MORAL HAZARD: HOW THE NATIONAL FLOOD INSURANCE PROGRAM IS LIMITING RISK REDUCTION

by

Kevin T. Starbuck

December 2016

Thesis Advisor: Glen Woodbury
Second Reader: Christopher Bellavita

Approved for public release. Distribution is unlimited.
THIS PAGE INTENTIONALLY LEFT BLANK
MORAL HAZARD: HOW THE NATIONAL FLOOD INSURANCE PROGRAM IS LIMITING RISK REDUCTION

Kevin T. Starbuck

Naval Postgraduate School
Monterey, CA 93943-5000

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government. IRB protocol number N/A.

Approved for public release. Distribution is unlimited.

Moral hazard occurs when people do not assume the full risk of an action or decision; they are not inclined to make a fully responsible or moral choice. Over the course of the last half-century, federal government involvement in providing disaster assistance has greatly expanded. With this expansion, many believe that in providing disaster assistance, the federal involvement limits risk reduction and contributes to the rise of a moral hazard.

Flooding and flood-related hazards are the most prominent and significant hazards in the United States, accounting for the highest percentage of major disaster declarations and direct economic losses. The National Flood Insurance Program (NFIP) aims to reduce the impact of flooding through hazard identification and risk assessment, floodplain management, and flood insurance.

A study of the NFIP concludes that aspects of the program limit risk reduction, specifically the continued coverage of repetitive loss properties and use of subsidies to desensitize risk. Furthermore, the long-term sustainment and resilience of the program are compromised by failures of policymakers to adjust for catastrophic losses. Identification of these issues provides a framework for consideration of the unintended consequences of federal government involvement in providing disaster assistance.
THIS PAGE INTENTIONALLY LEFT BLANK
MORAL HAZARD: HOW THE NATIONAL FLOOD INSURANCE PROGRAM IS LIMITING RISK REDUCTION

Kevin T. Starbuck
Emergency Management Coordinator, Amarillo/Potter/Randall Office of Emergency Management, City of Amarillo, Texas
B.S., University of North Texas, 1996

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF ARTS IN SECURITY STUDIES (HOMELAND SECURITY AND DEFENSE)

from the

NAVAL POSTGRADUATE SCHOOL
December 2016

Approved by: Glen Woodbury
Thesis Advisor

Christopher Bellavita
Second Reader

Erik Dahl
Associate Chair of Instruction
Department of National Security Affairs
ABSTRACT

Moral hazard occurs when people do not assume the full risk of an action or decision; they are not inclined to make a fully responsible or moral choice. Over the course of the last half-century, federal government involvement in providing disaster assistance has greatly expanded. With this expansion, many believe that in providing disaster assistance, the federal involvement limits risk reduction and contributes to the rise of a moral hazard.

Flooding and flood-related hazards are the most prominent and significant hazards in the United States, accounting for the highest percentage of major disaster declarations and direct economic losses. The National Flood Insurance Program (NFIP) aims to reduce the impact of flooding through hazard identification and risk assessment, floodplain management, and flood insurance.

A study of the NFIP concludes that aspects of the program limit risk reduction, specifically the continued coverage of repetitive loss properties and use of subsidies to desensitize risk. Furthermore, the long-term sustainment and resilience of the program are compromised by failures of policymakers to adjust for catastrophic losses. Identification of these issues provides a framework for consideration of the unintended consequences of federal government involvement in providing disaster assistance.
TABLE OF CONTENTS

I. INTRODUCTION ..1
 A. RESEARCH QUESTIONS ...1
 B. PROBLEM STATEMENT ...1
 C. LITERATURE REVIEW ...4
 1. The Concept of Moral Hazard..5
 2. Origins of Moral Hazard...6
 3. The Relation of Moral Hazard to Disaster Recovery8
 4. Federal Disaster Recovery Contributing to Moral Hazard9
 5. Federal Intervention through the NFIP.................................11
 D. RESEARCH DESIGN ...12
 1. Object of Study...12
 2. Study Limitations ...13
 3. Instrumentation (Data and Evidence)..13
 4. Steps of Analysis...13
 5. Intended Output...14
 E. THESIS CHAPTER OUTLINE ...14

II. A STUDY OF FEDERAL INVOLVEMENT IN FLOOD ASSISTANCE17
 A. THE EVOLUTION OF FEDERAL INVOLVEMENT IN FLOODING ...19
 B. THE NATIONAL FLOOD INSURANCE PROGRAM23
 1. Flood Hazard Identification and Risk Assessment23
 2. Floodplain Management..27
 3. Community Rating System..31
 4. Flood Insurance...32
 5. Mitigation Programs as an Extension of the NFIP38
 C. SUMMARY OF LEGISLATIVE ADJUSTMENTS TO THE NFIP40
 1. Flood Disaster Protection Act of 1973.................................41
 3. Flood Insurance Reform Act of 200442
 4. The Biggert-Waters Flood Insurance Reform Act of 201243
 5. Homeowner Flood Insurance Affordability Act of 201445
 D. CHAPTER SUMMARY ..46

