primary tumor and metastases, (iii) killing cancer cells as effectively as possible while minimizing toxicity to the patient (i.e., optimizing therapeutic index), and (iv) high accumulation in tumor lesion. Drug targeting can be used to address all four issues (i) to (iv), to overcome some limitations of conventional nontargeted approaches. There are generally two types of drug targeting to deliver therapeutic cargoes to tumor sites.1 Passive targeting is based on enhanced permeability and retention (EPR, discussed in Section 2) effect using big, usually polymeric molecules...
as carriers. *Active targeting* is based on targeting moieties such as ligands and antibodies (Figure 1). These targeting methods are different from *mechanistic or direct targeting* strategies that employ monoclonal antibodies (mAbs) or small-molecule compounds to bind to surface proteins or to interfere in biochemical pathways that are upregulated in cancer. Mechanistic targeting is illustrated in Figure 1 and examples for each target have been extensively reviewed.\(^2,3\) Unfortunately, many mechanistically targeted chemotherapeutic agents have limitations such as toxicities to the heart, skin, and gastrointestinal tract\(^4\); low accumulation in tumor lesion\(^5\); and resistance in cancer cells.\(^6\)

Active targeting of anticancer therapeutics may increase their affinities and endocytic internalization in tumors.\(^7,8\) These linked targeting moieties may selectively bind to surface molecules (proteins, sugars, or lipids), perturbing tumor accumulation and residence time.\(^9–11\)

Indeed, many of the small molecules in mechanistic/direct targeting have been used either as delivery agents (e.g., probestin for CD13) or cargoes (e.g., mitogen-activated protein kinase [MEK] kinase) in active targeting (Section 4).

This review on small molecules for active targeting is to identify the following:

1. their potential in oncology;
2. the most significant obstacles that must be overcome to realize this potential;
3. illustrative types of cargoes that can be used for imaging and for chemotherapeutics;
4. strategies for joining active targeting agents and cargoes to form conjugates;
5. illustrative entities that have been used for targeting, and what they interact within tissue; and,
6. state-of-the-art small-molecule active targeting strategies with respect to particular cancer types.

Finally, we are intrigued by successful strategies used to investigate targeting cancer with small-molecule agents. Highlighted here are approaches and important data that should be collected, and in what order, to validate targeting approaches.
B. Significance

Diagnosis of cancer types typically involves treating biopsied material with a targeting agent conjugated to a fluorescent dye; if the tissue stains this implies that cancer type expresses whatever the agent bound. Most often, the targeting agent is an mAb (histochemistry). Small-molecule alternatives to mAbs can have advantages in terms of cost and reagent stabilities in diagnoses, but the most significant unmet need for small-molecule active targeting agents is in imaging and chemotherapy.

Imaging usually involves injection of a conspicuous spectroscopic probe into a subject, then observing regions of interest. Magnetic resonance (MR), positron emission tomography (PET), and optical probes are most common in imaging. Probes must preferentially accumulate in the tissue of interest to be of value, though they can work if the probe accumulated everywhere else but the region of interest. Preferential accumulation of a probe relative to nontargeted agents tends to facilitate greater resolution and sensitivity.

Chemotherapy of cancer requires destroying tumor tissue, or at least restricting its growth and metastatic spread. Compounds with potent cytotoxicities have no use as medicines if they cause intolerable side effects or death. Consequently, therapeutic index tends to be more important than absolute toxicity in cancer chemotherapy \(^1\) where:

\[
\text{Therapeutic index} = \frac{\text{Toxic dose}}{\text{Therapeutic dose}} \quad \text{in general}
\]

\[
= \frac{\text{Lethal dose}_{50}}{\text{Effective dose}_{50}} \quad \text{in animals}
\]

\[
= \frac{\text{Tolerated dose}_{50}}{\text{Effective dose}_{50}} \quad \text{in humans}
\]

Pharmaceuticals that are actively targeted can have enhanced therapeutic indices because their concentrations proximal to tumors are increased, and/or their accumulation in healthy tissue is decreased over a suitable time frame. There are distinct advantages to using the same active targeting entity for histochemical diagnosis, imaging, and chemotherapy because in those cases positive staining characterizes one property of the tumor, and it also indicates the active targeting agent used has potential to deliver imaging and chemotherapeutic agents in vivo because of that property \(^1\)\(^3\). Unfortunately, state-of-the-art oncology has not arrived at that level yet. Most current standards of care involve various agents for staining tissue biopsy samples, imaging and therapeutic agents that are not actively targeted, or feature different targeting entities. The “holy grail” is to use exactly the same substance to diagnose, image, and treat; this is the intention behind the design of theranostics (chimeras of therapeutics and diagnostics).

Various building blocks for active targeting, imaging, and therapy are available, so formation of theranostics can be achieved by joining these together. It is relatively easy to do this, particularly if the fragments are not covalently bound to each other but are simply captured into nanoparticle, polymeric, or liposome constructs. However, unless the stance of the drug regulatory agencies changes, constructs such as these are unlikely to be approved for use in human subjects because they are essentially mixtures. Even if regulatory agencies would overlook the complexity and potential batch-to-batch variability problems, one pivotal issue related to distribution in vivo remains. Actively targeted constructs should preferentially accumulate in the tumor tissue. Size matters for ease of penetration into tumors, and the ideal size is usually small. For these reasons, discrete small-molecule theranostics can have significant advantages over nanoparticle, polymeric, or liposome constructs \(^1\)\(^4\).

This review focuses on small molecules used for active targeting, excluding peptides longer than five-mers. It does not cover nanoparticle, polymer, or liposome constructs, even if small-molecular targeting groups have been attached, because pharmacokinetic and pharmacodynamic issues favor small-size agents for targeting tumors.

Medicinal Research Reviews DOI 10.1002/med
2. PHARMACOKINETIC AND PHARMACODYNAMIC ISSUES GOVERNING DELIVERY INTO TUMORS

A. Enhanced Permeation and Retention, and Tumor Back Pressure

Rapid growth of solid tumors is often constrained by availability of oxygen and nutrients, and lack of supply of these triggers tumor cell death. Overall, this competition for raw materials results in development of highly disordered and fenestrated (porated) blood vessels in tumor tissues separated by vascular basal membrane. These fenestrations are typically of 200- to 2000-nm diameter, depending on the tumor type. Fenestrated blood vessels favor extravasation (leakage) of both small-molecule and macromolecular therapeutics, including drug-carrier conjugates and drug inclusion complexes, from blood to the tumor interstitial fluid. Small molecules can readily diffuse back into blood circulation via the fenestrations, but macromolecules (>4 nm or 30 kDa) are retained in the interstitial fluid due to their larger hydrodynamic radii and the defective intratumor lymphatic drainage. This passive targeting leads to the preferential accumulation of macromolecular therapeutics around tumors, through the enhanced permeation and retention (EPR) effect.

Uncontrolled tumor tissue expansion and angiogenesis promote disorganization of the tumor interstitial space, which is also congested with collagen fibers, glycosaminoglycans, proteins, and cellular debris, as well as fenestrations in tumor neovasculture. Overall, these effects produce relatively high pressure in the tumor interstitial space (tumor back pressure), particularly at its core. Tumor back pressure strongly distorts macromolecule diffusion patterns in tumor tissue. These effects synergize with residual lymphatic activity and de novo lymph-angiogenesis in the peripheral tumor tissues to promote drug clearance and disseminate metastases.

B. MDR and Efflux from Cells

Ineffective chemotherapy is often due to drug resistance. Factors that contribute to multidrug resistance (MDR) include changes in the tumor geometry and extracellular matrix, impaired delivery of cytotoxic agents, genetic and epigenetic alterations leading to overexpression of the cell membrane transporter P-glycoprotein (P-gp), and ATP-dependent transporter expression, that is, “the drug efflux pump.” MDR inhibitors such as verapamil, tariquidar, OC-1440935, laniquidar, and elacridar have been used in the clinic to block the P-gp function to prevent efflux function of cells in cancer chemotherapy. Active targeting can also counteract the MDR effect compared with targeted therapy.

C. Rate of Infusion/Dosing Rates

It was known that receptors involved in receptor-mediated internalization of drugs tend to be recycled back to cell surface (Figure 2). Several factors may regulate the receptor internalization and trafficking, thus impacting the efficacy of receptor-mediated drug delivery for cancer therapy. These factors include the following: (i) the rate of ligand-receptor binding before being cleared by metabolism, (ii) level of receptor occupancy or saturation, (iii) rate of receptor recycling, and (iv) rate of drug release from linker upon internalization. Cell surface receptor internalization and recycling parameters vary among cell and cancer types. In the absence of information about what these parameters are, continuous administration of drug conjugates might be used, but it can result in downregulation of the receptor, elevated toxicities, and reduced therapeutic efficacies.
Figure 2. Receptor-mediated internalization. Generally, receptor targeted ligands bind to the receptors and are internalized together. An early endosome is formed, followed by budding off separation to form late endosomes with receptors and targeted ligands in separate units. The vesicle with receptors will return to the plasma membrane (recycling). The late endosome with targeted ligands will fuse with lysosome for subsequent degradation.

3. MONOClonAL ANTIBODIES VERSUS SMALL-MOLECULAR FRAGMENTS FOR ACTIVE TARGETING

mAbs are widely used for active targeting, but they have serious limitations. Paramount among these is that mAbs do not easily penetrate into solid tumors.17, 21, 43 Most mAbs do not penetrate into tumors because they are too big to easily leave blood vessels and efficiently diffuse into tissue. mAbs that \textit{do} diffuse into tissue tend to be trapped by antigens located on the perivascular tumor cells, preventing permeation into the tumor mass,44 that is, there is an “antigen barrier,” even around micrometastases.45 Moreover, slow clearance of mAbs from the body results in high normal tissue exposure; hence, most mAbs tend to accumulate in the excretory organs (intact mAbs in the liver, fragments in the kidneys) and do \textit{not} reach their targets.51, 52 mAbs also can be immunogenic, even when they are humanized;53 this can cause hypersensitivity, neutralizing effects, and changeable pharmacokinetic properties.52 These limitations should be considered alongside problems with nonspecific conjugation chemistry leading to reduced product homogeneity,54 cost, and stability/shelf life issues. Despite these factors, interest in mAb targeting has surged because it is comparatively easy to raise antibodies to cell surface receptors.55

Small-molecule targeting entities are not constrained by the factors outlined above for mAbs. For instance, fluorescence studies have shown that folate–rhodamine conjugates rapidly exit blood vessels and can saturate folate receptors (FRs) on tumors within 5 min of intravenous injection.56 The antigen barrier still perceptibly impacts folate–small molecule conjugates, but it has a negligible effect at saturating doses.56 This implies small-molecule conjugates can be
ideal for rapid accumulation in solid tumors, and for brisk clearance afterward. Overall, small molecules tend to quickly reach their target in vivo, and be nonimmunogenic; they are amenable to chemical synthesis, have superior stability/shelf lives, and tend to be cheaper than mAbs.

One of the core messages of this review is that active targeting with mAbs is far more common than with small molecules that have relatively few known examples. Further, many of the small molecules commonly used for active targeting, as discussed in this review, are limited because not all tumor types overexpress the corresponding receptors at usable cell surface copy-numbers, and some of these ligands have suboptimal properties for targeting entities.57 Figure 3 summarized the common types of small molecules and their cargoes (radiolabelled imaging agent or cytotoxic agent) used for active targeting in cancer.

4. EXAMPLES OF TARGETING MOLECULES AND THEIR SMALL-MOLECULE CONJUGATES

A. Folic Acid Receptors

All living cells require vitamins for their survival, but cancer cells need them in greater amounts to sustain rapid growth,38 so vitamin uptake receptors tend to be overexpressed on cancer cells. Among vitamin receptors, the FR is the one that has been most extensively studied as a biomarker for the imaging and identification of tumor cells as well as tumor-targeted drug delivery.
Folic acid (folate) is responsible for DNA (purines and thymine) synthesis, metabolic reactions, methylation, and repair.58 Folate and its derivatives are taken up by cells via three different pathways. Normal cells take up folate via reduced folate carrier (RFC) at neutral pH with low affinity,59 and in acidic environment such as the duodenum and intestine via the proton-coupled folate transporter (PCFT)60; both routes do not accommodate folate conjugates.61 Cancer and embryonic cells instead preferentially use the FR that has high affinity for folic acid ($K_d = 1–10$ nM) to absorb folate via receptor-mediated endocytosis.59

FRs are glycosyl-phosphatidylinositol (GPI) anchored to cell surfaces. There are three functional FR gene isoforms: αFR, h-βFR, and h-γFR or FOLR1, FOLR2, and FOLR3, respectively.62 αFR is displayed on the apical surface of polarized epithelial cells such as kidney and the choroid plexus for folate reabsorption and transcytosis via the kidney to central nervous system (CNS). βFR expression is restricted to the placenta during embryonic development, spleen, and thymus. Unlike the other two, γFR contains an imperfect GPI anchor sequence and is expressed in low levels on the cell surface of haematopoietic tissues, with the majority released as secreted proteins.63, 64 Among the three receptor isoforms, αFR is the most widely expressed. In many cases, it is seen at negligible levels in human normal tissues (<2.5 pmol FR/mg protein) but highly expressed on malignant tissues (>6–40 pmol FR/mg protein depending on cancer type).65 Tumors that express high FR levels are ovarian, uterus, endometrial, cervical, lung, pancreas,66 breast,67 colorectal,68 brain,69 bladder,70 and testicular.71

A significant fraction of all the research on active targeting concerns folate-conjugated pharmaceuticals targeting FR-positive cancers. Conjugation of agents to the γ-carboxylate of folate does not affect the receptor-binding affinities much72 because that domain does not interact with the binding pocket of the FR during binding, as supported by the crystal structure of folate bound to the αFR.73

Receptor amino acids involved in folate–FR binding are conserved between the α- and β-FR isoforms, indicating that binding for αFR is similar to βFR. During binding, the pterin folate fragment becomes buried in a deep FR pocket, forming extensive interactions. Derivatives of folic acid that lack the exocyclic oxygen of the pterin ring cannot form the same interactions, and this accounts for why methotrexate and aminopterin have reduced affinity for αFR, relative to the reduced folate carrier. When folate binds FR, the two carboxylates of the glutamic acid region protrude from the positively charged entrance to the binding cavity. This mode of binding explains why the Glu carboxylic acids can be used for conjugation, and why functionalization of the γ-carboxylate has least impact on affinity.

\begin{center}
\includegraphics[width=0.2\textwidth]{folic_acid.png}
\end{center}

Folic acid (1, also known as pteroylglutamate, MW 441) is water soluble and stable to diverse solvents and heat. It has functionalities that allow it to be conjugated to various cargoes for imaging or therapeutic purposes (though the chemistry is somewhat impeded because folic acid is insoluble in most organic solvents apart from DMSO). In general, folic acid tends to be nonimmunogenic, tissue permeable, and rapidly cleared from folic acid receptor negative tissues. Low receptor density restricts applications of folate conjugates to imaging agents for which the sensitivity of detection is such that high concentrations are not required, or to very toxic therapeutic agents. However, this requirement is less restrictive than those on untargeted drugs and opportunities arise to use cargoes that may be so toxic that they cannot be used without targeting. Folic acid also can be used to target cells that would otherwise be resistant
to untargeted drug cargoes. Nevertheless, there are other limitations; for instance, the FR does not contain pores or channels, so the conjugates must themselves be cell permeable for the conjugates to be internalized into the cells. Conjugating folate directly to macromolecules, genes, or siRNA for nucleotide-based methods does not overcome the intrinsic issues surrounding the cell permeability of these entities, or endosomal release when these molecules are successfully imported into cells. It is often necessary to tether drugs to folic acid via hydrophilic linkers since many potential cargoes are lipophilic. Impressive new applications of folate conjugates in targeting cancer emerged in the first decade of this century, primarily by Philip Low and co-workers at Purdue and Endocyte. Much of that work has been summarized in a series of excellent reviews that have appeared as recently as 2015. Consequently, what follows here are a summary of the highlights from that work and an update of recent developments.

\[\text{99mTc-EC20 or etarfolatide (2) and 111In-DTPA-folate (DTPA is diethylenetriaminepentaaetic acid) (3) are among the earliest FR-targeted imaging agents to reach the clinic. Conjugate 2 has high FR-binding affinity of } K_d 3 \text{ nM} \text{ whereas 3 has a 1 nM } K_d \text{ and reached 50\% saturation in 3 min on FR}^+ \text{ KB cells. Comparison of 2 and 3 was conducted in FR}^+ \text{ syngeneic M109 lung tumor model.} \text{ Nearly identical biodistribution profiles were observed in all organs with the highest uptake in kidneys (138 and 191\% injected dose [ID]/g tissue, respectively), followed by tumor (17 and 19\% ID/g tissue, respectively). Clearance of 2 and 3 was rapid in blood, showing less than 1\% ID/g at 4 hr post administration. These data suggest the efficacy and rapid clearance of 2 and 3 are independent of the half-lives of the radioisotopes (6 and 67 hr, respectively).} \text{ Phase I clinical studies of 2 revealed that 68\% of patients showed uptake of radiotracer 2 in solid tumors by planar scintigraphy or single-photon emission computed tomography (SPECT), whereas 67\% of patients were positive for } \alpha \text{FR in immunohistochemistry (IHC). Only 72\% of the patients with positive IHC staining for FR showed positive imaging result using 2. The authors speculated that the poor correlation was due to the suboptimum time of tissue sampling as well as variations in the status and heterogeneity of FR in primary and metastasis tumors. Currently, 2 is in clinical studies to monitor the progress of FR-targeted therapeutic agents EC145 and EC1456 (see below; NCT01577654, NCT01999738).} \]

\[\text{Phase I/II clinical studies of 3 in ovarian cancer showed 100\% success (} n = 7 \text{) in the detection of malignancy for newly detected ovarian masses. All the malignant lesions had} \]
increased radiotracer uptake and fast clearance in nontargeted organs. However, the detection of recurrent ovarian or endometrial tumors \((n = 7) \) was difficult using 3 even though it gave good correlations with the anatomical imaging results.\(^8^4\) Reasons for this are the small size of recurrent, compared with newly diagnosed, tumors and difficulties predicting the exact location of recurrent tumors. Agent 3 failed commercialization due to the high cost and long radiochemical half-life (67 hr) of 111-Indium.

Folate-fluorescein, EC17 (4), was designed to induce a hostile immune reaction toward FR-expressing tumors. A series of vaccinations with hapten fluorescein (EC90 vaccine) administered with an adjuvant called GPI-0100 caused the induction of a high titer of antifluorescein mAbs. Treatment with EC17 labeled the tumors that expressed the FR with a bound immunogenic hapten, making them conspicuous to the host’s immune system, and this led to elimination of the tumors while leaving healthy cells unaffected.\(^8^5\)–\(^8^7\) Phase I clinical evaluation of EC17 regimes in renal-cell carcinoma patients showed 4\% of partial remission, 54\% stable disease, and 43\% progressive disease after the first cycle of therapy. Nevertheless, hypersensitivity or allergy with an increased in mAb titer was reported.\(^8^8\) Recently, a similar phase I clinical application of the immunotherapeutic agent with cytokines interleukin (IL) 2 and interferon (IFN) \(\alpha \) to stimulate the enhancement of antibody-dependent and cell-mediated killing against mAb opsonized tumor cells was conducted. Twenty-four kidney cancer patients featured in this work. This regime proved safe and had only mild-to-moderate clinical toxicities (less than 50\% of the patients suffered from hypersensitivity). Moderate antitumor responses were observed (29\% of patients had stable disease for 123–340 days and 4\% had partial remission for 71 days).\(^8^9\)

Another folate conjugated with cytotoxic cargo for cancer therapy was EC72 (5): folic acid-\(\gamma \)-cysteine linked to 7-\(N \)-modified mitomycin-C (MMC) via disulfide bond. EC72 had a high affinity (relative binding affinity [RBA] of 0.59 relative to folic acid) to FR\(^+\) KB cells and induced dose-dependent cytotoxic activity on FR\(^+\) tumor cells with no activity on FR\(^-\) cells both in vitro and in vivo.\(^9^0\) However, it was not a very potent anticancer drug compared with the therapeutic agent alone, as the reduction of tumor was moderate to negligible for huge-sized tumor (750 mm\(^3\)).\(^9^1\)
An important feature of delivery systems is release of drug in endosomes from the conjugate upon cellular internalization. Short intrinsic cleavage half-lives, especially when enforced by pH sensitivity, can improve the rate and efficiency of cargo release in endosomes. For instance, endosome cleavable acylhydrazones and reducible disulfides were used in EC140 and EC145, respectively. The binding affinities for the resultant conjugates were 0.35 (EC140) and 0.47 (EC145) relative to folic acid. Reduction-mediated release of the cargo from the disulfide bond from EC145 was highly efficient in endosomes: cleavage half-life 1 hr and complete cleavage within 6 hr. Conversely, EC140 has a cleavage half-life of 5.5 hr in an endosome environment (pH 5.5).

In animal studies, the maximum tolerated disease (MTD) of both EC140 and EC145 was 10 μmol/kg. When dosed three times per week for 3 weeks in mice xenografted with human nasopharyngeal KB tumors, the efficacy of EC145 was 100% full remission at half MTD, compared with EC140, which showed only 20% full remission. One hundred percent full remission was also observed with a much lower dose of EC145 (1.2 μmol/kg) in more-frequent dosing regimens (i.e., daily administration for two consecutive weeks or daily administration at week 1 and 3) with no significant adverse effects. Taken together, the authors claimed better efficacy of EC145 over EC140 due to the relative efficiency of linker cleavage in each construct. The acylhydrazone in EC140 was not expected to cleave efficiently inside cells based on its long cleavage half-life at pH 5.5.

EC140 has not been investigated in the clinic, but phase I clinical studies of EC145 in patients with solid refractory tumors (mainly colorectal, head and neck, and ovarian) established MTD with no toxicities. Antitumor responses were effective against head and neck cancer, with 100% (n = 3) showing stable disease for 95–211 days, whereas ovarian cancer (n = 2) had 50% of partial response and 50% stable disease for periods of more than 100 days. A phase...
II study was then initiated in ovarian and endometrial cancer patients \((n = 43)\). EC145 was effective in reducing tumor sizes and increasing survival of FR\(^+\) cancer patients, where 57\% showed Disease Control Rate (DCR, defined as total percentage of patients achieving complete response, partial response, and stable disease) in FR100\% (all target lesions were FR\(^+\)) patients (90\% confidence interval, 90\% CI 29.1–55.5\%), 36\% DCR in FR10–90\% (at least one but not all target lesions were FR\(^+\)) patients (90\% CI 19.6–56.1\%), and 33\% DCR in FR0\% (all target lesions were FR\(^–\)) patients (90\% CI 1.7–86.5\%). Median overall survival was 14.6 months for FR100\% patients, 5 and 11.6 months higher than FR10–90\% (hazard ratio = 0.574, \(p = 0.135\)) and FR0\% patients (hazard ratio = 0.219, \(p = 0.020\)), respectively.\(^{99}\) Adverse effects of EC145 were constipation and fatigue due to the hepatic clearance and metabolism of EC145 that caused the release of active vinca alkaloid agent to gastrointestinal organs.