III. DOES THE NFIP LIMIT RISK REDUCTION?49
 A. REPETITIVE LOSS PROPERTIES ..49
LIST OF FIGURES

Figure 1. Major Disaster Declarations, 1953–2015 ...18
Figure 2. Flood Insurance Rate Map from Harris County, Texas..24
Figure 3. Flood Insurance Loss Claims (1978–2015), Total Claims versus Repetitive Loss Claims ...53
Figure 4. Flood Insurance Loss Dollars Paid (1978–2015), Total Losses versus Repetitive Losses ..53
Figure 5. Diagram Depicting the Cause and Effect Relationship between Significant Flood Disasters and the Resulting Legislation ..62
Figure 6. Flood Insurance Loss Claims (1978–2015) Total Claims versus Significant Event Claims ..63
Figure 7. Flood Insurance Loss Dollars Paid (1978–2015) Totals Losses versus Significant Event Losses ...64
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>NFIP Flood Insurance Coverage Limits</td>
<td>34</td>
</tr>
<tr>
<td>Table 2</td>
<td>Repetitive Losses Claims and Payments (1978–2015)</td>
<td>38</td>
</tr>
<tr>
<td>Table 3</td>
<td>FEMA Disaster Declarations (1953–2015)</td>
<td>78</td>
</tr>
<tr>
<td>Table 4</td>
<td>High-Risk Flood Areas</td>
<td>81</td>
</tr>
<tr>
<td>Table 5</td>
<td>Moderate to Low Risk Flood Areas</td>
<td>82</td>
</tr>
<tr>
<td>Table 6</td>
<td>NFIP Losses and Claims (Comparison of Totals versus Repetitive Loss)</td>
<td>83</td>
</tr>
<tr>
<td>Table 7</td>
<td>NFIP Losses and Claims (Comparison of Totals versus Significant Events)</td>
<td>85</td>
</tr>
<tr>
<td>Table 8</td>
<td>FEMA Significant Flood Events</td>
<td>87</td>
</tr>
</tbody>
</table>
LIST OF ACRONYMS AND ABBREVIATIONS

BFE base flood elevation (The elevation of surface water resulting from a flood that has a one percent chance of equaling of exceeding in any given year; sometimes referred to as the 100-year flood elevation.)

BW-12 Biggert-Waters Flood Insurance Reform Act of 2012

CAC community assistance contact

CAV community assistance visit

CRMA Climate Resilient Mitigation Grant

CRS Community Rating System

DRF disaster recovery fund

FEMA Federal Emergency Management Agency

FIRM Flood Insurance Rate Map

FIS flood insurance study/survey

FMA Flood Management Assistance grant program

FMAG Fire Management Assistance Grants

FY fiscal year

GAO U.S. Government Accountability Office

HFIAA Homeowner Flood Insurance Affordability Act of 2014

HMGP Hazard Mitigation Grant Program

ICC increased cost of compliance (additional NFIP flood insurance coverage that covers structural improvements to bring a property into compliance with floodplain management requirements)

NFIF National Flood Insurance Fund

NFIP National Flood Insurance Program

PDM Pre-Disaster Mitigation Grant Program

PRP Preferred Risk Policy (NFIP flood insurance policies for moderate to low hazard zones (zones B, C, and X))

RL repetitive loss

SFHA Special Flood Hazard Area (the SFHA is comprised of high hazard zones (zones A and V))

SFIP standard flood insurance policy

WYO Write Your Own (NFIP)
<table>
<thead>
<tr>
<th>U.S.</th>
<th>United States</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-year flood</td>
<td>Definition of a flood that statistically has a one percent chance of occurring in any given year; alternatively referred to as the base flood event</td>
</tr>
<tr>
<td>500-year flood</td>
<td>Definition of a flood that statistically has a 0.2 percent chance of occurring in any given year</td>
</tr>
</tbody>
</table>
EXECUTIVE SUMMARY

Moral hazard is a concept that originated in the early insurance industry with broad application in economics, law, and policy debate. Moral hazard is defined as when people do not assume the full risk of an action or decision; people are not inclined to make a fully responsible or moral choice; how the redistribution of risk changes people’s behavior.¹ Many commentators have asserted that government involvement in providing disaster assistance contributes to the rise of a moral hazard, thus limiting the incentive of people to reduce risk.² This thesis seeks to explore how federal involvement in providing disaster assistance limits risk reduction and contributes to the rise of a moral hazard through a study of the National Flood Insurance Program (NFIP).