Modification of EC145 by a carbohydrate to give EC0489 (8) was conducted to reduce hepatic clearance and metabolism. Compound 8 contains novel carbohydrate segments (1-amino-1-deoxy-glucitolyl-\(\gamma\)-glutamate) spaced in between the folate and vinca alkaloid moieties.\(^{100}\) In biodistribution studies, EC0489 showed >4-fold reductions in elimination half-life in rat and dog compared with EC145. In addition, EC0489 had more tolerable toxicity profile with no mortality whereas with EC145 two animals died at an equimolar dosage. Antitumor efficacies of 8 and EC145 were identical.\(^{101}\) Phase I clinical trial of 8 for refractory and metastatic solid tumors began in 2009; in December 2010, the study reported EC0489 was safely administered at weeks 1 and 3 of a 4-week cycle at dosages of equivalent to or less than 2.5 mg/m\(^2\), with no significant or severe constipation and gastrointestinal toxicities.\(^{101, 102}\) This study was completed in 2012, with no further update reported.

Synergistic multidrug EC0225 (9) uses folate to deliver mitomycin C and desacetylvinblastine monohydrizide (DAVLBH).\(^{103}\) Outstanding therapeutic efficacy was observed at three doses per week for two consecutive weeks. Specifically, 9 was able to eradicate tumors regardless of initial tumor sizes, and it showed increased antitumor response compared with folate-mitomycin C (EC72), folate-vinca alkaloid (EC145), or a combination of both (highly FR-expressing xenograft KB tumor).\(^{104}\) EC0225 was brought to phase I clinical trial for
treatment of refractory and metastatic solid tumors, including colorectal, breast, and prostate in 2007 (NCT00441870). In December 2009, reports indicated that an intravenous bolus of EC0225 given at three times per week for 2 weeks within 28-day cycle has MTD of 2.3 mg/m², with anemia and constipation as the common adverse effects. Long-term disease stabilization was reported in colorectal (4.6 months), breast (4 months), prostate (10 months), leiomyosarcoma (4 months), and mesothelioma (4 months) cancers. No further update on the clinical status of EC0225 is found to date.

Folate conjugates containing epothilones and tubulysin, which act by disrupting and depolymerizing microtubules, have been studied. Conjugation of epothilones to folate via a disulfide bond and a bifunctional Asp–Arg peptide spacer to produce BMS-753493 (epofolate, \(\text{10} \)) was carried out by Endocyte and Bristol Myers Squibb (BMS). Epofolate (\(K_d = 10 \text{ nM} \)) was brought to phase I clinical trial for patients with advanced cancers and to phase IIa to determine its efficacy in shrinking or slowing the growth of cancer in patients with advanced ovarian, renal, or breast cancers (NCT00550017). Epofolate was tolerable with MTD of 26 mg/cycle (study 1; days 1, 4, 8, 11 with starting dose of 5 mg; 21-day cycle) and 15 mg/cycle (study 2; days 1–4 with starting dose of 2.5 mg; 21-day cycle) and was less toxic than epothilones alone. However, the antitumor responses were poor: 19% have disease stabilization with a median duration of 85 days and 50% progressive disease for study 1. For study 2, stable disease was 23% with a median duration of 88 days and 51% of progressive disease. In 2010, epofolate was discontinued from clinical studies due to the poor response.

Tubulysin B hydrazide (TubBH, EC1456) was brought to phases 1 and 2 clinical studies (NCT01999738) due to its 100% cure rate in a high-FR⁺ xenograft MDA-MB-231 breast cancer model and syngeneic M109 lung carcinoma. However, no further update on the clinical status of EC1456 is found to date.
Many novel potent folate conjugates have reached preclinical studies. One example is EC0905 (11), which is similar to EC0489 (8 discussed above) except for an additional unit of 1-amino-1-deoxy-glucitolyl-γ-glutamate in the spacer. EC0905 showed high affinity and high cytotoxicity (IC$_{50}$ = 2 nM) to FR$^+$ KB cells. Antitumor responses to EC0905 were studied in canine invasive urothelial carcinoma (iUC); 56% partial remission and 44% of disease stabilization, with a median overall survival of 115 days, were reported. Immunohistochemistry showed a higher percentage of human iUCs express FRs, with 78% of samples having immunoreactivity in the tumor cells, suggesting that the translation of EC0905 to treating human iUC is possible. However, no further study of EC0905 on clinical was found to date.

![Folate-Methyl-β-cyclodextrin](image1)

Methyl-β-cyclodextrin, a lipid-raft-disrupting agent was linked to folate to produce FA-M-β-CyD (12). Methyl-β-cyclodextrin can extract cholesterol from lipid rafts that are highly abundant on cancer cells. Tumor suppression occurred for all mice treated with FA-M-β-CyD. They survived for up to 140 days whereas those treated with free doxorubicin (Dox) and M-β-CyD respectively all died within 70 days. Other potent folate conjugates that are pending preclinical evaluation include folate-indenoisoquinoline (13), where indenoisoquinoline is a topoisomerase I inhibitor and photosensitizer pheophorbide-a conjugated to folate (14). Both can target FR$^+$ tumor cells with minimal perturbation of normal cells.
B. Cholecystokinin Receptor

Cholecystokinin receptors (CCKRs) are membrane G protein coupled receptors. These can be categorized as CCK1R and CCK2R, where CCK1R was first characterized in pancreas of rat,113 and CCK2R was found in mammalian brain.114 In humans, the CCK1R gene is located at chromosome 4p15.1–p15.2 while CCK2R is located at 11p15.4.115

CCKR have different organ distributions and binding affinities toward their natural ligands cholecystokinin (regulation of appetite and energy intake) and gastrin (an important gastrointestinal hormone and neurotransmitter peptide in brain).115 Studies have shown that CCK1R is mostly located in gall bladder and CNS, especially in the brain domain that regulates food intake.116 CCK1R has about 500–1000× higher affinity toward sulfated cholecystokinin (CCK) than the unsulfated form.117 Conversely, CCK2R binds to gastrin (hence also known as gastrin receptor) can also bind CCK with the same affinity regardless of their sulfation status.117 CCK2R is distributed in the cerebral cortex and hypothalamus of brain,118 and stomach mucosa for regulation of the physiological and pathological proliferation of mucosal cells.119 Apart from normal expression in CNS and gastrointestinal tract, CCK2R especially and its splice variant are overexpressed in cancers of the pancreas,120,121 medullary thyroid,122 lung,123 breast and ovarian,124 gastrointestinal tract,125,126 and colon. For each of these cases, there is no detection in their corresponding normal tissues.127

A few CCK2R-specific radiolabeled-imaging agents feature a CCK2R antagonist as a delivering agent. Use of synthetic molecules (nonpeptide) targeting ligands has several advantages over peptide ligands for CCKR. There are antagonists that bind in a similar manner to the natural ligand128 and can access a greater number of binding sites because they dock to the inactive state of receptor whereas the natural ligand only binds to the active state.129 Second, the natural peptide ligand tends to be taken up by peptide scavenging receptor, especially in liver,130 resulting in high level of retention, which might give false-positive data for imaging metastases in malignant disease.

![CRL-LS288](image)

One imaging agent that uses an antagonist as a delivery ligand is CRL-LS288 (15), composed of Z-360, a benzodiazepine-derived antagonist as targeting ligand ($K_d = 0.47$ nM, 672-fold lower affinity to CCK1R),131 a highly charged hydrophilic tetrapeptide spacer, and a sulfonated NIR dye, LS-288. Conjugate 15 is the first CCK2R-targeted small-molecule conjugate.132 It binds to CCK2R- and CCK2i4svR-transfected (splice variant of CCK2R) HEK293 cells with high affinity ($K_d = 8$ and 7 nM, respectively). In vivo biodistribution studies show high binding specificity of 15 in both primary and metastasized tumors. No uptake was observed in receptor-negative tumor, and fluorescence intensity decreased when a 100-fold excess of a nonfluorescent targeting ligand was added. A highly polar conjugate was designed in this case to limit nonspecific binding to CCK2R-expressing brain and gastrointestinal tract.
tissue. In the event, kidney was the only normal organ that was positively stained other than tumor tissues. Significantly, the uptake in kidney is not receptor mediated and was reversible upon administration of excess natural ligand.132

The effect of spacer chemistry on CCK2R targeting was evaluated for four conjugates (CRL1-4) with peptidosaccharide spacers of different lengths.133 99mTc-radiolabeled CRL-1 (tripeptide spacer) and CRL-4 (no spacer) showed nonspecific binding with indeterminate K_d values, suggesting the need for a more hydrophilic spacer to offset the hydrophobicity of the core ligand Z-360. A hydrophilic spacer is included in CRL-3 (peptidosaccharides with an octanoyl moiety, 16); this has K_d values of 30 and 4 nM on HEK293-transfected CCK2R and CCK2i4svR, respectively. Conjugate 16 was administered into CCK2R+ xenograft embryonic kidney tumor bearing mice and examined by γ-scintigraphy and SPECT/CT. Uptake of 16 was negligible in normal tissues (0.051–2.5\% ID/g), but not in kidney (7.6–8.4\% ID/g) at 2 hr post administration. In tumor, the accumulation was 8.1\% ID/g at 2 hr and remained relatively high compared with the other organs up to 24 hr. The retention in the kidney was independent of CCK2R expression, as the uptake of 16 was not affected by excess CRL-3. The data suggest that 99mTc-CRL-3 is a useful radioimaging agent for detecting, sizing, and monitoring CCK2R-expressing tumor.

Two new CCK2R-seeking therapeutic agents feature a targeting warhead and a hydrophilic peptide linker, just as in 16, but they carry different antimicrotubule cargos: (i) desacetyl vinblastine hydrazide (DAVBH) and (ii) TubBH. Preclinical data for the DAVBH conjugate was encouraging, but more significant antitumor activity and prolonged survival in CCK2R-expressing kidney cancer xenograft were observed for TubBH conjugate. For the latter agent, no tumor lesion was detected in all treated mice compared with nontargeted TubBH, which has comparable tumor growth with control groups. Receptor selectivity was confirmed when non-CCK2R-expressing xenografts showed similar antitumor activities to control.134

C. Prostate-Specific Membrane Antigen (PSMA)

PSMA is a type II membrane protein with a 19-amino-acid cytoplasmic amino-terminal region, a 24-amino-acid transmembrane domain, and a 707-amino-acid extracellular portion. The PSMA gene is located on the short (p) arm of chromosome 11 at position 11.2.135, 136 Expression of PSMA was first found in prostatic secretory epithelium cells and prostate cancer (PCa),137 correlating with higher grade and metastatic PCa.138 However, PSMA is also present (at low levels) in some normal cells such as those at small-intestine brush-border membrane, proximal renal tubules, and salivary glands.139, 140

\textit{Medicinal Research Reviews} DOI 10.1002/med
PSMA is a surface glycoprotein141, 142 that behaves like a cell surface receptor under scanning confocal microscopy. It has a high rate of internalization after binding mAbs or other ligands, but it is then transported to endosomal compartment and recycled back to plasma membrane surface through recycling endosomal compartment. PSMA also has glutamate carboxypeptidase and folate hydrolase activities due to its role in facilitating the generation and uptake of nutrients as substrates, especially glutamate and folate.143–145

Two small-molecule inhibitors of glutamate carboxypeptidase are based on glutamate-urea-lysine, MIP-1072 ($K_i = 4.6 \pm 1.6$ nM), and MIP-1095 ($K_i = 0.24 \pm 0.14$ nM). These inhibitors were modified with an iodo-aromatic substituent at the lysine nitrogen to produce $^{123\text{I}}$-MIP-1072 (17) and $^{123\text{I}}$-MIP-1095 (18). Conjugates 17 and 18 exhibited high affinity and specificity ($K_d = 3.8 \pm 1.3$ and 0.81 ± 0.39 nM, respectively) for PSMA-expressing cancer cells (LNCaP) in vitro and in vivo146, 147 with no or minimal effects on non-PSMA-expressing cancer (PC3) and normal cells. Conjugate 17 has been used with paclitaxel (PTX) in PCa preclinical studies148 to verify the suitability of this agent in monitoring tumor progression post chemotherapy. Tumor uptake of radiolabeled agent was proportional to the tumor mass and this demonstrated the potential of this compound to track tumor mass changes in response to therapy. Following this, 17, trade named as TROFEX, underwent phase I clinical trials for imaging metastatic tumors of PCa patients undergoing prostatectomy (NCT00712829) and 18 was included in this study for comparison. Both 17 and 18 showed rapid uptake and localization to lesions of bone and soft tissues in metastatic PCa patients at 1–4 hr post administration. They had different pharmacokinetics profiles, with 17 having fivefold faster clearance from circulation and nontargeted tissues compared with 18.149 Both these molecules are promising for diagnosis and imaging PCa, but there are still challenges to be overcome regarding the nonspecific uptake in lymph nodes, salivary glands, liver, and kidney in PCa patients.150
More hydrophilic small-molecule ligands, with better pharmacokinetic profiles than 17 and 18, were also designed. The PSMA inhibitors from the MIP-1072 and MIP-1095 glutamate-urea-glutamate/lysine analogs were functionalized at the polar lysine imidazole derivatives to include alcohols, ether, and acids, which were then labeled with radionuclide technetium-99m (\(^{99m}\text{Tc}\)), to yield four agents: \(^{99m}\text{Tc}\)-MIP-1427 (\(K_d = 0.64 \pm 0.46\) nM), \(^{99m}\text{Tc}\)-MIP-1405 (\(K_d = 4.35 \pm 0.35\) nM), \(^{99m}\text{Tc}\)-MIP-1404 (\(K_d = 1.07 \pm 0.89\) nM), and \(^{99m}\text{Tc}\)-MIP-1428 (\(K_d = 1.75 \pm 0.32\) nM). In animal studies, these four compounds showed low nontargeted cell uptake by hepatobiliary and normal tissues, and rapid renal clearance. \(^{99m}\text{Tc}\)-MIP-1404 (19) had the best localization in PSMA\(^+\) LNCaP xenograft tumors over 4 hr. These four drugs were brought to phase I clinical trials for SPECT imaging in patients with metastatic disease, in comparison with 17 and 18, and the mAb \(^{111}\text{In}\) capromab pendetide (Prostascint). Both 19 and \(^{99m}\text{Tc}\)-MIP-1405 (20) gave promising results with rapid detection of metastatic PCs in soft tissues and bone with high specificity. The diagnosis accuracy and sensitivity were both 83\% for 19 and 84\% for 20, that is, better than 17 and Prostascint (diagnosis accuracy and sensitivity of 67\% for 17 and 63\% for Prostascint). Conjugate 19 is now in phase II clinical trials for high-risk PCa patients who have been scheduled for radical prostatectomy and extended pelvic lymph node dissection (NCT01667536).
The high-affinity PSMA-targeting ligand 2-[3-(1,3-dicarboxy propyl)-ureido] pentanedioic acid (DUPA) conjugated to technetium 99m (99mTc) with peptide spacer NH-(CH$_2$)$_7$-CO-Phe-Phe gives a novel radionucleotide EC0652 (21). In phase 0 trials, high-affinity localization of EC0652 in all obvious cancerous areas in seven patients was confirmed by CT and bone scan and there were no reported toxicities. Conjugate 21 is now in phase I/II trials with larger patient populations.

Imaging agent 18F-DCFBC (22), sponsored by Sidney Kimmel Comprehensive Cancer Center to undergo phase I trials, was found to be concordant with the conventional imaging as well as applicable for the use in early bone metastases that are not detectable by conventional imaging.

Antineoplastic agent TubBH conjugated with a PSMA inhibitor EC1169 (23) inhibited growth of PSMA-positive cells with no activity against PSMA negative cells ex vivo. Treatment of EC1169 in a xenograft nude mice model bearing human LNCaP led to tumor remission in five of seven animals and the remaining two were “cured,” that is, no tumor regrowth up to 90 days. EC1169 did not have any effects on a PSMA negative xenograft model, neither did the nontargeted TubBH conjugate have effects on the PSMA-positive tumor model. This targeted therapeutic agent is currently undergoing phase I clinical trials for patients with metastastic PCa under sponsorship by Endocyte (NCT02202447).
D. Sigma-2 Receptor

Receptors sigma-1 and sigma-2 (25.3 and 21.5 kDa, respectively) are found in the CNS and peripheral tissues such as liver, kidney, and gastrointestinal tract. Sigma-1 modulates ion channels and mobilizes intracellular ions, such as calcium and potassium ions, especially in glutamatergic neurotransmission. It has been widely studied in learning and memory processes, depression and anxiety, schizophrenia, and analgesia.

Unlike sigma-1, sigma-2 regulates cell differentiation, morphology, survival, and growth and is eight to ten times overexpressed in rapidly proliferating cells (stem and cancer) compared with quiescent mouse mammary adenocarcinoma lines. The sigma-2 receptor therefore is a biomarker for proliferating status and a focus for targeted cancer therapy of solid tumors. It is abundant in human and murine pancreatic and ovarian cancer cell lines, and is expressed minimally in brain, liver, pancreas, spleen, lung, and kidney. Sigma-2 in the ligand bound form is internalized via endocytosis before localizing in lysosomes, the endoplasmic reticulum, and mitochondria. It participates in both caspase-dependent and caspase-independent pathways of cell death.

Conjugate containing synthetic ligand SV119 did not interfere with the proapoptotic activity in inducing apoptosis (IC$_{50} = 71$ nM), and the caspase-3 activity was augmented by 1.6-fold in vitro compared with SV119 alone (IC$_{50} = 460$ nM). Preclinical studies of on a syngenic murine pancreatic tumor model and a xenograft human pancreatic tumor model showed it significantly reduced tumor growth and increased animal survival. This targeting agent preferentially localized in the pancreas relative to other organs. A mild increase in caspase activity was detected in normal pancreas, but there was no toxicity and caspase activity diminished quickly once treatment was ceased.

SW IV-134 (25) is a chimera of SW43 and a Smac mimetic SW IV-52. Smac induces apoptosis by deactivating the Inhibitor of Apoptosis (IOP) protein in cells. Chimeric 25 has a lower binding affinity to sigma-2 receptor ($K_i = 22.6 \pm 1.8$ nM) than SW43 ($K_i = 7.1 \pm 1.3$ nM), but five- to sevenfold lower IC$_{50}$ in six pancreatic cancer cell lines compared with its components SW43 and SW IV-52. Furthermore, xenografts in murine models demonstrated that 25 treated mice have delayed tumor growth and increased survival compared to SW43 and SW IV-52 controls.

A different group used 25, but with a different name SW III-123 and for treating ovarian cancer ($K_i = 189.90$ nM). In that model, 25 is a potent active targeting cytotoxic agent, inducing TNF-α-dependent cell death through rapid degradation of the apoptosis inhibitor.
proteins cIAP1 and cIAP2. In a xenograft model of ovarian cancer, the median survival for mice treated with 25 was 86.5, 10, and 12 days more than mice treated with SW43 and vehicle solvent, respectively.

Radiotracer agents that selectively target the sigma-2 rather than sigma-1 receptor have been developed to detect and stage solid tumors, as well as to monitor therapeutic efficiency. The first two radiolabeled small-molecule ligands in this series were benzamide analogues $[^{18}\text{F}]3c$ (26) and $[^{18}\text{F}]3f$ (27). These gave high tumor-to-normal tissues ratios, rapid blood clearance, and minimal defluorination in a mouse mammary tumor model. Conjugate 26, also referred to as $[^{18}\text{F}]-\text{ISO1}$ ($K_d = 4.66 \pm 0.87 \text{nM}$) was assessed in 30 patients with breast ($n=13$), head and neck ($n=10$), and lymphoma ($n=7$) cancers. There was a significant positive correlation between Ki-67 staining (a cellular proliferation marker) with 26 uptake, as assessed by tumor-to-muscle ratio and tumor maximum standardized uptake value, suggesting that this imaging agent may be an alternative to diagnosis via specimen biopsy. Moreover, 26 almost completely cleared from blood in 5 min, had high tumor uptake within minutes post injection, and a tumor uptake level that remained at peak throughout 60 min of imaging. These data suggest that 26 is safe for imaging proliferation and growth of cancer cells. Indeed, 26 is currently used for PET/CT imaging of sigma-2 receptor expression in primary breast cancers (University of Pennsylvania; NCT02284919).

The long half-life of iodine-125 (59 days) is ideal for animal biodistribution studies compared with fluorine-18 ($t_{1/2} = 110 \text{ min}$). Both $[^{18}\text{F}]3f$ (27) and $[^{125}\text{I}]3f$ (28) have high tumor-to-normal tissues ratios and rapid clearance from blood, muscle, fat, and lung (5–120 minutes), suggesting that the high affinities of 27 ($K_i = 0.26 \text{nM}$) and 28 ($K_d = 2.8 \text{nM}$) were not affected by the radioisotope attached. However, 28 is unlikely to be useful in imaging human tumor because of its low gamma energy from iodine-125.

E. Tropomyosin Receptor Kinase (Trk)

Tropomyosin receptor kinase (Trk) includes three common receptor tyrosine kinases, TrkA-C. Each neurotrophin ligand has different Trk-binding specificities; TrkA predominantly binds to neurotrophin growth factor (NGF), TrkB to brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4), TrkC has greatest affinity for neurotrophin-3 (NT-3). p75NTR is a cell surface receptor that binds all the neurotrophins. Extracellular domains of Trk receptors include a combination of two cysteine clusters, a tandem array of leucine-rich
motifs, and two immunoglobulin-like domain in the membrane proximal region. Specificity and affinity to neurotrophin ligands are dictated by the second immunoglobulin-like domain (residues 266–381) of the receptor, whereas the leucine-rich motif serves as a binding site for neurotrophins.

Trk receptors were first identified as a colon-derived oncogene, and subsequently in the normal cellular counterpart of adult neurons with functions that include regulation of neuronal cell survival, proliferation, differentiation, axon and dendrite growth, as well as regulation of synaptic strength and plasticity. Trk receptors are expressed in neurons, but overexpressed in various cancers including neuroblastoma, glioblastoma, thyroid cancer, melanoma, and breast cancer. Consequently, Trk receptors are potential molecular targets for new chemotherapeutics, and useful biomarkers for prognosis of tumor progression and invasion.

Studies of Trk internalization in lysosomes upon neurotrophin binding have led to small-molecule agonistic ligands that target this receptor for drug delivery. A series of small-molecule agonistic ligands have been discovered to bind to the ectodomain of TrkC receptor and transduce signals similar to the natural ligand NT-3 for regulating neuritogenesis. Subsequently, the same group conjugated a synthetic bivalent peptidomimetic (IY-IY) composed of fragments containing isoleucine (I) and tyrosine (Y) side chains, to cytotoxic cargoes. Conjugates to a rosamine and to 6-mercaptopurine were delivered into lysosomes, just as NT-3 is, and showed increased cytotoxicity in cells transfected with TrkC compared to wild-type cells. Competitive binding assays between the conjugated agents with NT-3 or a synthetic control ligand demonstrated that these compounds mediated dose-dependent cytotoxicities via TrkC binding.

Solubility and toxicity issues restricted further development of the 6-mercaptopurine and rosamine conjugates, so the same targeting group was conjugated with boron dipyrromethene (BODIPY) to give IY-IY-F (29) for fluorescence imaging studies, and to an iodinated BODIPY, resulting in IY-IY-PDT (30) for targeted photodynamic therapy (PDT). Conjugate
induced significant photocytotoxicity in TrkC-transfected NIH-3T3 and TrkC-expressing SY5Y neuroblasta cells in a dose-dependent manner upon irradiation as compared to TrkC-negative cells (NIH-3T3). A non-TrkC-targeted scrambled control (YI-YI) induced less photocytotoxicity. In another study featuring both human and murine breast cancer cell lines, 30 was shown to have a significantly lower IC\textsubscript{50} in TrkC overexpressing murine 4T1 (IC\textsubscript{50} = 0.325 μM) and human HS578t cell lines (IC\textsubscript{50} = 0.285 μM) compared to non-TrkC-expressing murine 67NR and human MCF-10A. Biodistribution of 30 in a syngeneic murine model showed that it accumulated maximally in 4T1 tumors at 1 hr post intravenous administration and maintained a high level up to 6 hr. YI-YI-PDT had a similar accumulation pattern but at twofold less tumor-uptake. Outstanding antitumor activity was observed in 30 in a 4T1 breast cancer model: 71% of the 4T1 tumor-bearing mice healed from cancer up to 90 days with no evidence of metastasis in major organs as verified by histopathological analyses. Surprisingly, tumor remission was also not observed in mice bearing 67NR (TrkC–) tumors, or for YI-YI-PDT treated 4T1 tumor-bearing mice. Relatively high toxicity was observed for 30 (MTD 20 mg/kg) and this could be because many types of neuronal cells also expressed TrkC receptors.

F. Carbonic Anhydrase IX

Carbonic anhydrase (CA) is a transmembrane zinc metalloenzyme found in cervical cancer HeLa cells. It regulates physiological pH homeostasis by reversibly converting carbon dioxide to bicarbonate. In humans, CA exists in 16 different isoforms having varying subcellular localizations, catalytic activities, and susceptibility to different inhibitors. These isozymes exist in diverse tissues such as gastrointestinal and reproductive tract, nervous system, kidney, lung, skin, and eyes. Among the 16 isozymes, membrane-bound CA-IX and CA-XII have been shown to link to carcinogenesis.

CA-IX contains 459 amino acids, with an N-terminal signal peptide region, a long extracellular CA domain, a transmembrane region, and an intracellular C-terminus domain. It exists as a dimeric protein and is the most active form of CA for CO\textsubscript{2} hydration. CA-IX is not expressed in most normal tissues except for stomach and gallbladder epithelia, but is highly expressed in aggressive glioblastoma, colorectal, and breast cancers. CA-IX expression has been studied as a prognosis biomarker for survival in patients. CA-IX and CA-XII expression apparently do not overlap; the latter is only a marker for less-aggressive tumors.
There are highly specific small-molecule delivery vehicles applicable in CA-IX due to its high and constitutive expression. Neri et al. has synthesized a few ligand-linker dye conjugates to study their CA-IX binding affinity and biodistribution: the FITC-conjugated (FITC is fluorescein isothiocyanate) CA inhibitor acetazolamide (AAZ) targeted CA-IX positive cells ($K_d = 12.6$ nM). The biodistribution in mouse model revealed that the dye accumulated in tumor at 1 hr post administration, and the accumulation value was 22-fold higher than nontargeted ligand, further confirming the selectivity of this ligand conjugate. In determining the therapeutic efficacy, the AAZ was conjugated with the cytotoxic agent duocarmycin. The conjugate possessed high affinity for CA-IX receptor. Disappointingly, a human renal-cell carcinoma xenograft model indicated only moderate tumor growth inhibition compared with nontargeted conjugates. Conversely, another cytotoxic drug, maytansinoid or “DM-1,” conjugated to the same ligand produced pronounced tumor shrinkage after seven consecutive days of treatment, though regrowth was observed at 20 days post therapy when no additional drugs were given. DM-1 conjugates were more effective than the clinical chemotherapy agents, sorafenib and sunitinib, in preclinical studies. A bivalent AAZ-maytansinoid DM-1 (31) gave superior characteristics compared to the monovalent AAZ with respect to the following: (i) affinity with no apparent dissociation from CA-IX coated surface, (ii) approximately threefold higher tumor accumulation than the monovalent conjugate, (iii) longer persistence in tumor (fluorescence signal of 40% compared with 14% for the monovalent 24 hr post administration) and, (iv) ablation of approximately 75% of the tumor compared to initial, with 33% of mice disease free up to 90 days in human renal carcinoma SKRC52 xenograft model.

G. Glucose Transport System

Glucose is obtained through the small intestine before being transported into circulation and target cells. It is an essential energy source for eukaryotic organisms, as it generates adenosine-5 triphosphate (ATP). Uptake of glucose across plasma membrane depends on glucose transporter carrier proteins. Transporters for uptake of glucose into cells have been identified, namely sodium-dependent glucose cotransporters (SGLT family) and facilitative sodium-independent transporters (GLUT family). SGLT family of transporters (SGLTs 1–6) transports glucose via active transport, which is mainly found in small intestines and renal proximal tubules, while the GLUT transporter family (GLUTs 1–14) are expressed in specific cells and tissues and they vary in binding affinities and substrate selectivities. Among the 14 transporters in the GLUT family, only GLUT 1 and GLUT 3 have high affinity for glucose. They are closely linked to cell growth and development, especially in malignant cancer but not in normal epithelial and benign epithelial tumors. Studies have proposed that cancer cells highly rely on glucose and glycolysis for survival (Warburg effect) and express GLUT, especially GLUT 1 abundantly to increase glucose uptake and energy usage. This explains how GLUT 1 expression is correlated with the aggressive behavior of cancer.

A glucose transporter targeting agent glufosfamide (D-19575, 32) was synthesized by linking β-D-glucose as a ligand covalently to an alkylating agent isophosphoramido mustard.
in 1990s through a collaboration between Baxter Oncology (Asta Medica) and the Cancer Research Centre (DKFZ) in Heidelberg, Germany.216 Compound 32 is cytotoxic in glucose transporter overexpressing cancer cells and its potency is correlated with the amount of enzyme β-glucosidase in cytosol and lysosome, which were required to hydrolyze 32 to release its cytotoxic agent.217 Cytotoxic action of 32 involves inhibition of DNA and protein synthesis, followed by reduction in the level of anti-apoptotic Bcl-2 protein and activation of caspase-3, caspase-8, and caspase-9.217–219

Clinical evaluation of the toxicity of 32 showed increased serum creatinine and renal acidosis,220,221 probably caused by acute tubular necrosis. Other reported toxicities include neutropenia, leukopenia, and thrombocytopenia when administrated intravenously at dosage of more than 5000 mg/m2 regardless of infusion schedules.220–223 Phase I studies of 32 on refractory solid tumors indicated clear antitumor activity. Treatment with 800–6000 mg/m2 of drug every 3 weeks yielded long-lasting complete response for an advanced pancreatic adenocarcinoma, as well as minor tumor shrinkage for two refractory colon carcinomas and one heavily pretreated breast cancer.220

The efficacy of conjugate 32 in phase II metastatic pancreatic cancer and non-small-cell lung cancer was reported moderate when administrated at dosage of 5000 mg/m2 every 3 weeks, with median overall survival of 5.3 months for PCa,224 and 5.8 months for lung cancer.221 Moreover, insignificant antitumor activity was observed for patients with glioblastoma multiforme and treatment was thus discontinued.223 The lack of activity for glioblastoma could be due to failure to cross the blood–brain barrier as no neurological toxicity was reported. Hence, it was suggested that the efficacy of 32 is cancer-type-dependent regardless of GLUT expression. Ex vivo studies of 32 in head and neck squamous cell from carcinoma patients (HNSCC) were also conducted, where biopsy specimens from cancer patients with primary and metastasis tumors were isolated for colony formation assay in response to 32. Cis-dichlorodiammine platinum (cis-DDP), the current chemotherapeutic regime for HNSCC, was used as a reference. While almost all primary tumor specimens were clinically resistant to cis-DDP, 31.3 % of them were found to be sensitive to 32. However, neither cisplatin nor 32 was effective in reducing colony formation of metastatic tumor cells. Thus, it was proposed that 32 was equally, if not more effective than cisplatin to treat HNSCC.225 As 32 could overcome the drug resistance and increase the sensitivity of cancer cells to chemotherapeutic drugs, it may be used in combination with chemotherapeutic regime.

Synergistic efficacies of 32 with gemcitabine have been studied in phase I combination regimes in pancreatic adenocarcinoma; 53 % of patients were stabilized, 70% of them stable for 4 months, and 30% stable for 6 months,222 proving the effectiveness of this combination regime. In contrast, 32 in phase III metastatic pancreatic cancer patients after receiving gemcitabine as primary treatment did not show significant improvement in median overall survival (105 days) compared with gemcitabine alone (84 days, $p = 0.19$). This phase III study has also revealed that 32 has low therapeutic activity, the best response for this study was stable disease, which is 31% in dual drug treatment and 19% in gemcitabine alone ($p = 0.016$).226 The variance in therapeutic efficacy between phase I and phase III might be due to difference in cancer staging between patient populations. Another ongoing phase III trial, sponsored by Eleison Pharmaceuticals, involved comparing 32 and 5-fluorouracil in metastatic pancreatic cancer that had progressed or failed first-line therapy with gemcitabine (NCT01954992).
Inspired by these studies on 32, the sugar moieties glucose, galactose, and glucuronic acid were conjugated with taxoids. The conjugated compounds were more soluble and stable than the taxoids, and reduced the toxicity of PTX on both normal and low GLUT expressing cancer cells in vitro. Preclinical assessment of galactose conjugated docetaxel (10-α-GAG-DT, 33) showed that it was fast degraded (within 1 hr) to release the free drug and possessed superior antitumor activity compared with PTX alone but equipotent with docetaxel in a syngeneic model murine leukemia cells.

19-Fluorodeoxyglucose (FDG) conjugated to chlorambucil (CLB) derivatives through different spacer groups has been studied. Screening of various cancer cell lines with the conjugates demonstrated significant improvement in cytotoxicity of glycoconjugate CLB compared with the free drug. In brief, glycoconjugates that possess two amide bonds in the spacer linker showed high cytotoxicity (34), and cytotoxicity was not further improved by the length of alkyl chain in the spacer. The presence of an aminophenol between FDG and the amidic bond spacer also improved cytotoxicity (35). Preclinical evaluation of 34 and 35 on a syngeneic murine model of melanoma and colon cancer proved that both were better tolerated than CLB alone, with MTD of 0.14 mmol/kg for both compounds compared with 0.05 mmol/kg for CLB. Drug efficacy studies in melanoma at the MTD showed 34 induced 80% inhibition in tumor growth at day 21 post tumor inoculation, whereas compound 35 induced 90% inhibition (day 23). Both showed significant inhibition compared with CLB-treated mice with 57% inhibition at day 26. In the colon cancer model, 34 and 35 had 75 and 88% inhibition at day 26 when given at 0.75 MTD, compared with 66% at day 23 for CLB at MTD.
A conjugate of 2-amino-2-deoxy-\(D\)-glucose via succinic acid to adriamycin (ADM, 2DG–SUC–ADM, 36) showed uptake in high GLUT-1 cells, delivery into the cytoplasmic region in 5 min, and penetration into the nucleus 10 min post treatment. GLUT-1-mediated uptake of 36 was proposed as the addition of 2DG ligand or GLUT-1 inhibitor reduced the mean fluorescence intensity of ADM in cells. Interestingly, not only did 36 reduce the viability of GLUT-1-overexpressing cancer cells in a dose-dependent manner, it was also effective against ADM drug-resistant MCF-7 cells (MCF-7/ADR) and had negligible cytotoxicity in normal cells. In preclinical biodistribution studies, 36 accumulated in high levels in tumor 2 hs post injection and continued to give detectable high levels in tumors 48 hr post administration, whereas the dye in other organs was cleared by 24 hr. Antitumor efficacy studies in syngeneic S180 sarcoma model and xenograft SKOV3 ovarian model revealed that 36 has 64 and 69% tumor inhibition, respectively, with negligible side effects, as compared to the parent drug, which has 50 and 47% inhibition of tumor volume in S180 and SKOV3, respectively.\(^{232}\)

Glycosylation of cadalene, a natural product reported to have antitumor effects, produced \(\beta\)-Glc-\(O\)-cadalene (37), which had improved physicochemical properties, notably water solubility. Pharmacokinetic properties were not determined for this conjugate, but an antitumor efficacy study in xenograft of lung carcinoma model via oral administration showed a 50% reduction in tumor size.\(^{233}\)

A 63-member library of neoglycoside conjugates to CLB and 32 similar neoglycoside conjugates of the alkaloid cyclopamine were prepared to study the effects of the sugar moiety and linker on biological activity. The studies indicated that nonmetabolic sugar conjugates such as \(D\)-threose inhibited growth of solid tumor cell lines with lower IC\(_{50}\) compared with parent drugs and metabolic sugar conjugates, \(D\)-glucose.\(^{234,235}\)

In contrast to conjugates that showed successful targeted delivery, there are some glucoconjugate drugs that negatively regulate tumor growth. Conjugation of 8-hydroxyquinolines and clioquinol to glucose resulted in glucoconjugates with weaker antiproliferative activity.
compared with the parent drugs. This was due to the incomplete hydrolysis of the conjugates by enzymes to release their cytotoxic agents in cancer cells.

H. Estrogen Receptor

Estrogen, the primary female sex hormone, is essential for the growth and maintenance of female reproductive tissues. It is mainly biosynthesized in the ovaries, and three major endogenous estrogens are produced in varying amounts throughout the female reproductive cycle: estrone (E1), estradiol (E2), and estriol (E3). Estrogen receptor (ER) binds the endogenous estrogens inside cells and translocates them to the nucleus. It is a transcription factor of the nuclear receptor family. There are two isoforms of ER: αER, predominantly expressed in breast, ovary, and endometrium and βER, found mostly in kidney, CNS, prostate, cardiovascular, and bone tissues. αER and βER have similar ligand-binding domains but different affinities toward their ligands. Moreover, both αER and βER demonstrate opposing transcriptional activities. Therefore, different ER combinations may respond differently to various ligands, which may translate into tissue selective agonistic or antagonistic effects.

Estrogen is associated with carcinogenesis, as the ER can drive cellular proliferation and increase in mutation rate. αER is over-expressed in more than 70% of all diagnosed breast cancer. For this reason, it has been exploited as a therapeutic target, a predictive marker, and a prognostic factor for the breast malignancies.

E2 (17β-estradiol) and their derivatives are attractive ligands for receptor-based drug delivery as they are highly distributed in ER-expressing cancer cells, and provide a basis for development of estrogen-targeted conjugate. Early work in this area features coupling of E2 or derivatives to chemotherapeutic drugs such as alkylating agent, antimetabolite, antimitotic agents, antibiotics, or photosensitizers. Details related to these E2–drug conjugates have been reviewed. Most of this work featured attachment to E2 at the 3, 6, 7, 11, 16, and 17 carbons of 38. It emerged that the C3 and C17 hydroxyls are important for ER binding, suggesting that conjugates avoiding these positions would result in better binding affinity. In one study, linking drug molecules to the E2 6α, 7α, 16α, and 17α positions compromised binding affinities to ER, and lowered cytotoxicities relative to free drugs. Presumably this was due to steric hindrance in the binding pockets. Conversely, drugs conjugated to position 11β improved RBA and were threefold more cytotoxic in ER+ compared to ER− cells, relative to conjugation at the 11α position. Conjugation at 3β− and 17β− resulted in significant cytotoxicities but lower binding affinities, suggesting that binding and cytotoxicity are not perfectly correlated. Overall, early findings showed that β-conjugates gave better binding affinity...
to ER and none of the α-conjugates were suitable. Consequently, subsequent research has focused on β-connectivity.

Hanson’s group proposed E2 is an agonist when 11β position is not conjugated and becomes an antagonist when the same position is substituted with an aromatic ring. Subsequently, many studies focused on 11β E2 antiestrogen (AE), with appropriate substitutions at 11β position to facilitate binding to the ER pocket. Three new E2-geldanamycin (GDA, Hsp90 inhibitor) conjugates were prepared to study the effect of linker length on binding affinity: 39, 40, and 41. These 11β-E2-GDA hydrids have higher binding affinity for ER but were less cytotoxic to ER+ cells compared to ER− cells than the free drug GDA. Longer spacer lengths such as that in 40 tended to increase the binding efficacies (RBA of 39% relative to AE RU39411).
Tetraethylene glycol was used to attach RU39411, an AE antagonist to benzoyl hydrazone Dox giving 11β-AE-Dox (42). The azido-AE and alkynated-Dox functions were not significantly perturbed by the linker. Moreover, 42 was more selective than free-Dox and linker-Dox in ER overexpressing MCF-7 cells, with approximately 70-fold lower IC₅₀ values. Conversely in non-ER-expressing cells, 42, free-Dox and linker-Dox had comparable IC₅₀ values. Fluorescence microscopy showed that uptake of conjugates was mediated by membrane ER and enhanced cytoplasmic accumulation of Dox occurred via cleavage of pH-sensitive hydrazone linker. An in vitro evaluation of 42 showed that it was potent for ER targeting while no in vivo evaluation has been reported so far.

E2 conjugates that have imaging probes include 16α-[¹⁸F]fluoroestradiol (¹⁸F-FES, 43). Preclinical evaluation in a murine model showed high accumulation of 43 in ER⁺ uterus and ovarian tissues. Clinical development and efficacies of 43 and related agents have been reviewed. Briefly, uptake of 43 is receptor mediated and it is effective in detecting local and metastatic breast cancer. Improved biodistribution was obtained when fluorine was substituted at C⁴ of E2 with an 11β-methoxy group to produce 4-fluoro-11β-methoxy-16α-[¹⁸F]-fluoroestradiol (4FMFES, 44). Phase II trials of 44 showed good efficacy in detecting ER⁺ breast cancer with high tumor to background ratio relative to 43. However, no further update on the clinical status of 44 is found to date.

Other modifications of 43 included substitution at 11- and 17-positions on 16α/16β-[¹⁸F]fluoroestradiol, as 11- and 17-substitutions were known to increase uptake selectivity. Among the hydrids synthesized, 17α-ethynyl-11β-methoxy-16β-[¹⁸F]-fluoroestradiol (β-¹⁸F-FMOX, 45) gave the best binding affinity and fourfold higher uterus uptake than 43 in rats.

Medicinal Research Reviews DOI 10.1002/med
However, subsequent clinical data were inconsistent with the animal imaging data. Conjugate 45 had poor localization in human breast tumor lesion compared to 43, hence the study was discontinued.267 In spite of many rounds of modification, 43 is the only agent in this series that remains in active clinical trials. Currently, it is being studied as a molecular imaging agent for desmoid tumor and metastasis breast cancer (NCT02374931, NCT01957332).

E2 has also been conjugated with the short-lived (t1/2 = 20.4 min) positron-emitting radionuclide 11C to generate 17α-[11C]methylestradiol (46) and 11β-ethyl-17α-[11C]methylestradiol (47).268 Both derivatives were safe and effective in rats, with selective accumulation in uterus and ovary at 20–40 min post injection.

Several other ER+ targeted ligands have undergone clinical studies for imaging. One of these is an 18-fluorine conjugate of Snon-steroidal tamoxifen (18F-fluorotamoxifen, FTX), which shows good correlation between FTX uptake and response to tamoxifen therapy in primary and metastasis breast cancer.269 Another ligand, 16α-[77Br]bromoestradiol could image ER+ cancer and showed fast clearance,270 but there has not been an update on the clinical status of these two imaging agents for the past 10–20 years. In the meantime, 16α-[77Br]-bromo-11β-methoxyestradiol (48) has given successful results in the preclinical setting.271

I. Progesterone Receptor

Progesterone (49) is a steroid hormone important for female reproductive function, for example, in preparing the uterus for pregnancy. Progesterone is physiologically active when bound to the nuclear progesterone receptor (PgR). PgR is a type-I nuclear receptor, like estrogen, androgen, glucocorticoid, and mineralocorticoid receptors. It exists as isoforms PgR-A and PgR-B with an additional stretch of 164 amino acids at the N-terminus for protein PgR-B.272 PgR was found in uterus, ovary, and brain,273 with little expression on normal breast epithelia for both isoforms.274 However, similar to αER expression, PgR expression is much higher in pre-neoplastic breast lesions and the expression of the isoforms varies during tumorigenesis. There is a better prognosis for patients expressing both αER and PgR as they have the highest chance of responding to endocrine therapy.275 Conversely, primary breast tumors that are PgR negative (PgR−) have higher possibility of becoming malignant, suggesting that reduced PgR expression is associated with cancer aggressiveness and poor prognosis.275
21-[¹⁸F]-Fluoro-16α-ethyl-19-norprogestosterone ([¹⁸F]-FENP, 50) showed higher binding affinities to PgR than progesterone (60×) and ORG2058 (4×), an analog of synthetic progestin 21-hydroxy-16α-ethyl-19-norprogesterone. In clinical breast cancer imaging, only 50% of PgR⁺ patients stained positive and uptake was not PgR dependent. Moreover, it had a low target-to-background ratio and high uptake in the spine, blood, liver, and some other normal tissues, suggesting that it was metabolically unstable (high accumulation in bone) and had excessive lipophilicity (high accumulation in liver and fat). To solve these issues, modification of 50 was conducted, where progestin was incorporated with furanyl 16α,17α-acetals or -ketals, yielding two different compounds called [¹⁸F]-FFNP (51) and 16α,17α-ketal-progestin (52).²⁷⁷

Compared to 50, fat and bone uptake were significantly reduced in 51 and 52, while maintaining high PgR uptake in the uterus and ovary (190 and 173%, relative to R5020). The metabolic stability of both 51 and 52 was due to the presence of the bulky furan-substituted dioxolane ring at the 16α, 17α-position (49). This steric ring can slow down the defluorination at C₂¹ as well as reduce the in vivo metabolism of the conjugates by 20-hydroxy-steroid dehydrogenase, a progesterone metabolizing enzyme.²⁷⁷ Compound 51 was subjected to clinical studies to evaluate its safety, dosimetry, and feasibility of imaging PgR⁺ breast cancer by PET. Clinical studies on 22 breast cancer patients (16 PgR⁺, 6 PgR⁻) revealed that the difference in tumor lesion uptake (tumor maximal standardized uptake) was insignificant between PgR⁺ and PgR⁻ subjects (mean 2.5 vs. 2.0, respectively) but significant in terms of tumor-to-normal breast ratio (2.6 vs. 1.5, respectively) in PgR⁺ breast cancer.²⁷⁸ This suggests that compound 51 is more suitable to be used to determine the degree of PgR status of individual breast cancer lesions instead of in general diagnosis and staging. Conversely, there is no clinical trial reported for compound 52.

Derivatives of nonsteroidal PgR agonist tanaproget containing fluoroethyl or fluoropropyl substituents have higher affinities toward PgR than PgR-ligand, R5020, and tanaproget itself.²⁷⁹ [¹⁸F]-Fluoropropyl tanaproget ([¹⁸F]-FPTP, 53) has RBA of 189 in relation to R5020.²⁸⁰ Biodistribution in estrogen-primed rats showed low uptake of 53 in both uterus and ovary at both 1 and 3 hr, but high uterus-to-blood and muscle ratios at 1–3 hr. Biodistribution of 53 compared favorably to 50 and 51, suggesting that it has excellent potential for PET imaging PgR⁺ breast tumors.

Another PgR targeted imaging agent that requires modification to achieve desired receptor specificity is 99mTc(CO)₃-11β-progesterone. It has 30% PgR-binding affinity and high uterus-to-muscle ratio at 1 and 3 hr (2.8 and 2.2, respectively) post injection, and slow washout from uterus at 24 hr (uterus/muscle ratio of 2.8). It is likely to be metabolically unstable as there was high uptake observed in liver, which is the main site of steroid metabolism.²⁸¹

J. Androgen Receptor

Endogenous androgens such as 5α-dihydrotestosterone (DHT) and testosterone, bind the androgen receptor (AR). AR is a 110-kDa ligand-dependent transcription factor that shares...
sequence homology with progesterone, estrogen, and glucocorticoid receptors.272 Upon binding to androgen, AR regulates development and differentiation of male reproductive organs such as the prostate.272, 282 Endogenous androgens such as DHT and testosterone (i.e., 19-carbon derivatives of cholesterol) are mainly synthesized by testis and adrenal gland.283 Unsurprisingly, based on the name, these androgenic hormones exist in both sexes, and testosterone can be metabolized by the activity of aromatase and 5α-reductase into estrogenic hormones, or DHT.284 Circulating testosterone may regulate the proliferation of breast epithelial cells depending on the existence of enzymes within the breast tissues.

AR-ligand-drug conjugates have been developed with anti-androgens such as enzalutamide. A steroid ligand–drug conjugate 11β-dichloro (54) was prepared from linking the alkylating agent N,N-bis-(2-chloroethyl)-aniline to the high-affinity AR ligand 11β-substituted estradien-3-one. The 11β-dimethoxy conjugate (55) was prepared as an unreactive analog.285 In human PCa cells, 54 had AR binding affinity equivalent to approximately 20% of the natural ligand and had low affinity (4%) on PgR. It induced rapid morphological changes 6 hr post treatment and was associated with activation of an apoptosis endonuclease and cleavage of the poly-ADP ribose polymerase (apoptotic marker). Conversely, these observations were not observed in control groups. Preclinical studies further supported the efficacy of 54, in which intraperitoneal administration on a 5-day cycle with daily dose of 30 mg/kg for seven consecutive weeks induced tolerable toxicity but high antitumor efficacy, and suppressed 90% of the tumor volume at the end of study.

A few androgenic ligand-drug conjugates for breast cancer treatment reached early stage ex vivo studies. One of these is Specific and Nongenetic IAPs-dependent Protein Erasers (SNIPER), which consists of DHT targeting ligand, and a linker connected to different inhibitors of apoptosis protein such as methyl bestatin and Be04. SNIPER-13 (56) (Be04 inhibitor cargo), reduced AR protein expression in human MCF-7 cells compared to inhibitor alone without a targeting ligand.286
Another AR-targeted strategy for breast cancer involves ethisterone-cisplatin conjugates (57). Here, the 17α position of ethisterone was coupled to pyridines, quinolines and isoquino-
lines through an ethynyl group and then attached to cis or trans-fragment of nonconventional platinum (II) complexes (Pt(NH$_3$)$_2$Cl) via the heterocycle to yield eight cytotoxic steroidal-

drugs. The cis-conjugates had two- to threefold higher cytotoxicities than trans conjugates and cisplatin alone in the AR$^+$ breast cell line, but not in AR$^-$ cells. Subsequent reports demonstrated that the steroid conjugates caused more significant unwinding and bending of the DNA helix than non-steroidal control complexes and cisplatin.

Following the clinical success of anti-androgen therapy in PCa, a few small-molecule AR antagonist conjugates have been developed. Anti-androgen cyanonilutamide was conjugated with Dox-formaldehyde (58) via a cleavable N-salicylamide derivative for intracellular tracking studies. The conjugate 58 was translocated into cytosol and released Dox into nucleus with a half-life of 57 min in AR$^+$ PCa cells. However, no further studies have been reported for this conjugate.

Recently, a series of nonsteroidal heterobifunctional anti-androgen nilutamide conjugates with histone deacetylase (HDAC) inhibitors (zinc binding group) was developed. These 12 synthesized conjugates had a 1,2,3-triazole moiety connecting the targeting group via either an aryl or alkyl cap at the hydantoin N^3 and the zinc chelating hydroxamate group through alkyl linkers of variable length. Conjugates with an aryl cap gave greater HDAC inhibition than those with an alkyl cap, and this was also the case when other antiandrogens such as cyanonilutamide, bicalutamide, and enzalutamide were used. In addition, conjugates with
longer linkers (chain length \(n = 3–8 \)) had high binding affinity to AR \((K_i = 0.44–4.48 \mu M)\), suggesting that attachment of HDAC inhibitors to antiandrogen did not abolish the interaction with AR. Selective cytotoxicity in an AR\(^+\) PCa cell line was observed for 10 out of 12 conjugates, with more than twofold lower IC\(_{50}\) values compared to AR\(^-\) DU145 PCa cells. The most promising compound (aryl nilutamide with linker length \(n = 6 \), 59) has 80- and 40-fold lower IC\(_{50}\) in AR\(^+\) cells compared to bicalutamide and enzalutamide, respectively. These conjugates warrant further studies in preclinical animal models.

An AR ligand conjugate based on nonsteroidal antiandrogen bicalutamide by substituting trifluoromethyl in A-ring with iodine is 60. The presence of A-ring iodine was important for increasing the binding affinity of 60. Indeed the resultant conjugate exhibited as good affinity as testosterone to AR \((K_i = 3.3 \text{ nM})\) in rat prostate cytosol. Eight iodinated and noniodinated bicalutamide derivatives have been studied to compare the effects of different halogen substitutions (F, Cl, Br, NH\(_\text{C}(\text{O})\text{CH}_3\)) on the B-ring. S-26 (60) with the A-ring substituted with iodine and the B-ring substituted with fluorine, exhibited the highest affinity \((K_i = 4.4 \text{ nM})\) to AR compared to DHT and testosterone \((K_i = 45 \text{ and } 33 \text{ nM}, \text{respectively})\) in AR-transfected monkey kidney fibroblast COS-7 cells. In addition, 60 specifically bound to AR and induced AR-mediated transcriptional activity but not to other homologous steroid hormone receptors, showcasing the specificity and selectivity of a radiolabeled analogue (at F or I) of this conjugate as an effective imaging agent.

A novel AR agent for SPECT/PET imaging, iodine-125 labeled RISAD-P (61) in preclinical studies revealed tumor uptake of 10% at 1 hr post administration, and accumulation proportional to tumor size and time, with no noticeable toxicity. Moreover, when used in radiation therapy, 5 Mbq of 61 was able to delay tumor growth.
Another bifunctional chelating imaging agent, 99mTc-radiolabeled 5-hydroxy-3,7-diazanonan-1,9-dithiol (DAHPES) conjugated with testosterone (62) showed specific affinity toward an AR$^+$ breast cancer cell-line with negligible effect on AR$^-$ lines. The specificity on AR suggests that it is useful as an imaging agent.295

K. Biotin Receptor

Other than the FR (see Section 4-A), biotin is a promising vitamin-based agent for targeted delivery of drugs or diagnostic296 Biotin is required for cell growth,297,298 and the biotin demand in tumors is higher than in normal tissues. The main transporter for biotin, sodium-dependent multivitamin transporter (SMVT), is overexpressed in several aggressive cancer cell lines including leukemia (L1210FR), ovarian (OV 2008, ID8), colon (C60-26), mastocytoma (P815), lung (M109), renal (RENCA, RD0995), and breast (4T1, JC, MMT06056) cancer cell lines.38,299 Overexpression of SMVT was found superior in these cells compared to that of FR.

Biotin conjugate SBT-1214 (63) features a new-generation taxoid, and an intracellularly labile disulfide linkage.300 The conjugate was highly cytotoxic against biotin receptor (BR) positive murine leukemia cells ($IC_{50} = 8.8$ nM; \textit{cf} for BR- murine leukemia cells the IC_{50} was 522 nM). With this and other experiments performed using several related fluorescent analogs, the authors were able to confirm the following: (i) the biotin-drug conjugate was preferentially internalized into cancer cells, (ii) the toxicity against normal cells was significantly reduced and, (iii) the disulfide spacer facilitated systemic stability.
Biotin-Dox conjugate (64) was designed to limit the adverse side effects of Dox. In this, the amine group of Dox was connected with a photocleavable biotinylated spacer.301 Fluorescence microscopy on PTK2 epithelial cells proved the 64 was internalized ten times more than Dox. Unlike free Dox, which concentrated in nucleus, 64 remained outside the nucleus until photocleaved (UV 350 nm) to release Dox, which then accumulated inside the nucleus. Moreover, cytotoxicity of both Dox and its conjugates on the human lung cancer cell line showed a 200-fold lower cytotoxicity for the conjugate compared to that of free Dox. As expected, the cytotoxicities of both drugs become comparable after UV exposure. An in vivo application of this strategy is likely to be limited by the problems associated with permeation of light into tissues, especially at short wavelengths.

Some experimental theranostic targeted prodrugs (65 and 66) of gemcitabine also feature a disulfide cleavable linker. The prodrugs are fluorescent by virtue of the coumarin (65) or BODIPY (66) fluorophores. Upon addition of free thiols, disulfide bond cleavage occurs as well as release of active drug and concomitant increase of fluorescence intensity. Studies of these showed higher accumulation and cytotoxicity in biotin-sensitive cells.302, 303 Such theranostic agents are able to provide not only specific cellular drug release, but also real-time monitoring of the drug release in tissue.
Ferrocene–biotin bioconjugates (67) were most toxic to cells that expressed high levels of BR. Compounds with longer spacers attached to biotin were less cytotoxic.

Photocytotoxocities of iron (III) complexes of a tetradentate phenolate-based ligand and biotin-conjugated dipyridophenazine (dppz) bases (68) also seem to correlate with SMVT expression levels.

Cytotoxicities of biotinylated derivatives of squamocin (69) and bullatacin (70) are similar to the parent squamocin and bullatacin against a BR− cell line. However, the biotin conjugates showed significantly higher cytotoxicity than their parental drugs against BR+ 4T1 (breast) and P815 (mastocytoma) cell lines, probably as a result of active targeting by biotin. These cytotoxicities were affected by the number of biotinyl residues included in the conjugates, the point of attachment of the biotinyl residue, and the spacer between the cytotoxic agent and biotin.
Dual-warhead conjugate DW-1 (71) consists of taxoid (63) and camptothecin, with biotin as the tumor-targeting moiety. Other features of the molecule include a 1,3,5-triazine splitter module, self-immolative disulfide linkers, and a tetraethylene glycol diamine spacer to increase the water solubility.307 Compound 71 was evaluated against BR+ and normal cell lines in the absence and presence of glutathione. With glutathione, 71 exhibited IC\textsubscript{50} values of 3.22–9.80 nM against all BR+ cancer cell lines, and 705 nM against the normal cells. Moreover, a cooperative effect was observed for the taxoid-camptothecin combination when two drugs were delivered to the cancer cells simultaneously in the form of dual-warhead conjugates and cleaved by exogenously added glutathione.

Similar tumor-targeting theranostic conjugates, bearing either a fluorine-labeled prosthetic as a potential 18F-PET radiotracer (\textit{R} = 18F, 72) or a fluorescence probe-FITC in place of a second cytotoxic warhead, have also been prepared.308 Efficient internalization and high selectivity for BR+ cancer cells was confirmed. The 72 consistently showed higher potency towards BR+ rather than BR− cells independent of the addition of exogenous glutathione, with up to two orders of magnitude difference in IC\textsubscript{50} values in line with the tumor-targeting feature of this drug delivery system. In terms of imaging, the multi-functionalized 1,3,5-triazine-based template is versatile and applicable to modalities such as PET, SPECT, or MRI by changing to a suitable probe or contrast agent.

\textbf{L. Aminopeptidase N (CD13) Receptor}

Angiogenic tumor vessels are important for tumor growth and metastasis. Metalloexopeptidase CD13 or aminopeptidase N (APN) is overexpressed on the endothelial cells of angiogenic tumor vessels.309 Depending on which isoform, CD13 is a zinc-dependent, trans-membrane exoproteinase with sizes of 150–240 kDa. CD13 functions in protein degradation, cytokine regulation, antigen presentation, cell proliferation, cell migration, and plays a critical role in angiogenesis in cancer. High expression of CD13 occurs in some human solid tumors, including melanoma, prostate, lung and ovarian cancer.310 CD13 is also expressed by many normal tissues, including epithelial cells from small intestine, renal proximal tubules, prostate, and bile duct canaliculi, keratinocytes, mast cells, myeloid cells, and antigen-presenting cells. Immunological studies with various anti-CD13 antibodies revealed different immunoreactive forms of CD13 in tumors in comparison with other tissues,311 which is a feature that is critical when targeting this receptor for drug delivery or imaging.

Asparaginyl-glycinyl-arginine (NGR) peptide sequences were identified via phage display as a specific ligand of CD13.309,312,313 NGR peptides have a threefold higher specificity for the detection of neoangiogenic vessels than RGD (argininyl-glycinyl-aspartic acid) peptides that
are widely used for the detection of αvβ3 and αvβ5 integrin expression (see Section 4-M). In addition, it has been shown that NGR can bind with new vasculature via APN (CD13) as well as integrin αvβ3 receptors, although the binding mechanisms are different.309

NGR of pentapeptides appear to be the minimum binding motif, with the NGR sequence flanked by one amino acid at each end.314 Cyclized forms featuring disulfide, amide, and triazole linkages NGR (generally, cNGR) can display stronger affinity and higher specificity toward the APN/CD13 receptors.315 Immunohistochemical and biodistribution studies showed that the disulfide linked cyclo-{CNGRC}-bound CD13-positive tumor blood vessels (CNGRC is Cys-Asn-Gly-Arg-Cys) but not other CD13-rich normal tissue, presumably because there are different CD13 isoforms in cancer versus normal tissues.311 Further, molecular dynamics simulations predicted that the most populated structures of CNGRC and GNGRG peptides are superimposable onto the highly conserved CTGNGRGWKC loop of fibronectin type-I repeat. These observations perhaps account for the low immunogenicity of NGR peptides even when they are conjugated with highly immunogenic carriers, that is, they might mimic a self-antigen.316

In recent years, studies have shown that the NGR motif can rapidly convert to isoaspartate-glycine-arginine (isoDGR) by asparagine deamidation. This deamination can generate ligands for αvβ3 integrin receptors that are capable of affecting endothelial cell functions and tumor growth.309 Biochemical, NMR structure analysis, and alpha docking studies showed that isoDGR, but not NGR and DGR, can fit into the RGD-binding pocket of αvβ3 receptor. However, it is unclear whether cyclic CNGRC peptide based constructs reported so far bind to CD13 or integrin receptor under tested in vivo conditions.

Several studies have reported conjugation of an NGR motif with chemotherapeutic drugs. A conjugated of an NGR peptide cyclo-{CNGRC} with Dox314 showed reduced toxicity and improved efficacy against human cancer xenografts in nude mice, compared with free Dox. Marked reduction in metastasis development and prolongation of long-term survival were also observed.

![Diagram of CNF1 and CNF2 conjugates]

73. CNF1; n = 2 (fast hydrolyzed)
74. CNF2; n = 3 (slow hydrolyzed)

5-FuUr-d-CNGRC conjugates

![Diagram of 5-Fu-CNGRC conjugates]

75. 5-Fu-CNGRC conjugates

Medicinal Research Reviews DOI 10.1002/med
Cyclo-{CNGRC} has been conjugated to 5-fluoro-2'-deoxyuridine (5-FdUrd) (73, 74) and to 5-fluorouracil (75) via succinate (73) and glutarate (74)-based esters, or a photolabile 2-nitrobenzyl chromophore cleavable upon UV-irradiation at $k_{ex} = 365$ nm.\(^{317,318}\) The 5-FdUrd conjugates were of lower cytotoxicity compared to free 5-FdUrd, showing more selective cytotoxicity toward CD13 positive cells (HT-1080) than toward APN/CD13 negative cells (HT-29, MDA-MB-231). The bioactivity of the 75 was not reported.

Two Pt-peptide conjugates, cyclic mPEG-CNGRC-Pt (76) and cyclic mPEG-CNGRC-Pten (77) bearing the NGR targeting sequence, a malonoyl linker, and oligoethylene glycol groups, have been prepared.\(^{319}\) The pegylated peptide is nontoxic, water soluble, and has insignificant peptide immunogenicity. The targeted Pt-peptide conjugates are more cytotoxic to PC-3 (CD13+) cells than untargeted carboplatin. Platinum uptake on PC-3 cells was 12-fold more for 76 and threefold more for 77 compared to that of the untargeted carboplatin, indicating selective binding of the CD13 receptors and delivery of the conjugates to CD13 positive cells.

There are several NGR peptide-derivatives for tumor imaging. An NGR peptide YGG-cyclo-{CNGRC} was directly labeled with the \(^{99m}\)Tc SPECT label (full structure was evaluated in nude mice bearing a CD13+ liver tumor).\(^{320}\) Rapid, significant tumor uptake and slow tumor washout was observed for this conjugate. The xenografted tumor became visible at 1 hr and the highest tumor-to-muscle ratio was observed at 8 hr.
Radiolabeled NGR derivatives have also been made for PET imaging via 64Cu or 68Ga. Monovalent 64Cu-DOTA–NGR1 (78) and bivalent 64Cu-DOTA–NGR2 (79) both bound CD13$^+$ HT-1080 cells in the low nanomolar range. The binding affinity was 1.27 nM in 79, which was about twofold higher than the 78. For small animal microPET studies, 79 showed higher tumor uptake and slower tumor washout in CD13-positive HT-1080 tumor xenografts as compared to 78. Both 78 and 79 had higher tumor uptake and better tumor-to-normal xenograft contrast in CD13-positive HT-1080 tumor xenografts compared with CD13-negative HT-29 tumor xenografts. The high uptake was reduced by coinjecting a blocking dose of cyclic NGR peptide [c(CNGRC)]. Compound 79 showed higher tumor uptake and better tumor retention than 78, presumably due to the bivalency effect and increase in apparent molecular size.

68Ga-DOTA-NGR (80) was studied as a PET probe for noninvasive detection of CD13-positive tumors and their neovasculature. Cellular uptake was measured in A549 (CD13$^+$) and MDA-MB-231 (CD13$^-$) cells, while biodistribution and PET imaging were performed in A549 and MDA-MB-231 xenografts. CD13 expression in tumors and new vasculatures were analyzed by immunohistochemistry. Conjugate 80 was taken up by A549 cells (blocked by unlabeled DOTA-NGR) but not by MDA-MB231 cells. An in vivo biodistribution study showed that 80 was mainly excreted from the kidney and was rapidly cleared from blood and other organs. MicroPET imaging showed that high focal accumulation had occurred at the tumor site 1 hr post injection in A549 tumor xenografts. A significant reduction of tumor uptake was observed following coinjection with a blocking dose of DOTA-NGR, whereas only mild uptake was found in MDA-MB-231 tumor xenografts. Maximum tumor-to-normal tissue signal value was observed at 1.5 hr post injection.
Two PET probes, 68Ga-NOTA-G$_3$-RGD2 (NOTA is 1,4,7-triazacyclononane-N,N0,N00-triacetic acid) (81) and 68Ga-NOTA-G$_3$-NGR2 (82), have been made for noninvasive monitoring of CD13 positive fibrosarcoma. Both were hydrophilic, stable in vitro and in vivo, and were excreted predominantly and rapidly through the kidneys. For both probes, the tumor uptake by fibrosarcoma xenografts and accumulation in vital organs were determined. However, no significant difference in tumor uptake and in vivo biodistribution was observed for the two probes.

CD13 specificity of 68Ga-labeled NOTA-c(NGR) (83) in orthotopic and heterotopic transplanted mesoblastic nephroma (NeDe) bearing Fischer-344 rats using miniPET was studied. Scans were performed for both 83 and $\alpha\nu\beta$ integrin selective 68Ga-NODAGA-[c(RGD)]$_2$. Nonradiolabeled tracers selective for $\alpha\nu\beta$ integrin were also prepared and investigated as control. Both NeDe tumors and metastases were confirmed to express CD13 receptors by Western blot. Biodistribution studies in normal rats showed that uptake of the 83 was significantly lower in abdominal organs in comparison with 68Ga-NODAGA-[c(RGD)]$_2$. In NeDe tumor bearing rats, higher 83 accumulation was found in the tumors than that of the 68Ga-NODAGA-[c(RGD)]$_2$. In an orthotopic model, specific uptake of 83 was detected in metastatic tumors.

An inhibitor of CD13, probestin, is unique insofar as it has been radiolabeled for tumor specific imaging in a system that did not feature NGR peptides. However, the chelator ligand designed to complex with radiolabels Re(V) or 99mTc(V) is peptidic: tripeptide N,N-dimethylglycyl-L-lysyl-L-cysteinylamide (N$_3$S). The conjugates showed high inhibition of CD13 enzyme activity, and strong tumor uptake relative to normal tissues that was blockable with a nonradioactive conjugate. This work has demonstrated the feasibility of using high affinity inhibitor conjugates for in vivo targeting of CD13 positive tumors.

CD13 is a zinc-dependent exopeptidase that catalyzes the removal of N-terminal amino acids from peptides and can be inhibited by antibodies and bestatin drug. ReO-N$_3$S-probestin conjugates demonstrated higher inhibition of CD13 enzyme activity than bestatin. An in vivo biodistribution study of 99mTcO-N$_3$S-PEG$_2$-Probestin (84) in mice xenografted with fibrosarcoma tumors showed visible tumor uptake at 1 hr post injection. When CD13 was competitively blocked with a coinjection of excess nonradioactive ReO-N$_3$S-PEG$_2$-Probestin conjugate,
tumors were no longer visible, demonstrating the specificity of CD13 inhibitor conjugates for in vivo targeting of CD13-positive tumors.

M. Integrin Receptor

Integrins are heterodimeric transmembrane glycoproteins on cell surface. Among the integrins, \(\alpha V \beta 3 \) and \(\alpha V \beta 5 \) are frequently overexpressed in tumor endothelial cells as well as on lung, breast, melanoma, prostate, ovarian carcinoma, and brain tumors. They mediate cell adhesion to the extracellular matrix and have a fundamental role in increasing migration, invasion, proliferation and survival of tumors. In addition, integrins have been linked to tumor angiogenesis, which is an essential process for tumor growth and metastasis. These cell adhesion molecules \(\alpha V \beta 3 \) and \(\alpha V \beta 5 \) are not readily detectable in quiescent vessels. The consensus tripeptide motif RGD (Arg-Gly-Asp) has high affinity for \(\alpha V \beta 3 \) and \(\alpha V \beta 5 \) integrins. The restricted expression profile of integrins offers the possibility of using carriers based on RGD-containing peptides or peptidomimetics to deliver chemotherapeutic drugs or radionuclides into cancer cells or for tumor imaging purposes.

Using an in vivo phage display technology, Arap and co-workers discovered cyclic RGD-4C peptides bind to integrins \(\alpha V \beta 3 \) and \(\alpha V \beta 5 \) and developed a Dox conjugate \((85)\) bearing a bivalent RGD-4C peptide (ACDCRGDCFCG). Conjugate \(85\) showed improved activity and toxicity profile over Dox in a mouse breast cancer model having integrin \(\alpha V \beta 3 \) expression in the tumor vessels as well as on the tumor cell themselves. Interestingly, superior efficacy of the \(85\) was confirmed in another model (hepatoma) in which the tumor cells did not express integrin \(\alpha V \beta 3 \) suggesting that a direct endothelial effect was responsible. Using the same RGD-4C ligand, a second tumor-specific peptide sequence (D-Ala-Phe-Lys) was added to generate a dual-targeted Dox prodrug. D-Ala-Phe-Lys is selectively recognized by the tumor associated protease plasmin involved in tumor invasion and metastasis. The resultant conjugate was able to bind integrin receptors and showed cytotoxicity for endothelial cells and fibrosarcoma cells in a plasmin-dependent manner. No in vivo data were reported.
A radiolabeled dimeric RGD peptides E-[c(RGDfK)]₂ (86) showed improved tumor targeting properties over the monomeric form in both in vitro and in vivo mouse models. In vitro, the IC₅₀ showed a tenfold higher affinity of the dimer for the αVβ3 integrin as compared to the monomer (0.1 vs. 1.0 nM). In biodistribution studies, 86 demonstrated integrin αVβ3 receptor binding specificity despite significant uptake in nontarget organs such as liver and spleen. Tumor uptake peaked at 1–2 hr post injection. An MTD dose of ⁹⁰Y-labeled conjugate in mice with small subcutaneous tumors caused significant growth delay as compared with mice treated with ⁹⁰Y-labeled scrambled peptide or untreated mice. Potentially, these peptides can be used for peptide receptor radionuclide imaging as well as therapy.

Doxsaliform, a Dox prodrug was conjugated to two different αVβ3-targeting peptides, CDCRGDCFC (RGD-4C) and cyclic-(N-Me-VRGDF) (Cilengitide) to form cyclic-(N-Me-VRGDF-NH)-doxsaliform (87) and acyclic-RGD-4C-doxsaliform (88). Cilengitide has completed phase III clinical trials (data unpublished) as an angiogenesis inhibitor for patients with glioblastoma multiforme (NCT00689221). Acyclic agent 88 exhibited good binding affinity for αVβ3 but less tightly relative to the peptide alone (10 versus 1 nmol/L). The cyclic 87 maintained high affinity for αVβ3 (5 nmol/L). Both 87 and 88 were more cytotoxic than clinical
Dox and comparable in cytotoxicity to doxsaliform when tested in mouse breast cancer cells. The authors suggested that the complete drug construct did not penetrate through the plasma membrane, but the active metabolite did on release from the targeting group.

Water-soluble Dox conjugates with E-[c(RGDfK)2] were generated by binding to maleimide Dox via two different linkers to generate E-[c(RGDfK)2]-DOXO-1 (89) and E-[c(RGDfK)2]-DOXO-2 (90). In 89, Dox was bound to the peptide through a stable amide bond. In 90, a matrix metalloproteinase (MMP) 2/MMP-9 cleavable octapeptide was introduced between Dox and the peptide to target the tumor vasculature. Proliferation of endothelial cells in the presence of 90 was reduced six- to tenfold higher compared to that of 89. In addition, inhibition of HUVEC sprouting during a 24-hr exposure was approximately threefold stronger for 90 than for Dox alone. Disappointingly, in vivo studies in a xenograft model demonstrated no or only moderate antitumor efficacy for either conjugate compared to Dox. The authors suggested that the lack of activity could have been due to the inefficient drug cleavage by MMP-2 or the low potency of Dox drug and rapid drug clearance in vivo.
Another cytotoxic agent that has been conjugated to synthetic integrin ligands, specifically E[c(RGDyK)]2, is PTX to give 91. Similar to free PTX, the 91 inhibited cell proliferation through an arrest of G(2)/M-phase of the cell cycle and induced apoptosis. Although the 91 showed slightly decreased integrin binding affinity than the unconjugated peptide, it had integrin specific accumulation in vivo. 125I-labeled 91 showed highest tumor uptake at 2 hr post injection and best tumor-to-background contrast after 4 hr post injection. Another report involving PTX conjugation was a dimeric RGD peptide-PTX conjugates (RGD2-PTX 92). Radiolabeled 3H-92 had higher initial tumor exposure dose and prolonged tumor retention than 3H-PTX in mouse breast cancer. Metronomic low-dose treatment of breast cancer using 92 is significantly more effective than PTX+RGD2 combination and solvent control. Although in vivo of 3′-deoxy-3′[18F]-fluorothymidine (18F-FLT) PET imaging and ex vivo Ki67 staining indicated little effect of the PTX-based drug on cell proliferation, 18F-fludeoxyglucose (18F-FDG) PET imaging showed significantly reduced tumor metabolism in the 92-treated mice versus those treated with PTX+RGD2 and solvent control. Moreover, the microvessel density was significantly reduced after 92 conjugate treatment. These results demonstrate that integrin-targeted delivery of PTX allows preferential cytotoxicity to integrin-expressing tumor cells and tumor vasculature.

Another series of RGD-PTX conjugates bound the purified αVβ3 integrin receptor at low nanomolar concentration and showed similar in vitro cytotoxic activity to PTX even against the cisplatin-resistant IGROV-1/Pt1 cells expressing high levels of integrin αVβ3. One of the conjugates, cyclo[DKP-f3-RGD]-PTX (93) had good stability in both human and murine plasma, and superior tumor-targeting in mice with the IGROV-1/Pt1 human ovarian carcinoma.
Eight RGD conjugates of a camptothecin derivative were investigated for different linkage conformations, lengths and chemistries including heterofunctional glycol fragments and a lysosomally cleavable peptide, and their effects on solubility, receptor affinity, systemic stability, and cytotoxicity. Among the conjugates prepared, only drugs which consist of dimeric RGD ligands connected to the camptothecin derivative through multiple glycol chains in a branched conformation showed high receptor affinity and tumor cell adhesion, had acceptable stability in murine blood and high cytotoxic activity (IC$_{50}$ = 8 nM).

Four camptothecin analogs with an RGD peptide mimetic were prepared to improve their therapeutic index. The conjugate with SN-38 (10-hydroxy-7-ethylcamptothecin) ST7456CL1 (96) bound strongly to integrin receptors (IC$_{50}$ = 1.3 nM for $\alpha V\beta 3$, 1.0 nM for $\alpha V\beta 5$), inhibited adhesion of vitronectin on tumor cells and showed better antiproliferative activity on high integrin-expresser cells than cells with low integrin levels. In vivo, 96 was more stable than irinotecan in rat plasma. It also increased the life span of mice with PC3 prostate tumors.
and reduced the area of metastases compared with vehicle-treated group. This conjugate also showed similar tumor growth inhibition (39%) pattern in a renal carcinoma mouse model overexpressing αVβ3 and αVβ5, comparable to those observed with irinotecan.

Two series of RGD conjugates containing an MEK1/2 kinase inhibitor (97) were rare insofar as they carry a drug cargo that is an enzyme inhibitor.336 The first series, alkoxyamine analog RGD-MEK1 conjugates showed moderate antiproliferation activity in melanoma cells harboring BRAF^{v600E} (v-raf murine sarcoma viral oncogene homolog B1) mutation (the valine 600 to glutamate mutation of BRAF kinase). This mutation causes increased kinase activity and these cells are known to be exquisitely sensitive to MEK inhibitor treatment. PEGylation increased the IC₅₀ value of an analogue by threefold in the BRAF^{v600E} melanoma cells. A multi-cRGD peptide analog improved the receptor specific antiproliferation activity in integrin-overexpressing cells. In the second series, a succinic anhydride group was added between RGD and the MEK inhibitor. It had better antitumor properties compared to the first series by both inhibition of kinase activity and DNA replication, resulting in higher proliferation inhibition of integrin-overexpressing cells than the parent drug in a dose-dependent manner.

An RGD peptide motif was conjugated to a series of mono- (98) and difunctionalized (99) platinum (IV) complexes to target tumor endothelial cells selectively over healthy cells.337 From concentration–response curves against different endothelial and human cancer cells expressing αvβ3 and αvβ5, conjugates 98 and 99 were equally potent inhibitors of cellular proliferation and more so when compared to platinum(IV) compounds with NGR or nonspecific peptide moieties. Integrin αvβ3 mediated the antiproliferative effect, as demonstrated by a decreased inhibitory response when endothelial cells were either (1) incubated with an excess of αvβ3/αvβ5-specific RGD pentapeptides or (2) transfected with RNAi for β3, but not β1, integrins.
Another example of RDG-Pt(IV) derivatives involved conjugates with monomeric (100) and tetrameric (101) RGD-containing peptides. The antitumor activity of Pt(IV) drug in high integrin expressing melanoma cells was increased by 2.6-fold when it was conjugated to monomeric and by 20-fold when conjugated to tetrameric. In contrast, the cytotoxicity of the conjugates was less in control cells lacking αVβ3 and αVβ5 integrin expression. Cellular uptake studies confirmed a good correlation between the levels of expression of integrins, intracellular platinum accumulation and antitumor activity. Indeed, accumulation and cytotoxicity were much higher in integrin positive cells than in integrin negative cells, being particularly higher in the case of the 101, alluding to the importance of having multivalency. In addition, the authors also observed that exposure of the cells to the unconjugated peptides alone induced morphological changes followed by cell detachment from the plate surface—a cell death phenomenon known as anoikis that is reportedly associated with RDG-containing peptides.
A bivalent imaging compound bivalent-IA-Cy5.5 (102) consisting of a rare non-peptidic targeting ligand for integrin $\alpha V\beta 3$ receptor was prepared on the basis of an in silico rational design approach. Compound 102, which has a near-infrared fluorescent imaging probe, demonstrated strong binding affinity to integrin receptor ($IC_{50} = 0.13 \pm 0.02 \text{nM}$), integrin-mediated endocytosis in cells that was effectively blocked by a similar nonfluorescent bivalent compound and tumor accumulation in integrin positive mouse xenograft. The bivalent ligand without the imaging probe binds 50-fold more tightly than the equivalent monovalent ligand.

5. CANCER TYPES AND THEIR SMALL-MOLECULES CONJUGATES

We have tabulated some small-molecule conjugates that have been studied in preclinical animal models and clinical settings according to the target tumor organ. Newly developed small-molecule conjugates that are currently being studied in ex vivo stages are excluded (but are described in Section 4). Table I focuses on cancer therapeutics whereas Table II is for cancer imaging.

6. OTHER IMPACTS OF ACTIVE TARGETING

Active targeting tends to be imperfect because most of the delivering agents used are natural ligands. Moreover, most of the receptors discussed here are expressed on normal healthy cells, albeit at lower levels than in cancer cells. For example, kidney cells express the FR and receptor mediated uptake of folate-cargoes conjugates in renal cells has been reported to induce renal toxicities or high level of nontarget retention of imaging agents.

Immunomodulation is another impact of small-molecule ligand conjugates. Some small-molecules ligands used in targeting are inhibitors and antagonists of transcription factors involved in cytokines production. In a specific example, FRs are expressed in activated monocytes and lymphocytes. Binding of folate substrates to FR can promote survival of these immune cells while blocking of FR can lead to cell death. Regulatory T cells are immunosuppressive and high expressors of FR. FR-targeted therapies have potential in antitumor immunity as well as therapies for autoimmune and inflammatory diseases. E2 is another small-molecule ligand with immunomodulation capability. Indeed it has been used to suppress inflammatory cytokines such as TNF-α and IFN-γ in the treatment of autoimmune disease while promoting antiinflammatory IL-10 cytokine secretion and enhancing regulatory T cells function via upregulation of programmed death-1 and FoxP3 expressions. Therefore, when using receptor targeted ligands as delivery agents for anticancer drugs, modulation of the immune system can be counterproductive. In cases where the ligand is eliciting an antitumor immune response, combination immunotherapy can increase the antitumor immune responses of the conjugate.

Figure 4 shows some possible impacts induced by active targeting agent on nontargeted cells.

7. CONCLUSIONS

Some generalities apply to every receptor used for targeting. Successful delivery requires favorable expression levels of the relevant cell surface receptors. Rates of recycling or regeneration of these receptors are also important. Active delivery of toxic drugs can be used to target cells that would otherwise be resistant to the untargeted drug cargo. Conversely, some compounds that might be too toxic to use “as is” can be usable in active targeting because this increases their
<table>
<thead>
<tr>
<th>Cancer type</th>
<th>Small-molecule conjugates (structure numbering)</th>
<th>Target</th>
<th>Study stages</th>
<th>Status</th>
<th>Graft/tumor</th>
<th>Remarks</th>
<th>Remarks</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast</td>
<td>Folate-tubulysin B hydrazide (EC1456)</td>
<td>FR</td>
<td>In vivo</td>
<td>Preclinical</td>
<td>Xenograft MDA-MD-231</td>
<td>100% cure in large size tumor (750 mm³) and syngeneic M109 murine lung carcinoma active, recruiting participants</td>
<td>NCT01999738</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>CNGRC-doxorubicin</td>
<td>CD13</td>
<td>Clinical phase I/II</td>
<td>Ongoing Preclinical</td>
<td>Advanced solid tumor Xenograft MDA-MD-435</td>
<td>Tumors were 0.2–0.25 of the size of control tumors, reduced metastasis, prolonged survival, less toxic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RDG-4C-doxorubicin</td>
<td>Integrin</td>
<td>In vivo</td>
<td>Preclinical</td>
<td>Xenograft MDA-MD-435</td>
<td>Compared to Dox-treated control, all mice outlived by >6 months, had smaller tumors, less lymph spreading and lung metastasis, had widespread tumor cell death, less toxic to liver and heart</td>
<td>337</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RGD-paclitaxel (91)</td>
<td>Integrin</td>
<td>In vivo</td>
<td>Preclinical</td>
<td>Xenograft MDA-MD-435</td>
<td>Showed integrin-specific accumulation, highest tumor uptake at 2 hr post injection, best tumor/background ratio after 4 hr post injection, no efficacy data</td>
<td>352</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RGD2-paclitaxel (92)</td>
<td>Integrin</td>
<td>In vivo</td>
<td>Preclinical</td>
<td>Xenograft MDA-MD-435</td>
<td>Higher initial tumor dose and prolonged tumor retention than PTX, more effective and more apoptosis than PTX + RGD2, little effect on cell proliferation, reduced tumor metabolism and microvessel density</td>
<td>353</td>
<td></td>
</tr>
<tr>
<td>Kidney</td>
<td>IY-IY-Boron dipyrromethene (30)</td>
<td>TrkC</td>
<td>In vivo</td>
<td>Preclinical</td>
<td>Syngeneic 4T1</td>
<td>High accumulation in tumor at 1–6 hr. 71% full remission up to 90 days with no metastasis</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monovalent AAZ-DMI</td>
<td>CAIX</td>
<td>In vivo</td>
<td>Preclinical</td>
<td>Xenograft SKRC52</td>
<td>Promote tumor shrinkage and delay tumor growth, 22× higher accumulation in tumor vs. scrambled control</td>
<td>209</td>
<td></td>
</tr>
</tbody>
</table>
Table I. Continued

<table>
<thead>
<tr>
<th>Cancer type</th>
<th>Small-molecule conjugates (structure numbering)</th>
<th>Target</th>
<th>Study stages</th>
<th>Status</th>
<th>Graft/tumor</th>
<th>Remarks</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatic</td>
<td>SV119-Bim (24)</td>
<td>Sigma-2</td>
<td>In vivo</td>
<td>Preclinical</td>
<td>Xenograft CEPAC</td>
<td>Tumor regression within 7-day continuous treatment and regrowth when treatment discontinued</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>SWIV-134 (25)</td>
<td>Sigma 2</td>
<td>In vivo</td>
<td>Preclinical</td>
<td>Syngeneic KCM, xenograft AsPC-1</td>
<td>Delayed tumor growth and increase survival. Improved survival in AsPC-1 (88 days in SWIV-134 vs. 52 days in control) with one tumor free and survive up to 11 months</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>Glufosfamide (32)</td>
<td>GLUT</td>
<td>Clinical phase I/II</td>
<td>Completed</td>
<td>—</td>
<td>5.8% PR, 32.4% SD (median OS 3.5 months, PFS 1.6 months)</td>
<td>169, 225, 229</td>
</tr>
<tr>
<td></td>
<td>Glufosfamide + gemcitabine as first-line therapy</td>
<td>GLUT</td>
<td>Clinical phase III</td>
<td>Completed</td>
<td>—</td>
<td>31% SD in glufosfamide + gemcitabine, 19% SD in gemcitabine alone</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>Glufosfamide + gemcitabine</td>
<td>GLUT</td>
<td>Clinical phase I/II</td>
<td>Completed</td>
<td>—</td>
<td>52.6% SD (70% SD for 4 months, 30% SD for 6 months)</td>
<td>227</td>
</tr>
</tbody>
</table>

Continued
<table>
<thead>
<tr>
<th>Cancer type</th>
<th>Small-molecule conjugates (structure numbering)</th>
<th>Target</th>
<th>Study stages</th>
<th>Status</th>
<th>Graft/tumor Remarks</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-small-cell lung cancer</td>
<td>Glufosfamide (32)</td>
<td>GLUT</td>
<td>Clinical phase II</td>
<td>Completed</td>
<td>—</td>
<td>2.7% PR, 49% SD (median OS 5.8 months)</td>
</tr>
<tr>
<td></td>
<td>ECI45 (7) ± docetaxel</td>
<td>FR</td>
<td>Clinical phase II</td>
<td>Ongoing</td>
<td>—</td>
<td>Active but yet recruiting participants</td>
</tr>
<tr>
<td>Ovarian</td>
<td>SW-III-123 (25)</td>
<td>Sigma 2</td>
<td>In vivo</td>
<td>Preclinical</td>
<td>Xenograft SKOV3</td>
<td>Median OS 86.5 days, 10 days higher than control and ligand alone</td>
</tr>
<tr>
<td></td>
<td>Glufosfamide + platinum-based chemotherapy</td>
<td>GLUT</td>
<td>Clinical phase II</td>
<td>Terminated</td>
<td>—</td>
<td>Renal function limits the enrolment. No confirmed tumor responses reported</td>
</tr>
<tr>
<td></td>
<td>D-glucose-succinic acid-adriamycin (36)</td>
<td>GLUT-1</td>
<td>In vivo</td>
<td>Preclinical</td>
<td>Xenograft SKOV3</td>
<td>High accumulation in tumor post 2 hr administration, detectable up to 48 hr in tumor, 68.8% tumor growth inhibited vs. free drug 47.1%</td>
</tr>
<tr>
<td></td>
<td>(2DG-SUC-ADM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECI45 (7)</td>
<td>FR</td>
<td>Clinical phase II</td>
<td>Completed</td>
<td>—</td>
<td>42% DCR (Median OS: 14.6 months for 100% FR, 9.6 months for 10-90% FR, 3 months for 0% FR expression)</td>
</tr>
<tr>
<td></td>
<td>Epofolate (10)</td>
<td>FR</td>
<td>Clinical phase I/IIa</td>
<td>Discontinued</td>
<td>Solid tumors</td>
<td>Majority was ovarian cancer (n = 16) studied with other solid tumors, best overall response is 19-23% SD, 50% PD</td>
</tr>
<tr>
<td></td>
<td>BMS-753493</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-[{c(RGDfK)}2]-DOXO-1 (89)</td>
<td>Integrin</td>
<td>In vivo</td>
<td>Preclinical</td>
<td>Xenograft NIH: OVCAR-3</td>
<td>No or only moderate antitumor efficacy compared to doxorubicin</td>
</tr>
<tr>
<td></td>
<td>E-[{c(RGDfK)}2]-DOXO-2 (90)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cyclo[DPK-f3-RGD]-paclitaxel (93)</td>
<td>Integrin</td>
<td>In vivo</td>
<td>Preclinical</td>
<td>Xenograft IGROV-1/Pt1</td>
<td>Dose-related antitumor effect observed, better tumor volume inhibition than paclitaxel, no deaths or significant weight losses</td>
</tr>
</tbody>
</table>

Continued
<table>
<thead>
<tr>
<th>Cancer type</th>
<th>Small-molecule conjugates (structure numbering)</th>
<th>Target</th>
<th>Study stages</th>
<th>Status</th>
<th>Graft/tumor</th>
<th>Remarks</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melanoma</td>
<td>Fluorodeoxyglucose-chlorambucil (FDG-chlorambucil) (34, 35)</td>
<td>GLUT</td>
<td>In vivo</td>
<td>Preclinical</td>
<td>Syngeneic B16F0</td>
<td>80-90% inhibition in tumor sizes at 20 days post tumor inoculation, 57% inhibition in free drug</td>
<td>238</td>
</tr>
<tr>
<td></td>
<td>Glufosfamide (32)</td>
<td>GLUT</td>
<td>Clinical phase II</td>
<td>Completed-discontinued</td>
<td>—</td>
<td>No significant antitumor activity</td>
<td>228, NCT0014300</td>
</tr>
<tr>
<td></td>
<td>Head and neck</td>
<td>GLUT</td>
<td>Clinical ex vivo</td>
<td>Biopsy sample for colony formation assay</td>
<td>—</td>
<td>31% of primary tumor specimen that resist to cisplatin was sensitive to glufosfamide.</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>EC145 (7)</td>
<td>FR</td>
<td>Clinical phase I</td>
<td>Completed</td>
<td>—</td>
<td>100% SD (95-211 days)</td>
<td>94, NCT00852189</td>
</tr>
<tr>
<td>Nasopharyngeal</td>
<td>EC0489 (8)</td>
<td>FR</td>
<td>In vivo</td>
<td>Preclinical</td>
<td>Xenograft KB cell</td>
<td>100% cure at dosage of more than 2 μmol/kg, higher tolerability and clearance via urine</td>
<td>228, NCT00308269, 97</td>
</tr>
<tr>
<td></td>
<td>(completed phase I clinical trial, unpublished)</td>
<td>FR</td>
<td>In vivo</td>
<td>Preclinical</td>
<td>Xenograft KB cell</td>
<td>100% cure at dosage of more than 2 μmol/kg, higher tolerability and clearance via urine</td>
<td>228, NCT00308269, 97</td>
</tr>
<tr>
<td></td>
<td>Colorectal</td>
<td>GLUT</td>
<td>In vivo</td>
<td>Preclinical</td>
<td>Syngeneic CT-26</td>
<td>75-90% inhibition at 26 days post tumor inoculation, 66% inhibition in free drug</td>
<td>238</td>
</tr>
<tr>
<td></td>
<td>Glufosfamide (32)</td>
<td>GLUT</td>
<td>Clinical phase I</td>
<td>Completed</td>
<td>—</td>
<td>Minor tumor shrinkage, 57% SD</td>
<td>362</td>
</tr>
<tr>
<td></td>
<td>Folate-methyl-β-cyclodextrin (FA-M-β-CyD) (12)</td>
<td>FR</td>
<td>In vivo</td>
<td>Preclinical</td>
<td>Syngeneic CT-26</td>
<td>100% regression in tumor and survive up to 140 days at 5 mg/kg.</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>PSMA inhibitor-tubulysin b hydrazide (23)</td>
<td>PSMA</td>
<td>In vivo</td>
<td>Preclinical</td>
<td>Xenograft LNCaP</td>
<td>71% tumor regression, 29% cure with disease free more than 90 days</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>EC1169 (PSMA inhibitor-tubulysin b hydrazide) (23)</td>
<td>PSMA</td>
<td>In vivo</td>
<td>Preclinical</td>
<td>Xenograft LNCaP</td>
<td>71% tumor regression, 29% cure with disease free more than 90 days</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>EC0225 (9)</td>
<td>FR</td>
<td>Clinical phase I</td>
<td>Ongoing</td>
<td>—</td>
<td>Recruiting participants</td>
<td>NCT02202447</td>
</tr>
<tr>
<td></td>
<td>11β-dichloro (54)</td>
<td>AR</td>
<td>In vivo</td>
<td>Preclinical</td>
<td>Xenograft LNCaP</td>
<td>90% inhibition of tumor volume at 30 mg/kg (5 days daily for seven consecutive weeks)</td>
<td>306</td>
</tr>
</tbody>
</table>

Continued
<table>
<thead>
<tr>
<th>Cancer type</th>
<th>Small-molecule conjugates (structure numbering)</th>
<th>Target</th>
<th>Study stages</th>
<th>Status</th>
<th>Graft/tumor</th>
<th>Remarks</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST7456CL1 (96)</td>
<td>Integrin</td>
<td>In vivo</td>
<td>Preclinical</td>
<td>Xenograft PC3</td>
<td>Increased the life span by 34% and reduced metastases by 64% compared with vehicle control</td>
<td>356</td>
<td></td>
</tr>
<tr>
<td>Urinary bladder</td>
<td>EC0905 (111)</td>
<td>FR</td>
<td>In vivo</td>
<td>Preclinical</td>
<td>Canine invasive urothelial carcinoma</td>
<td>56% PR, 44% SD. Median OS is 115 days.</td>
<td>65</td>
</tr>
<tr>
<td>Liver</td>
<td>RGD-4C-doxorubicin (85)</td>
<td>Integrin</td>
<td>In vivo</td>
<td>Preclinical</td>
<td>Allograft MH134</td>
<td>Suppressed tumor growth more than free dox, prominent tumor cell death, complete tumor cell necrosis in 40% of cases</td>
<td>347</td>
</tr>
</tbody>
</table>

*a Conducted syngeneic S180 sarcoma model with 64% inhibition in tumor sizes compared to adriamycin with 50% inhibition.

*b Other solid tumors are colorectal (n = 12), lung (n = 6), breast (n = 6), endometrium (n = 2), prostate (n = 3), pancreas (n = 2), kidney (n = 2), one each for the uterine, anal, urothelial, head and neck, hepatocellular, melanoma, uterine leiomyosarcoma, gastric cancer, gastrointestinal stromal tumor, chondrosarcoma, testicular cancer, mesothelioma, thymoma, sinus cancer, and small bowel cancer.

*c Conducted for one patient for NSCLC (SD), thymic cancer (SD), gallbladder cancer (PR > 5 months with fluorouracil, cisplatin, gemcitabine), gastric cancer (SD), and uterine corpus-endometrial cancer.

*d Conducted on colorectal (SD, 4.6 months), breast (SD, 4 months), leiomyosarcoma (SD, 4 months), and mesothelioma (SD, 4 months). TrkC, tropomyosin receptor kinase-C; ER, estrogen receptor; GLUT, glucose transport system; FR, folate receptor; AR, androgen receptor; CalX, carbonic anhydrase-9; PSMA, prostate specific membrane antigen; PR, partial remission; SD, stable disease; OS, overall survival; PFS, progression free survival; PD, progressive disease; DCR, complete remission + partial remission + stable disease.
Table II. Small-Molecule Conjugates for Cancer Imaging in the Clinic and in Preclinical Animal Models

<table>
<thead>
<tr>
<th>Cancer type</th>
<th>Small-molecule conjugates (structure numbering)</th>
<th>Target</th>
<th>Study stages</th>
<th>Status</th>
<th>Graft/tumors</th>
<th>Remarks</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostate</td>
<td>123I-MIP-1072 (17) and 123I-MIP-1095 (18)</td>
<td>PSMA</td>
<td>Clinical phase I</td>
<td>Completed</td>
<td>Recurrent metastatic</td>
<td>Localized in tumor lesion post 1–4 hr administration, 123I-MIP-1072 has fivefold rapid clearance compared to 123I-MIP-1095</td>
<td>NCT00712829</td>
</tr>
<tr>
<td></td>
<td>99mTc-MIP-1404 (19) and 99mTc-MIP-1405 (20)</td>
<td>PSMA</td>
<td>Clinical phase I/II</td>
<td>Phase I-completed</td>
<td>Metastatic</td>
<td>20% increase in accuracy and sensitivity compared to 123I-MIP-1072 and 123I-MIP-1095</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>EC0652 (99mTc-DUPA) (21)</td>
<td>PSMA</td>
<td>Clinical phase 0</td>
<td>Ongoing</td>
<td>Advanced, metastatic</td>
<td>No reported toxicity and 7/9 showed high affinity localization in cancer lesion</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>18F-DCFBC (22)</td>
<td>PSMA</td>
<td>Clinical phase I/II</td>
<td>Ongoing</td>
<td>Primary and metastatic</td>
<td>66% 18F-DCFBC pet patient was concordant with conventional imaging, and able to detect early bone metastasis</td>
<td>154, NCT01815515, NCT01417182, NCT01496157</td>
</tr>
<tr>
<td></td>
<td>125I-RISAD-P (61)</td>
<td>AR</td>
<td>In vivo</td>
<td>Predclinical</td>
<td>TRAMP for prostate cancer</td>
<td>High uptake in tumor and proportional to time and sizes; studied for radiotherapy and showed delayed tumor growth by sizes</td>
<td>314</td>
</tr>
<tr>
<td>Breast</td>
<td>18F-ISO1 (26)</td>
<td>Sigma-2</td>
<td>Clinical phase I</td>
<td>Ongoing</td>
<td>Primary cancer</td>
<td>Tumor cell proliferation status significant correlated with control proliferation marker (KI-67). MTD of 550 mbq</td>
<td>NCT02284919</td>
</tr>
<tr>
<td></td>
<td>18F-3f (27) and 123I-3f (28)</td>
<td>Sigma-2</td>
<td>In vivo</td>
<td>Predclinical</td>
<td>Syngeneic clone 66 breast tumor</td>
<td>High tumor to normal tissue ratios, rapid clearance from nontargeted organs (5–120 min)</td>
<td>174</td>
</tr>
<tr>
<td></td>
<td>18F-fluoromestadiol (18F-FES) (43)</td>
<td>ER</td>
<td>Clinical phase I/II</td>
<td>Ongoing</td>
<td>Metastatic breast and desmoid tumor</td>
<td>Recruiting patients</td>
<td>NCT02374931, NCT01957332</td>
</tr>
<tr>
<td></td>
<td>4FMFES (44)</td>
<td>ER</td>
<td>Clinical phase II</td>
<td>Ongoing</td>
<td>Primary and metastatic</td>
<td>Threefold higher tumor to background ratio compared to 18F-FES</td>
<td>275</td>
</tr>
</tbody>
</table>

Continued
Table II. Continued

<table>
<thead>
<tr>
<th>Cancer type</th>
<th>Small-molecule conjugates (structure numbering)</th>
<th>Target</th>
<th>Study stages</th>
<th>Status</th>
<th>Status</th>
<th>Graft/ tumors</th>
<th>Remarks</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovarian</td>
<td>111In-DTPA-folate (3)</td>
<td>FR</td>
<td>Clinical phase I/II</td>
<td>Completed</td>
<td>Primary, recurrent</td>
<td>87% sensitive in FR(10–90%) expression.</td>
<td>363</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>99mTc-EC20 (2)</td>
<td>FR</td>
<td>Clinical phase II</td>
<td>Completed</td>
<td>Recurrent</td>
<td>Platinum-resistant ovarian uptake at 1 and 3 hr post injection</td>
<td>NCT0169714</td>
<td>NCT0170650</td>
</tr>
<tr>
<td></td>
<td>18F-FPTP (53)</td>
<td>PgR</td>
<td>Preclinical</td>
<td>Uterus and ovary imaging</td>
<td>Suspended participant recruitment</td>
<td>High uterus and ovarian uptake at 1 and 3 hr post injection</td>
<td>296</td>
<td></td>
</tr>
<tr>
<td></td>
<td>111In-DOTA-E-[σ(RDGfK)]_2 (86)</td>
<td>Integrin</td>
<td>In vivo</td>
<td>Preclinical</td>
<td>Xenograft NIH-OVCAR-3</td>
<td>Tumor uptake peaked at 6–7.5% dose/g at 1–2 hr post injection, rapid renal excretion, considerable uptake in liver and spleen, receptor binding demonstrated, tumor growth delay observed</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>Kidney</td>
<td>99mTc-EC20 (2)b</td>
<td>FR</td>
<td>Clinical phase I</td>
<td>Completed</td>
<td>Primary, metastasis</td>
<td>74% (n = 119) uptake in renal cancer (68% uptake in all solid tumors); less effective in detecting metastatic lesion.</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Cancer type</td>
<td>Study/Status</td>
<td>Target</td>
<td>Graft/tumors</td>
<td>Remarks</td>
<td>References</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>--------</td>
<td>--------------</td>
<td>---------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-small-cell lung cancer</td>
<td>Clinical phase II</td>
<td>FR</td>
<td>Ongoing Adenocarcinoma, squamous</td>
<td>Monitoring efficacy of EC145 ± docetaxel via imaging. Ongoing, not recruiting</td>
<td>NCT01 577654</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td>Clinical phase III</td>
<td>CD13</td>
<td>Unknown</td>
<td>Primary, metastatic</td>
<td>Unknown status, information not updated</td>
<td>NCT01 394679</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In vivo</td>
<td>Preclinical</td>
<td>Xenograft A549 lung adenocarcinoma</td>
<td>Tumor uptake was blocked by unlabelled DOTA-NGR, excreted from kidney and rapidly cleared from blood and normal organs, tumor visible at 1 hr post injection with highest tumor/lung ratio at 1.5 hr</td>
<td>343</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In vivo</td>
<td>Preclinical</td>
<td>Xenograft HepG2 hepatoma</td>
<td>Rapid, significant tumor uptake and slow tumor washout, tumors visible at 1 hr post injection with highest T/NT at 8 hr</td>
<td>341</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued
Table II. Continued

<table>
<thead>
<tr>
<th>Cancer type</th>
<th>Small-molecule conjugates (structure numbering)</th>
<th>Target stages</th>
<th>Status Study Status</th>
<th>Graft/ tumors</th>
<th>Remarks</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibrosarcoma</td>
<td>64Cu-DOTA-NGR1 (78), 64Cu-DOTA-NGR2 (79)</td>
<td>CD13</td>
<td>In vivo</td>
<td>Preclinical</td>
<td>Xenograft HT-1080</td>
<td>64Cu-DOTA-NGR2 has higher tumor uptake and slower tumor washout than 64Cu-DOTA-NGR1, both conjugates show less tumor uptake if first blocked with cyclic CNGRC</td>
</tr>
<tr>
<td>Brain</td>
<td>68Ga-NOTA-G3-NGR2 (82)</td>
<td>CD13</td>
<td>In vivo</td>
<td>Preclinical</td>
<td>Xenograft HT-1080</td>
<td>Excreted mainly and rapidly through kidneys, higher tumor uptake and lower accumulation in vital organs, tumor uptake blocked by unlabelled conjugates</td>
</tr>
<tr>
<td></td>
<td>99mTcO-N$_3$S-PEG$_2$-Probestin (84)</td>
<td>CD13</td>
<td>In vivo</td>
<td>Preclinical</td>
<td>Xenograft HT-1080</td>
<td>Visible tumor uptake at 1 hr post injection, which was blocked by nonradioactive ReO-N35-PEG2-Probestin</td>
</tr>
<tr>
<td>Brain</td>
<td>Bivalent-IA-Cy5.5 (102)</td>
<td>Integrin</td>
<td>In vivo</td>
<td>Preclinical</td>
<td>Xenograft U87</td>
<td>Highest tumor-to-normal tissue contrast 24-48 hr post injection</td>
</tr>
</tbody>
</table>

a Includes head and neck cancer ($n = 10$) and lymphoma ($n = 7$).

b Conducted on benign ovarian tumors ($n = 8$), ovarian carcinomas ($n = 6$), and pituitary adenomas ($n = 6$). One patient each for small cell lung carcinoma, lung carcinoma (type unspecified), colon, endometrial, thyroid carcinomas, non-Hodgkin’s lymphoma, sarcoma, and glioma.

18F-DCFBC, N-[(S)-1,3-dicarboxypropyl]karbamoyl-$[^{18}$F]fluorobenzyl-L-cysteine; 18F-3f, N-4(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-2-$[^{18}$F]-fluroethoxy)-5-iodo-3-methoxybenzamide; 4FMFES, 4-fluoro-11β-methoxy-16α-$[^{18}$F]-fluorostradiol; β-18F-FMOX, 17α-ethynyl-11β-methoxy-16β-18F-fluorostradiol; 18F-FENP, 21-$[^{18}$F]-fluoro-16α-ethyl-19-norprogesterone; 18F-FFNP, 21-Fluoro-16α17α-{(R)-(1'-α-furylmethylidene)dioxyl}-19-norpregn-4-ene-3,2-O-dione, 18F-FPTP, F-fluoropropyl tanaprogret.
Other impacts of active targeting. (A) Immunomodulation is one of the possible effects of active targeting. Targeted ligands generally possess similar abilities as the natural ligands and can transduce signals upon binding to receptors that are expressed on normal cells, for example, immune cells. The ligands are known to be able to modulate immune responses in two different ways: (i) direct binding on monocytes to promote or inhibit the release of cytokines, which can then alter the cytokine milieu systemically, thereby affecting the adaptive immune cell (T-lymphocytes) differentiation and (ii) binding of ligand conjugates to different subtypes of T-lymphocytes to regulate their survival and functions. In both ways, the overall effect may be either protumor or antitumor depending on the ligand and receptor involved. In addition, the therapeutic cargo carried by the ligand conjugate may also modulate the immune response, for example, cyclophosphamide (an anticancer drug with immune modulation properties such as reduces T-suppressor cells). (B) Nontarget tissue toxicity is another possible effect of active targeting. Some receptors that are overexpressed in cancer cells are also highly expressed in the normal cells in healthy organs. Therefore, while killing cancer cells with overexpressed targeted molecules, mild or acute toxicity to nontargeted tissues might also happen in active targeted therapy.

At the current time, mAbs are having a far greater impact on active targeting than small molecules, and research continues to overcome some of their limitations. For instance, there is a community of researchers who focus on mAb modifications to promote permeation into cells and tissue (e.g., transbodies). Similarly, another strategy may be small polymeric micelles whose the diameter is such that they can avoid being trapped in superficial regions of solid tumors (but then it is hard to load cargoes and targeting entities and retain small size, and there may be persistent issues with off-target uptake in organs such as the liver, spleen, and heart). Much of the research on active targeting via mAbs, nanoparticles, liposomes is superb, and in the case of mAbs has potential or proven clinical value. However, we think the following three assertions are fair: (i) the unexplored potential for small-molecule targeting agents is probably more than for mAb systems because relatively few synthetic ligands have been prepared for this (as opposed to natural ones like folate and biotin), (ii) strategies involving nanoparticles,
polymers, large dendrimers, tend to be restricted by the same delivery-related issues that limit use of mAbs, and (iii) in any event, targeting of nanoparticles, polymers, large dendrimers using small-molecule agents gives smaller constructs than comparable systems targeted with mAbs. Smaller constructs tend to be more easily prepared with acceptable batch-to-batch variations, less vulnerable to degradation in vivo, and more permeable to tumor penetration.

Only 13 receptor types are featured in this review (those for: folate, cholecystokinin, PSMA, sigma-2 ligands, neurotrophins, carbonic anhydrase ligands, glucose, estrogen, progesterone, androgen, biotin, amino peptidase N, and integrin). Most of these are receptors for naturally occurring vitamins or steroids, and most of the others were initially studied as therapeutic targets. With respect to the ligands that have been used for active targeting, most are closely related to the endogenous ligands (e.g., folate and estrogen). There are a few examples of compounds that emerged from medicinal chemistry efforts being used (e.g., sigma-2 and Trk receptor ligands). There are also examples of derivatives of endogenous ligands significantly modified by medicinal chemistry (e.g., peptidomimetics of RGD for integrin sequences).

The outline of receptors and ligands for active targeting presented above leads to a conclusion that applies to both small molecules and mAbs. Most of the receptors used so far are ones that have been widely studied for a long time. They have been studied intensely because they interact with endogenous ligands to give responses that trigger in vivo responses that were recognized to be physiologically important (e.g., folic acid, estrogen, integrins). That area of research was well advanced before anyone considered using those receptors for active targeting. In a sense, research in active targeting is “piggy-backing” on what others have discovered about those common receptors that happen to be overexpressed in particular tumor types. It is highly likely that there are many other cell surface receptors that are overexpressed in different tumor types that have not been widely studied and are “flying under the radar” with respect to active targeting.

Based on the observations in this review, we predict the field of active targeting will develop in several ways. First, interest in small molecules for active targeting will increase as more receptors are validated as suitable targets in mAb-based strategies, and as researchers look for smaller, more tumor-permeable constructs that will perform the same function. Second, more synthetic molecules that bind cell surface receptors will be used for active targeting, and the number of these may quickly surpass the number of natural ligands that are used. This assertion is based on the fact that medicinal chemistry consistently uncovers new structures that bind cell surface receptors, whereas the number of useful small molecules endogenous ligands (e.g. folate and estrogen) is finite and not particularly large. Finally, to date there has been very little use of genetic and proteomic methods specifically directed to identification of receptors that have ideal characteristics for active targeting (high levels of expression overall, high ratios of expression in cancer relative to normal cells, and frequent recycling to the cell surface). Good progress has been made in this area, but the best is probably still to come.

8. ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADM</td>
<td>adriamycin</td>
</tr>
<tr>
<td>AE</td>
<td>antiestrogen</td>
</tr>
<tr>
<td>APN</td>
<td>aminopeptidase N</td>
</tr>
<tr>
<td>AR</td>
<td>androgen receptor</td>
</tr>
<tr>
<td>BR</td>
<td>biotin receptor</td>
</tr>
<tr>
<td>BRAF</td>
<td>v-raf murine sarcoma viral oncogene homolog B1</td>
</tr>
<tr>
<td>BODIPY</td>
<td>boron dipyrromethene</td>
</tr>
<tr>
<td>CCKR</td>
<td>cholecystokinin receptor</td>
</tr>
</tbody>
</table>
CI = confidence interval
CLB = chlorambucil
CNGRC = Cys-Asn-Gly-Arg-Cys
CNS = central nervous system
DAHPES = 5-hydroxy-3,7-diazanonan-1,9-dithiol
DCR = complete response, partial response, stable disease
DHT = dihydrotestosterone
DOTA = 1,4,7,10-tetraazacyclododecane-N,N',N''',N''''-tetraacetic acid
Dox = doxorubicin
DTPA = diethylenetriaminepentaacetic acid
E2 = estradiol
EPR = enhanced permeation retention
ER = estrogen receptor
FITC = fluorescein isothiocyanate
FR = folate receptor
GDA = geldanamycin
GLUT = glucose transport system
IFN = interferon
IHC = immunohistochemistry
IL = interleukin
mAb = monoclonal antibody
MDR = multidrug resistance
MEK = mitogen activated protein kinase kinase
MMP = matrix metalloproteinase
MR = magnetic resonance
MTD = maximum tolerated dose
NGR = asparaginyl-glycinyl-argininyl
NOTA = 1,4,7-triazacyclononane-N,N0,N00-triacetic acid
PCa = prostate cancer
PCFT = proton-coupled folate transporter
PET = positron emission tomography
PgR = progesterone receptor
PSMA = prostate-specific membrane antigen
PTX = paclitaxel
RBA = relative binding affinity
RFC = reduced folate carrier
RGD = argininyl-glycinyl-aspartic acid
SMVT = sodium-dependent multivitamin transporter
SPECT = single photon emission computed tomography
Trk = tropomyosin receptor kinase

ACKNOWLEDGMENTS

This project was supported by High Impact Research (HIR, UM.C/625/1/HIR/MOHE/MED/17 and UM.C/625/1/HIR/MOHE/MED/33) from the Ministry of Higher Education, Malaysia. Financial support to K.B. was provided by the Robert A. Welch Foundation (A-1121), a DoD BCRP Breakthrough Award (BC141561), and CONACYT (M1401981).
REFERENCES

Medicinal Research Reviews DOI 10.1002/med

84. Siegel BA, Dehadshiti F, Mutch DG, Podoloff DA, Wendt R, Sutton GP, Burt RW, Ellis PR, Mathias CJ, Green MA, Gershenson DM. Evaluation of 111In-DTPA-folate as a receptor-

Medicinal Research Reviews DOI 10.1002/med

Medicinal Research Reviews DOI 10.1002/med

SMALL MOLECULES FOR ACTIVE TARGETING IN CANCER

Medicinal Research Reviews DOI 10.1002/med

Medicinal Research Reviews DOI 10.1002/med

Chin Siang Kue obtained his MSc in Molecular Immunology (2011) at Korea University. He received Bright Spark scholarship from University of Malaya (UM), Malaysia, in 2013 to pursue his PhD. His current research interests are targeted cancer therapy and immunology.

Medicinal Research Reviews DOI 10.1002/med
Anyane Kamkaew received her PhD (2015) from Texas A&M University (TAMU), USA. She is now a Postdoc researcher at University of Wisconsin, USA, studying synthesis of organic and biomolecules for intramolecular delivery and targeting.

Kevin Burgess obtained his PhD from University of Cambridge, UK. He was Assistant Professor at Rice University, USA before joining TAMU where he is currently Rachal Professor of Chemistry. His research interests include synthetic organic methods for preparing small molecules that bind to proteins for active targeting of tumors and disruption of PPIs.

Lik Voon Kiew received his doctorate from the UM (2008). He is currently a senior lecturer at the Department of Pharmacology, UM. His current research interests include the development and evaluation of cancer targeting drug carriers and photosensitizers.

Lip Yong Chung received his doctorate (1990) in Pharmacy from the University of Cardiff, UK. He is currently a Professor in Pharmaceutical Sciences, UM. His research interests include the design of bioactive molecules of pharmacological interest and the study of targeting biological systems.

Hong Boon Lee obtained her BA (1996) and PhD (2000) in Chemistry from University of Cambridge, UK. She conducted Postdoc research in Prof Kevin Burgess’ group in TAMU. She is currently Senior Researcher at UM, with research interests in photodynamic therapy and drug delivery for cancer.
Anthranilic acid-containing cyclic tetrapeptides: at the crossroads of conformational rigidity and synthetic accessibility†

Dongyue Xin and Kevin Burgess*

Each amino acid in a peptide contributes three atom units to main-chains, hence natural cyclic peptides can be 9, 12, 15, ..., i.e. $3n$ membered-rings, where n is the number of amino acids. Cyclic peptides that are 9 or 12-membered ring compounds tend to be hard to prepare because of strain, while their one amino acid homologs (15-membered cyclic pentapeptides) are not conformationally homogeneous unless constrained by strategically placed proline or D-amino acid residues. We hypothesized that replacing one genetically encoded amino acid in a cyclic tetrapeptide with a rigid β-amino acid would render peptidomimetic designs that rest at a useful crossroads between synthetic accessibility and conformational rigidity. Thus this research explored non-proline containing 13-membered ring peptides 1 featuring one anthranilic acid (Anth) residue. Twelve cyclic peptides of this type were prepared, and in doing so the viability of both solution- and solid-phase methods was demonstrated. The library produced contained a complete set of four diastereoisomers of the sequence 1aaaf (i.e. cyclo-AlaAlaPheAnth). Without exception, these four diastereoisomers each adopted one predominant conformation in solution; basically these conformations feature amide N–H vectors puckering above and below the equatorial plane, and approximately oriented their N–H atoms towards the polar axis. Moreover, the shapes of these conformers varied in a logical and predictable way (NOE, temperature coefficient, D/H exchange, circular dichroism). Comparisons were made of the side-chain orientations presented by compounds 1aaa in solution with ideal secondary structures and protein–protein interaction interfaces. Various 1aaa stereoisomers in solution present side-chains in similar orientations to regular and inverse γ-turns, and to the most common β-turns (types I and II). Consistent with this, compounds 1aaa have a tendency to mimic various turns and bends at protein–protein interfaces. Finally, proteolytic- and hydrolytic stabilities of the compounds at different pHS indicate they are robust relative to related linear peptides, and rates of permeability through an artificial membrane indicate their structures are conducive to cell permeability.

Introduction

Cyclization of linear peptides increases their proteolytic stabilities and rigidities. In ideal cases these structures will adopt only one preferred conformation; if that occurs, less entropy will be surrendered on interaction with biomolecular receptors, increasing the free energies for the interactions. Observation of a strongly preferred conformation in solution also makes it probable that the molecule will bind to the receptor in a similar conformation, compared to other situations in which the compound exists in several solution conformations. Moreover, exclusion of competing conformational states reduces possibilities for off-target binding.

Inconveniently, cyclic peptides composed of the 20 genetically encoded amino acids miss a “sweet spot” ring size where conformational homogeneity is attained without compromising ease of syntheses. Thus, cyclic tri-14 A and tetra-peptides B5–11 are notoriously difficult to prepare because they are constrained in 9- and 12-membered ring conformations. Analogs of cyclic tetrapeptides, like the 12-membered ring system C, may be more easily prepared but another problem arises: cis/ trans amide bond equilibria introduces conformational heterogeneity.12 Cyclic pentapeptides,13–15 are easier to make than cyclic tri- or tetrapeptides16 because their 15-membered rings...
are less strained, but they tend to equilibrate between conformers D1–5 containing β- and γ-turns. Certain states in the D1–5 equilibrium can be favored if one of the amino acids has a \(\alpha\)-configuration, especially \(\alpha\)-Pro,17 but most cyclic pentapeptides and higher homologs overall do not tend to be rigid unless further constrained (Fig. 1).

Based on the observations above, there should be favored ring sizes in peptidomimetic design where non-genetically encoded residues replace one amino acid to give conformationally rigid 13- or 14-membered rings. Ghadiri and co-workers, for instance,20,21 have used copper-mediated azide–alkyne cycloadditions to give the 13-membered rings E which were conformationally rigid.22 In other illustrative work, Fairlie et al. substituted β-amino acids into cyclic tetrapeptides and found some 13-membered ring systems, including F23 and G,24 that could be prepared efficiently, and were conformationally rigid. However, that same work showed similar, but conformationally heterogeneous, 13-membered ring systems.24

Anthranilic acid is readily available and more rigid than most other β-amino acids. Several peptidic macrocycles containing anthranilic acid occur in Nature, most where this unit is one of five in a pentapeptide ring.25-38 There are also numerous examples of similar hexapeptides and higher homologs incorporating anthranilic acid,25,39-45 a few 10-membered tripeptide derivatives46-48 and several cyclic systems containing the “Anth” residue and another non-encoded amino acid.49-51 However, 13-membered ring systems containing this ubiquitous residue have been under-explored. Only one natural tetrapeptide H that features Anth in a 13-membered ring has been discovered,52 and the only 13-membered cyclic peptide containing Anth that has been synthesized is compound I, prepared as part of a medicinal chemistry project.53 To the best of our knowledge, neither H nor I have been studied in solution to determine their conformational biases.

We hypothesized compounds I could be prepared from readily available starting materials, and would be conformationally rigid 13- or 14-membered rings.
rigid. This paper describes how those compounds were made, and the conformational biases of one complete set of enantiomers in this series. In the event the conformations of these molecules were shown to correlate with their chiral amino acid stereochemistries in a logical, easily understood, way that is useful for predicting the preferred shapes of these rigid scaffolds.

Results and discussion

Syntheses via iterative precipitations

Couplings to anthranilic acid are not facile because the aromatic amine is deactivated via resonance. However, Scheme 1 describes how solution-phase syntheses of several compounds were achieved using a large excess of Anth and a high concentration of all agents; if high concentrations were not used then epimerization was competitive with product formation. Use of a relatively weak base (N-methyl morpholine) and of the superior, though more expensive, coupling additive HOAt, was also beneficial in this step.

Early in this study we realized the physiochemical properties of peptides containing anthranilic acid facilitated their isolation. Thus, coupling three amino acids to the Anth unit gave products that precipitated from dichloromethane/hexanes with sufficient purities to use in the next steps. In fact, the only chromatography needed in the “Boc-approach” to the cyclic systems shown in Scheme 1 was to isolate the cyclized product. Serine and tyrosine residues in the compounds prepared were protected with benzyl groups. Glutamic acid side-chain protection was achieved using a tert-butyl ester, which withstands selective deprotection of the N-Boc functionality with 4 M HCl.55

Scheme S2 (ESI†) shows a similar solution-phase approach to the same types of products but using Cbz protected amino acids and Nα-deprotection via hydrogenolysis. In one of these syntheses the first amino acid added was H-Glu(OtBu) where successive deprotection under acidic conditions, as in Scheme 1, might have eroded the yield of this product, but N-deprotection via hydrogenolysis circumvented this potential problem. A complementary solid phase Fmoc-approach was also established (Scheme S3, ESI†), based on 2-chloro-trityl polystyrene resin and involves cleavage from the support then cyclization in the final step.

Conformational analyses

One goal in this study was to elucidate the intrinsic conformational biases of the stereoisomeric scaffolds 1 with minimal perturbation from side-chain interactions. The ideal system to study might have been the simple peptide 1aaa (or cyclo-AlaAlaAlaAnth). However, there was insufficient dispersion of the 1H NMR peaks in that particular compound to facilitate convenient conformational analyses. Consequently, we decided to
study one enantiomeric series of the compounds 1aaa (or cyclo-
AlaAlaPheanth).

One-dimensional 1H NMR of the 1aaa series all showed
sharp, resolved peaks for the side-chains and for the amide
protons. All the amino acid amide NH resonances were split
into doublets via coupling to the CH protons (see below,
Table 1). These observations imply that the compounds do not
equilibrate between different conformations on the NMR timescale,
and that in solution each exists predominantly in one
form. Temperature coefficient data56,57 and rates of H/D exchange58,59 were also measured. Neither set of data were particu-
larly informative, except that they indicate there are no
"endo-cyclic" H-bonds, consistent with the conformations
deduced from NMR and calculations that are described
immediately below. NOE data were collected for all the com-
ounds, and no cis-amide bonds were present (CaH–CaH
cross-peaks absent).

Two methods were used to deduce the predominant confor-
mations of compounds 1 in polar solvents. First, the molecules
1aaa were simulated in a medium of dielectric 46.7 represent-
ing DMSO (and 80 representing water, see ESI†) using the
quenched molecular dynamics (QMD) technique.60,61 QMD
simulations are valuable because they are not bias by NOE
data which over-represents some conformations due to the
NOE effect depends on $1/r^6$ distance relationships.52 Moreover,
QMD thoroughly explores possible local minima in a Boltz-
mann equilibrium. Second, and independently, NOE restrains
were applied in a Macromodel simulation of molecules 1aaa
in dielectric 46.7.

One conformational cluster (maximum RMSD of the
Ca–Cβ coordinates 0.5 Å) arose from the QMD simulations of
each of the 1aaa stereoisomers, Fig. 2a (QMD simulated
scaffold conformations are shown in black throughout
this paper). The fact that >1000 conformers (all below
3 kcal mol$^{-1}$ of the lowest energy one identified) all converged
to one cluster emphatically indicates conformational rigidity.
Comparison of the QMD-generated structures with the NOE
data showed they are consistent. Similarly, the MacroModel
simulations with NMR constraints also gave one predominant
conformation for each 1aaa stereoisomer, Fig. 2b (Macro-
Model simulated scaffold conformations involving NOE
constraints are grey throughout). None of the $^3J_{\text{NH-α}}$ coupling
constants were above 9 Hz (see Table 1 below); only couplings
>9 Hz are indicative of unambiguous calculated dihedral
angles, hence none were used as constraints in the Macro-
Model calculations.

Overlays of the conformations generated using the
approaches described above, i.e. without and with NOE con-
straints, showed close agreement (RMSD 0.18–0.34 Å for the
Ca–Cβ coordinates; Fig. 3). Moreover, even though the fit of
these overlays was based on Ca–Cβ vectors, it is clear that the
ring structures also are very similar.

Table 1 Comparison of experimentally observed $^3J_{\text{NH-α}}$ coupling constants with those calculated using the NMR constrained structures simulated in Fig. 2b

<table>
<thead>
<tr>
<th>Ala(R1)</th>
<th>Ala(R2)</th>
<th>Phe(R3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Expb Calc. b</td>
<td>Expb Calc. b</td>
</tr>
<tr>
<td>LLL</td>
<td>5.0</td>
<td>6.2–6.7</td>
</tr>
<tr>
<td>DLL</td>
<td>7.7</td>
<td>7.6–8.2</td>
</tr>
<tr>
<td>LLD</td>
<td>7.2</td>
<td>6.8–8.0</td>
</tr>
<tr>
<td>DDL</td>
<td>5.2</td>
<td>5.6–6.3</td>
</tr>
</tbody>
</table>

a Directly from NMR spectra. b Based on the structures simulated from the NOE data, and calculated using the Poulson form of the Karplus equation.64

![Fig. 2 Conformations simulated by: (a) QMD calculations for 1aaa stereomers without NOE constraints; and, (b) MacroModel for 1aaa stereomers with NOE constraints. The blue arrows approximate the orientation of the NH bond vectors to either pointing up or below the ring system.](image-url)
Comparisons of favored conformations for stereomers of 1 revealed a simple correlation. When drawn with the ring on the equator, and the Anth residue on the West, then \(\alpha \)-amino acids point their \(N-H \) vectors South, while \(\beta \)-amino acids are North-oriented, irrespective of the other amino acid stereochemistries. Thus the cyclic 13-membered ring scaffold is constrained to one highly predictable conformation per stereoisomer. This observation held for all the compounds prepared in this study based on similarities in NOE cross-peaks, \(i.e. \) for cyclo-DGlu'-DAla-LPhe-Anth, cyclo-LVal-LSer'-LTyr-Anth, cyclo-DTyr'-DSer'-DVal-Anth, cyclo-LVal-LSer-LTyr-Anth, cyclo-LPhe-DAla-LPhe-Anth, cyclo-DPhe-LA LA-LGlu-Anth, cyclo-DPhe-LA LA-LGl u-Anth (see ESI†); those observations imply the conformations are governed by the scaffold and the side-chain variables are less significant (Fig. 4).

Table 1 compares \(NH-CaH \) coupling constants directly from NMR spectra with those calculated from the MacroModel simulations involving NOE constraints. In some cases the coupling was obscured, and in several cases the true \(J \)-values were marginally (by 1.2 Hz at most) outside the calculated range, but the rest were consistent with the values inferred from simulations.

Circular dichroism (CD) data for the 1aaf stereomers are shown in Fig. 5 (solid lines). Unsurprisingly, significantly greater molar elipticities were observed for these compounds compared with related linear peptides (dotted lines), indicative of more conformational ordering in the cyclic systems. Moreover, there are logical trends in the data. For instance, the LLL-1aaf stereomer (red line) has negative maxima at ca. 195 and 215, and a maximum at ca. 230 nm. Substitution of two \(\alpha \)-amino acids in LLL-1aaf giving DDL-1aaf is accompanied by near complete inversion of the CD maxima and minima. The two possible “intermediate” diastereomers, \(i.e. \) DLL-1aaf and LDL-1aaf, in which only one \(\alpha \)-amino acid of LLL-1aaf is replaced, show shallower peak intensities. The CD spectrum of DL-1aaf (green) is more closely related to that for LL-1aaf (red) than it is to DD-1aaf (purple), whereas for LD-1aaf (blue) the inverse is true; this implies the amino acid opposite...
the **Anth** residue in the cyclic scaffold has a more profound effect on the molar ellipticity.

Comparisons of the **Anth-cyclic peptidomimetics with peptide and protein structures**

Exploring key orientations on secondary structures [EKOS] \(^6^5\) facilitates comparison of all the favored QMD simulated conformers with all the common ideal secondary structures based on Ca–Cβ coordinates. For **1aaf** there was only one preferred conformer cluster for each stereomer. Not surprisingly, then, most stereomers matched on only one secondary structure, or none at all, *i.e.* they are not universal peptidomimetics. \(^6^6,^6^7\)

One apparent exception was **LLL-1aaf** which gave an acceptable fit on γ- and type II β-turn conformations (Fig. 6); however, γ- and type II β-turn conformations have similar side-chain orientations that overlay well on each other (ESI Fig. S1b†). An inverse γ-turn matched reasonably well with **LDL-1aaf**, and **DLL-1aaf** overlaid closely with a type I β-turn.

Whereas, Fig. 6 depicts preferred overlays of select **1aaf** stereoisomers on ideal secondary structures, the EKO routine \(^6^8\) facilitates matching QMD generated structures of **1aaa** with crystallized protein–protein interaction interfaces based on Ca–Cβ coordinates. Thus, preferred conformations of each stereomer were compared with around 160 000 protein–protein interfaces, and each match of RMSD <0.3 Å was analyzed in terms of what secondary structure type at the interface was implicated in the overlay. There were between 106–258 matches of <0.3 Å RMSD for each stereomer. The term “no secondary structure” is used here to describe situations in which the region overlaid did not contain any discernable secondary structure. “Turns” refers to a turn of any type (α, β, γ, δ) that has appropriate intrachain hydrogen bonds, while loops and turns without any intra-ring H-bonding interactions are classified as “bends”. Fig. 7 shows

![Fig. 6 Preferred conformations of select stereoisomers of **1aaf** overlaid on γ-, inverse γ-, type I β-, and type II β-turns. RMSD values indicated are for overlay of the side-chain Ca–Cβ vectors.](image)

![Fig. 7 Distribution of best overlays on PPI interface segments with respect to secondary structure for the stereomers featured in Fig. 6.](image)
the distribution of overlays within those categories and some other secondary structures. Thus the preferred 1aaa conformations are strongly bias towards turns and bends, consistent with the EKOS study presented in Fig. 6. Full data for all the 1aaa stereomers are given in the ESI (Fig. S2†).

Finer detail of the secondary structure types that were overlaid in the EKO analysis of PPIs in the PDB is indicated by ϕ, ψ-angles, indicative of the type of secondary structure implicated. Fig. 8 shows select data for the stereomers featured in Fig. 6, and Fig. S3† shows the complete data set. Thus, the number of occurrences where LLL-1aaa, LDL-1aaa, and DLL-1aaa overlaid closely with γ-turns, type I β-turns, inverse γ- and type II β-turn conformations are consistent with the favored conformations predicted in Fig. 6.

Physiochemical properties

Table 2 shows how HPLC was used to monitor the stability of LLL-1aaf under aqueous conditions of pH 2, 7, and 12, and, in separate experiments, the mixture of proteases called Pronase69 that is used to extensively hydrolyze proteins in proteomics studies (any amide between two hydrophobic residues could be cleaved by this enzyme mixture). Under neutral or acidic conditions, and in the presence of Pronase, LLL-1aaf did not any significant cleavage. Only some cleavage was observed after extended expose to the aqueous pH12 conditions.

Predictions of cell permeability

Fig. 9 shows data calculated (QikProp)70,71 for the polar surface area (PSA) and cell permeability of LLL-1aaf. The impli-
of this data are that LLL-1aaa has less PSA and a higher tendency to permeate into cells than closely related linear peptide controls. Polar surface areas <140 Å² are generally preferable for cell permeability. Similarly, compounds with predicted PCaco-2 permeability rates >20 nm s⁻¹ are usually cell permeable; data calculated for LLL-1aaa exceeds both expectations, and predict cell permeability.

The parallel artificial membrane permeability assay (PAMPA) was used to obtain experimental data to compare with QikProp calculations (Fig. 10). In PAMPA assays, a polyvinylfluorostere membrane is coated with mixture of a lipophilic hydrocarbon (here dodecane) and lipids, then the rate of diffusion of test compounds from donor to acceptor wells are measured over a period of time to mimic passive diffusion into cells. There is no uniformly accepted cut-off value in PAMPA assays above which the compounds are considered to be cell permeable, mainly because there is some variance in the membrane composition used. However, the following illustrative data for cell permeable pharmaceuticals have been obtained by others using exactly the method described here: testosterone (13), propranolol (10), warfarin (1.0), furosemide (0.16), methotrexate (0.016). These data may serve as a reference for the data collected and shown in Fig. 10. That data suggests compounds on the aaf core will tend to be cell permeable. Membrane permeability was reduced for the compounds with more polar side-chains, vsy, and for the linear control, LLL-H-aaf-OH as expected. This assertion is supported by another study that suggests P_app of around 1 x 10⁻⁶ cm s⁻¹ correlate with cell permeability.

Others have noted that data from PAMPA assays tends to be less than those from Caco2 assays, so the difference in the absolute values from QikProp (calculated Caco2 rates) and PAMPA are unsurprising. Moreover, there is a reasonable correlation between the relative rates in both sets of data (Fig. 10).

Conflict of interest

The authors declare no competing financial interests.

Acknowledgements

Financial support for this project was provided by the National Institutes of Health (GM087981), the Robert A. Welch foundation (A-1121), DoD BCRP Breakthrough Award (BC141561), CRIT (RP150559), and the High Impact Research (HR) (UM.C/625/1/HIR/MOE/MED/17 & UM.C/625/1/HIR/MOE/MED/33) from the Ministry of Higher Education, Malaysia. We thank Dr Lisa M. Perez and Dr Howard Williams for useful discussions. TAMU/LBMS-Applications Laboratory provided mass spectrometric support. The NMR instrumentation at Texas A&M University was supported by a grant from the National Science Foundation (DBI-9970232) and the Texas A&M University System.

References

Heterogeneous Phase Transfer Catalysis in Solid Phase Syntheses of Anth-Cyclic Tetrapeptides

Dongyue Xin,† Jian Yuan,‡ Kwok-Yin Wong,‡ and Kevin Burgess*,†

†Department of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842, United States
‡Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong, P. R. China

ABSTRACT: This study features solid phase syntheses of cyclic tetrapeptides containing anthranilic acid (Anth) on relatively inexpensive resins derived from polystyrene. It proved to be difficult to hydrolyze a supported Anth-methyl ester unless a phase transfer catalyst was added to facilitate transport of hydroxide into the swollen hydrophobic gel state of the resin. We suggest this may be an under-appreciated strategy for improving syntheses on polystyrene supports.

Tetraalkylammonium salts are widely used for liquid−liquid phase transfer catalysis,1,2 but not to ferry reagents across a solid−liquid interface. We came across a useful example of this kind of heterogeneous phase transfer catalysis when developing a route to the 13-ring cyclic tetrapeptides 1 on a polystyrene-based support.

Solution phase access to the Anth-containing cyclic tetrapeptides A has recently been developed in our laboratories,† but that unfunctionalized Anth-residue does not have a functional group to enable attachment to a solid phase. Consequently, the first task in this study was to make a modified anthranilic acid (fragment in blue for structure 1). Use of piperidine-4-carboxylic acid as a nucleophile in SNAr displacement of fluoride from methyl 5-fluoro-2-nitrobenzoate gave the linked system 2 (Scheme 1).4 It was important to use a methyl benzoate rather than another ester (e.g., allyl) because pilot reactions showed coupling onto methyl anthranilates were significantly easier than if a larger ester were used (see Supporting Information, Reaction S1). Hydrogenation of the nitro-group and then reaction with Fmoc-Cl gave 3.

Scheme 1. Synthesis of a Modified Anthranilic Acid Derivative

Table 1 outlines some of the attempts that were made to achieve the methyl ester hydrolysis of the supported linear peptide (see Supporting Information for all the conditions attempted). Cleavage of the products from the resin under mildly acidic conditions enabled the degree of conversion of the most valuable component (3) and reduced the loading of the resin to levels that are conducive to intramolecular cyclization over intermolecular processes.7,8 Conventional couplings for Fmoc-based amino acids led to the linear precursor B that may be represented as H-Glu(‘Bu)-Phe-Ile-Anth′.

Table 1 outlines some of the attempts that were made to achieve the methyl ester hydrolysis of the supported linear peptide (see Supporting Information for all the conditions attempted). Cleavage of the products from the resin under mildly acidic conditions enabled the degree of conversion of the

Received: June 20, 2016
Published: August 23, 2016

© 2016 American Chemical Society

8077
DOI: 10.1021/acs.joc.6b01475
J. Org. Chem. 2016, 81, 8077−8081
methyl ester to the side-chain-protected linear peptide 4e'fì \{ie the linear peptide containing Glu('Bu), Phe, and Ile\} to be analyzed by HPLC.

Entries 1–4 in Table 1 show there was poor conversion to the desired product 4 even after an extended time (12 h); this is consistent with others who found it necessary to use 72 h to obtain a reasonable conversion of a polystyrene-supported methyl ester to the corresponding carboxylic acid. In THF/MeOH (entry 5) the reaction was faster, but the product purity was compromised (two significant byproducts by HPLC, one of these was from hydrolysis of the 'Bu-ester as concluded from LC-MS). However, the reaction rate increased dramatically when tetra-n-butyl ammonium bromide was added to the THF/H₂O conditions (entry 6), so much, in fact, that the hydrolysis was complete in 1 h (entry 7). At 1 h of reaction time, the less hydrophobic salts Et₄NBr and BnNEt₃Cl gave much less conversion than nBu₄NBr (entries 8 and 9). Tetra-n-hexyl ammonium bromide gave only marginally less conversion than nBu₄NBr (entries 10 and 11), and triphenyl phosphonium salts gave very poor conversion in THF/H₂O (entries 12 and 13). Overall, these data indicate symmetrical long-chain tetraalkyl ammonium salts are preferred, and unsymmetrical analogs are marginally inferior. Phenyphosphonium salts are ineffective for the featured reaction, and cations having several aromatic rings do not appear to be able to permeate into the resin effectively.

Table 2 shows hydrolysis product purities at 100% conversion when the optimized conditions were used (nb, Table 1 is different because it shows conversions). Little variation in the product purities was observed as the constituent amino acids were varied between combinations of Ile (i), Phe (f), Glu('Bu) (e'), Val (v), Ala (a), Ser('Bu) (s'), Tyr('Bu) (y'), Arg(Pbf) (r'), Cys(Acm) (c'), and His(Tr) (h'). NMR analysis of the crude material after cleavage of 4e'fì indicated that the carboxylate was paired with a tetra-n-butyl ammonium cation. Throughout, there was no evidence of cleavage of tert-butyl side-chain esters, and premature (ie in the base-mediated step) cleavage of the ester link from the trityl polystyrene was not observed by HPLC.

Cyclization of tetrapeptide precursors to relatively small, and therefore strained, 13-membered rings is a difficult transformation, and much optimization was required to achieve this for the supported intermediates C. For instance, when HATU \[\text{1-\{bis(dimethylamino)methylene\}1H-1,2,3-triazolo[4,5-b]-pyridinium 3-oxid hexafluorophosphate}\] was used the predominant product was the tetramethylguanidine.

After experimenting with 35 sets of reagents and conditions (see Supporting Information Table S2) those indicated in Table 3 were selected. In practice, it is important to follow a "staged" coupling procedure wherein (i) the acid is activated using DCC/HOAt and N-methyl morpholine (NMM) for 2 h; (ii) the coupling agents and byproducts that are in solution are washed away; (iii) the resin is resuspended in NMM/DMF for 48 h to allow the cyclization to proceed in an environment that does not contain byproducts and excess reagents from the activation step; and (iv) operations (i)–(iii) are repeated. If the excess coupling agents were not removed in step (ii) then significant amounts of linear N-terminal guanidines formed.
Table 2. Efficient Methyl Ester Hydrolysis on a Polystyrene Support

<table>
<thead>
<tr>
<th>entry</th>
<th>sequence</th>
<th>HPLC purity (%)</th>
<th>isolated yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LLL-4e'f'</td>
<td>92</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>LLL-4af'</td>
<td>95</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>LLL-4s'f'</td>
<td>91</td>
<td>41</td>
</tr>
<tr>
<td>4</td>
<td>DLL-4a's</td>
<td>89</td>
<td>39</td>
</tr>
<tr>
<td>5</td>
<td>DLL-4a'f'</td>
<td>86</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>DLL-4a'f'</td>
<td>90</td>
<td>29</td>
</tr>
<tr>
<td>7</td>
<td>LLD-4ar'c</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>DLL-4h'c'</td>
<td>81</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Formation of the Featured Anth-Containing Cyclic Tetrapeptides 1

<table>
<thead>
<tr>
<th>entry</th>
<th>sequence</th>
<th>HPLC purity (%)</th>
<th>isolated yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LLL-1vy</td>
<td>81</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>DLL-1ys</td>
<td>87</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>DLL-1ef</td>
<td>82</td>
<td>41</td>
</tr>
<tr>
<td>4</td>
<td>DLL-1ae</td>
<td>76</td>
<td>39</td>
</tr>
<tr>
<td>5</td>
<td>LLD-1ar'c</td>
<td>71</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>DLL-1h'c'</td>
<td>75</td>
<td>29</td>
</tr>
</tbody>
</table>

Staged couplings of this kind are at least uncommon in the literature.

Overall, the above procedure to obtain the cyclic tetrapeptides was difficult, probably because the desired cyclization reaction is only slightly more favorable than several possible competing processes. Nevertheless, Table 3 lists the products that were isolated under the optimized conditions, without (1,1,1,3,3,3-hexafluoropropanol, HFIP)12 side-chain protection.

In conclusion, tetra-n-butylammonium bromide was pivotal in the supported methyl ester hydrolyses described here. Use of ammonium salts in solid phase syntheses is rare; examples we found include \({\text{Bu}_4}\text{NI}/18\)-crown-6 in loading a sodium alkoxide onto a bromomethylene polystyrene resin,13 \(\text{Me}_2\text{NHB(OAc)}_3 \) in a reductive amination,14 \(\text{Bu}_4\text{NOH} \) featuring a TOSMIC reaction,15 \(\text{Bu}_4\text{NOH} \) as a base in a cyclization reaction,16 \(\text{Bu}_4\text{NI} \) in an oxidation reaction,17 and in an electrolysis of a supported substrate.18 Optimization of the conditions for the hydrolysis greatly facilitated synthesis of the strained cyclic tetrapeptides 1, and we suggested that similar strategies warrant wider consideration in optimization of reactions on polystyrene supports.

EXPERIMENTAL SECTION

General Procedures. All solution phase reactions were carried out under an inert atmosphere (nitrogen or argon where stated). Glassware for anhydrous reactions was dried in an oven at 140 °C for a minimum of 6 h prior to use. Solid phase syntheses were carried out in plastic fritted syringes. Dry solvents were obtained by passing the previously degassed solvents through activated alumina columns. Yields refer to chromatographically and spectroscopically (‘H NMR) homogeneous materials, unless otherwise stated. Reagents were purchased at a high commercial quality (typically 97% or higher) and used without further purification. Analytical thin layer chromatography (TLC) was carried out on Merck silica gel plates with QF-254 indicator and visualized by UV. Flash column chromatography was performed using silica gel (230–400 mesh). \(\text{H} \) and \(^{13} \text{C} \) spectra were recorded on a 400 MHz spectrometer and were calibrated using residual nondeuterated solvent as an internal reference. The following abbreviations or combinations thereof were used to explain the multiplicities: \(s = \text{singlet}, \ d = \text{doublet}, \ t = \text{triplet}, \ q = \text{quartet}, \ m = \text{multiplet}, \ p = \text{pentet}, \ br = \text{broad singlet}, \ dd = \text{doublet of doublet}. \) Melting points were recorded on an automated melting point apparatus and are uncorrected. All of the HPLC analyses were carried out with UV detection monitored at 254 nm. Analytical reversed-phase HPLC analyses were performed with a 250 mm × 4.6 mm C-18 column using gradient conditions (10–90% acetonitrile in water, flow rate = 0.75 mL/min, injection volume = 30 μL).

General Procedure for the Syntheses of 3. Mel (1.25 mL, 20 mmol) was added dropwise to a mixture of 5-fluoro-2-nitrobenzoic acid (3.70 g, 20 mmol) and \(\text{K}_2\text{CO}_3 \) (2.76 g, 20 mmol) in 100 mL of DMF at room temperature. The mixture was stirred at 60 °C for 4 h under \(\text{N}_2 \). Then \(\text{K}_2\text{CO}_3 \) (6.90 g, 50 mmol) was added, followed by the addition of piperidine-4-carboxylic acid (3.10 g, 24 mmol) in one portion. The mixture was further stirred at 60 °C under \(\text{N}_2 \) for 12 h. The reaction mixture was cooled to room temperature, and DMF was removed under vacuum. 1 M KHCO\(_3\) aqueous solution was added slowly while stirring to acidic the crude mixture until the pH was adjusted to 3–4. The precipitated yellow solid product was filtered and washed with water (20 mL × 3) and then with \(\text{CH}_3\text{Cl}_2 \) (5 mL × 2). After drying, compound 2 was obtained as a yellow solid (4.74 g, 77% yield).

To a solution of 2 (3.08 g, 10 mmol) and DIPEA (1.71 mL, 10 mmol) in methanol (100 mL, 0.1 M) under nitrogen was added 10 wt % \(\text{Pd}/\text{C} \) (1.02 g, 0.1 equiv. Pd). The reaction was placed under an atmosphere of hydrogen (1 atm, balloon) for 12 h. The reaction mixture was cooled to room temperature, and DMF was removed under vacuum. 1 M \(\text{KHSO}_4 \) aqueous solution was added slowly while stirring to acidify the crude mixture until the pH was adjusted to 3–4. The precipitated yellow solid product was filtered and washed with water (20 mL × 3) and then with \(\text{CH}_3\text{Cl}_2 \) (5 mL × 2). After drying, compound 2 was obtained as a yellow solid (4.74 g, 77% yield).

The combined organic phase was dried over \(\text{MgSO}_4 \) filtered, and concentrated under vacuum to give the crude product. The crude material was purified with flash chromatography (1% MeOH in \(\text{CH}_2\text{Cl}_2 \) to 3% MeOH in \(\text{CH}_2\text{Cl}_2 \) to give the pure product as a white solid (2.2 g, 44%).

\(3-(\text{3-(Methoxycarbonyl)-4-nitrophenyl)piperidine-4-carboxylic Acid} \) (2). Yellow solid, 4.74 g; 77%; mp = 214.9–216.0 °C; \(\text{H} \) NMR (400 MHz, DMSO) \(\delta \) 7.99 (d, \(J = 9.1 \) Hz, 1H); 7.15–7.04 (m, 2H), 4.04–3.97 (m, 2H), 3.83 (s, 3H), 3.19–3.10 (m, 2H), 2.64–2.53 (m, 9H).
phenyl)piperidine-4-carboxylic Acid (DLL-13). White amorphous solid, 9.3 mg, 39%; 1H NMR (400 MHz, DMSO) δ 8.99 (d, J = 6.0 Hz, 1H), 8.44 (d, J = 5.2 Hz, 1H), 8.11 (d, J = 9.7 Hz, 1H), 7.70 (d, J = 8.8 Hz, 1H), 7.37–7.15 (m, 5H), 7.10–7.05 (m, 2H), 4.53–4.46 (m, 1H), 4.28–4.16 (m, 1H), 4.03–3.94 (m, 1H), 3.67–3.59 (m, 2H), 3.05–2.94 (m, 2H), 2.86–2.77 (m, 2H), 2.47–2.35 (m, 3H), 2.07–1.77 (m, 4H), 1.77–1.60 (m, 2H), 1.05 (d, J = 6.6 Hz, 3H); 13C NMR (100 MHz, DMSO) δ 173.6, 174.3, 172.3, 171.9, 169.7, 169.9, 169.7, 138.4, 129.4, 124.7, 127.4, 126.9, 121.7, 119.4, 118.5, 53.8, 57.4, 53.5, 49.2, 49.1, 47.9, 35.6, 30.8, 27.9, 25.5, 17.4; HRMS (ESI-TOF) m/z calc for C27H24N2O6 (M + H+) 494.1785; found 494.1787.

Solid Phase Synthesis of Cyclic Peptides 1. Loading of Linker onto 2-Chlorotrityl Resin. 2-Chlorotrityl resin (200 mg, 1.4 mequiv/g) was shaken with anhydrous CH2Cl2 (4 mL) in a fritted syringe for 30 min. Then the CH2Cl2 was removed, and a mixture of 3 (22 mg, 0.044 mmol) and DIPA (68 μL, 0.4 mmol) in CH2Cl2 (2 mL) was added into the syringe, followed by shaking at room temperature for 12 h. The remaining reactive site was blocked with MeOH/DIPEA (9:1 v/v) for 1 h, 46.4 (d, J = 6.8 Hz, 2H), 4.32 (t, J = 6.7 Hz, 1H), 3.83 (s, 3H), 3.63–3.54 (m, 2H), 2.83–2.66 (m, 2H), 2.43–2.36 (m, 1H), 1.96–1.88 (m, 2H), 1.69–1.62 (m, 2H); 13C NMR (101 MHz, DMSO) δ 176.3, 168.3, 153.7, 147.1, 144.2, 141.2, 131.8, 128.2, 127.6, 125.5, 122.7, 122.3, 120.6, 119.1, 117.1, 66.5, 52.8, 48.9, 47.0, 28.0; HRMS (ESI-TOF) m/z calc for C27H24N2O6 (M+H)+ 494.1787; found 494.1785.

On-Bead Cyclization. The deprotected linear peptide on resin was activated with 3 equiv of DCC, 3 equiv of HOAt, and 6 equiv of NMM at 0.06 M concentration in DMF at room temperature for 2 h to give the HOAt ester of the linear peptide. Then the beads were filtered and shaken with 6 equiv of NMM at 0.06 M concentration in DMF at room temperature for 48 h to enable the cyclization of the activated linear peptides. The activation—cyclization cycle was repeated, and then the material on the bead was cleaved with the method described in Cleavage From Solid Support Method 1 for protected cyclic peptides and Cleavage From Solid Support Method 2 for deprotected cyclic peptides and analyzed by reversed-phase HPLC for purity. The crude product was purified with reversed-phase prep-HPLC (10%–50% MeCN/water containing 0.1% TFA), and the fractions containing the product were lyophilized to give the pure product as white solids.

1-(35,65,95)-3-(4-Hydroxybenzyl)-6-(4-hydroxymethyl)-9-isopropyl-2,3,4,5,6,7,8,9,10,11-decahydro-1H-benzo-[k]1,4,7,10-tetraazacyclotridecin-13-ylpiperidine-4-carboxylic Acid (LIL-1Vsy). White amorphous solid, 10.7 mg, 45%; 1H NMR (400 MHz, DMSO) δ 9.16 (s, 1H), 8.73 (d, J = 7.0 Hz, 1H), 8.44 (d, J = 5.8 Hz, 1H), 8.09 (d, J = 9.0 Hz, 1H), 7.15–6.92 (m, 5H), 6.63 (d, J = 8.4 Hz, 2H), 4.93–4.30 (m, 1H), 3.97–3.90 (m, 1H), 3.68–3.53 (m, 3H), 3.16–3.07 (m, 1H), 2.94–2.74 (m, 3H), 2.46–2.36 (m, 1H), 2.07–1.86 (m, 3H), 1.80–1.59 (m, 2H), 1.05 (d, J = 6.6 Hz, 3H), 0.93 (d, J = 6.6 Hz, 3H); 13C NMR (101 MHz, DMSO) δ 176.3, 171.0, 170.9, 170.2, 169.1, 158.7, 156.0, 130.9, 129.4, 129.1, 127.3, 122.3, 118.5, 115.5, 66.3, 61.2, 56.8, 55.3, 49.9, 49.3, 33.8, 28.6, 27.9, 20.8, 19.5; HRMS (ESI-TOF) m/z calc for C29H31N2O6 (M + H)+ 596.2700; found 596.2734.

1-(35,65,9R)-9-(4-Hydroxybenzyl)-6-(4-hydroxymethyl)-3-isopropyl-2,3,4,5,6,7,8,9,10,11-decahydro-1H-benzo[k]1,4,7,10-tetraazacyclotridecin-13-ylpiperidine-4-carboxylic Acid (DDL-1feaf). White amorphous solid, 0.9 mg, 41%; 1H NMR (400 MHz, DMSO) δ 9.23 (s, 1H), 8.99 (d, J = 6.0 Hz, 1H), 8.44 (d, J = 5.2 Hz, 1H), 8.11 (d, J = 9.7 Hz, 1H), 7.70 (d, J = 8.8 Hz, 1H), 7.37–7.15 (m, 5H), 7.10–7.05 (m, 2H), 4.53–4.46 (m, 1H), 4.28–4.16 (m, 1H), 4.03–3.94 (m, 1H), 3.67–3.59 (m, 2H), 3.05–2.94 (m, 2H), 2.86–2.77 (m, 2H), 2.47–2.35 (m, 3H), 2.07–1.77 (m, 4H), 1.77–1.60 (m, 2H), 1.05 (d, J = 6.6 Hz, 3H); 13C NMR (101 MHz, DMSO) δ 173.6, 174.3, 172.3, 171.4, 169.7, 169.9, 169.7, 138.4, 129.4, 124.7, 127.4, 126.9, 121.7, 119.4, 118.5, 53.8, 57.4, 53.5, 49.2, 49.1, 47.9, 35.6, 30.8, 27.6, 27.6, 19.8, 19.6; HRMS (ESI-TOF) m/z calc for C27H24N2O6 (M + H)+ 494.1785; found 494.1784.
4.18—4.08 (m, 1H), 4.01—3.95 (m, 1H), 3.10—3.01 (m, 2H), 2.99—2.91 (m, 4H), 2.82 (d, j = 11.2 Hz, 2H), 2.48 (s, 3H), 2.43 (s, 3H), 2.02 (s, 3H), 1.97—1.88 (m, 3H), 1.86—1.78 (m, 4H), 1.73—1.65 (m, 2H), 1.61—1.39 (m, 10H), 1.36 (d, j = 7.3 Hz, 3H). 13C NMR (101 MHz, DMSO) δ 176.2, 173.4, 172.2, 169.9, 169.5, 168.9, 158.8, 157.9, 156.5, 157.7, 131.9, 127.1, 124.8, 121.9, 118.8, 116.7, 115.5, 86.8, 57.1, 53.5, 52.3, 49.4, 49.2, 42.9, 41.3, 31.8, 29.4, 28.9, 27.8, 25.9, 23.9, 20.1, 18.0, 16.2, 12.7; HRMS (ESI-TOF) m/z calc for C41H58N9O10S2 (M + H)+ 985.4822; found 985.4306.

A tetramethylguanidine side-product was formed when 3.0 equiv of HATU were used as the coupling reagent. The side-product was cleaved from the bead with Cleavage From Solid Support Method 2. 1-(3-Carboxy-4-((55,85,11S)-3-(Dimethylamino)-11-(4-hydroxy-2-(4-hydroxy-2-methyl-6,9-dioxo-2,4,7,10-tetraazatricyclodec-12-yl)liperidin-4-carboxylic Acid. 1H NMR (200 MHz, DMSO) δ 10.90 (s, 1H), 9.15 (s, 1H), 8.39 (d, j = 7.4 Hz, 1H), 8.32 (d, j = 8.0 Hz, 1H), 8.25 (d, j = 9.1 Hz, 1H), 7.45 (d, j = 2.92 Hz, 2H), 7.40 (d, j = 7.2 Hz, 2H), 7.24 (dd, j = 9.2, 3.0 Hz, 1H), 7.04—6.98 (m, 2H), 6.64—6.59 (m, 2H), 4.54—4.29 (m, 2H), 3.89—3.83 (m, 1H), 3.71—3.62 (m, 1H), 3.61—3.53 (m, 3H), 3.04—2.67 (m, 16H), 2.44—2.36 (m, 1H), 2.08—2.00 (m, 1H), 1.96—1.88 (m, 2H), 1.71—1.60 (m, 2H), 0.97 (d, j = 6.8 Hz, 3H), 13C NMR (101 MHz, DMSO) δ 176.3, 170.3, 170.2, 169.6, 161.9, 156.3, 147.0, 132.5, 130.4, 130.3, 127.9, 122.4, 122.0, 118.6, 117.5, 115.5, 63.6, 62.0, 56.7, 55.2, 48.8, 36.8, 31.8, 31.0, 28.0, 20.9, 18.9; HRMS (ESI-TOF) m/z calc for C32H31N12O12S2 (M + H)+ 712.3670; found 712.3647.

REFERENCES