Flooding and flood-related hazards are the most prominent and significant hazards in the United States and account for the highest percentage of major disaster declarations and direct economic losses. The NFIP was created as a mitigation program with the goal of preventing future loss of life and property from the hazard of flooding. The NFIP consists of three main elements that include flood hazard identification and risk assessment, floodplain management, and flood insurance. As provided by Federal Emergency Management Agency (FEMA), “overall, the program reduces the socio-economic impact of disasters by promoting the purchase and retention of general risk insurance, but also of flood insurance, specifically.”³

While the NFIP has generally remained fiscally solvent for much of its history, the catastrophic losses associated with the impacts of 2004, 2005, 2008, and 2012 hurricane seasons have generated $24 billion in debt to the U.S. Treasury and revenue is

unlikely to cover future catastrophic losses or repay the billions of dollars in debt.\(^4\)

Analysis of NFIP program elements that permit repetitive loss and provide flood insurance subsidies underscore policies to limit risk reduction. Furthermore, failures by policymakers to structure the NFIP for catastrophic losses constrains the sustainability of the program.

In participating communities, the NFIP offers structural and content flood insurance coverages, with regulators identifying repetitive losses as a significant concern. FEMA data indicates that from 1978 through 2015, 3.8 percent of policyholders have filed for repetitive losses, accounting for a disproportionate 35.5 percent of flood loss claims and 30.5 percent of claim payments.\(^5\) FEMA estimates that 90 percent of repetitive loss properties receive pre-flood insurance rate map (FIRM) or grandfathered subsidies.\(^6\) Moreover, NFIP policies specifically prevent FEMA from refusing coverage to any policyholder, and FEMA cannot compel property owners to mitigate losses or impose actuarial rates on repetitive loss properties as a penalty.\(^7\)

The majority of flood insurance policies are based on full-risk rates established through FEMA’s annual NFIP actuarial rate review. However, approximately 20 percent of policies are based on pre-FIRM subsidized or grandfathered insurance rates and pay 40 to 45 percent of the full-risk premium needed to fund the long-term expectation of loss.\(^8\) Congress authorized the use of subsidized flood insurance rates to encourage participation and prohibits unfairly penalizing homeowners who built before the

\(^7\) Ibid., 18.

participation and prohibits unfairly penalizing homeowners who built before the government completed the assessment of flood risk.9 NFIP policies exempt pre-FIRM properties from compliance with floodplain management regulations unless they are substantially damaged or undergo substantial improvement.10 The continued coverage of repetitive loss properties and the subsidizing of flood insurance policies represents one of the clearest and most obvious indicators of the NFIP limiting risk reduction and contributing to the rise of a moral hazard.

The NFIP is not structured to withstand claims and losses associated with catastrophic flood events; it relies on the borrowing authority with the U.S. Treasury to cover excessive losses.11 Significant loss events currently average 64 percent of claims and 84 percent of losses for the NFIP. The impact of significant loss events is clearly a threat to the long-term sustainment of the NFIP. Policymakers must address the fiscal challenges facing the program, placing it on a sounder financial framework to allow for improved management of the program when faced with significant loss events. The shortcomings of policymakers in addressing the sustainment of the NFIP presents a parallel argument that there is moral hazard in the current policymaking environment. It can be argued that when policymakers limit the sustainability of the NFIP to historical average losses versus catastrophic losses, they fail to provide for the long-term resilience of the program.

In conclusion, aspects of the NFIP limit risk reduction and contribute to the rise of a moral hazard. Specifically, NFIP policies that support continued coverage of repetitive loss, use of subsidies to desensitize risk, and failure to adjust for catastrophic losses all impact the sustainability and resilience of the program. These findings have important consequences for the broader domain of evaluating the unintended consequences of

10 “Substantial Damages and Substantial Improvements,” YouTube video, posted by Gary Taylor, October 15, 2014, https://www.youtube.com/watch?v=Wt3lMwCRhd0&list=PLADFiMUo5Nk7ajNQxa8N5s9Gl1J4gRrsZ&index=3.

federal involvement in providing disaster assistance. While there is an imperative for the
government to provide assistance in time of crisis, it is important to evaluate the how that
assistance may change behavior; policies designed to limit risk may be actually prolong
or increase risk.
ACKNOWLEDGMENTS

For from Him and through Him and to Him are all things. To Him be the glory forever! Amen.

—Romans 11:36

To my wife and sons, I am humbled and eternally grateful for the support, patience, and understanding given to me in the pursuit of this endeavor ... you are my pride and joy! To the faculty and staff of the Naval Postgraduate School Center for Homeland Defense and Security, thank you for your dedication and perseverance in shaping tomorrow’s homeland security leaders. To my cohorts in 1503/1504 … no better colleagues and friends could I ask for; I am blessed and honored to stand in your company. To my supervisors, co-workers, and mentors, thank you for the support and encouragement to further my education and knowledge.

If I have seen farther than others, it is by standing upon the shoulders of giants.

—Sir Isaac Newton;
NPS Cohorts 1503/1504 Dedication
I. INTRODUCTION

A. RESEARCH QUESTIONS

To what extent is the National Flood Insurance Program (NFIP) limiting risk reduction behavior?

What does this tell us about how federal government involvement in disaster assistance might be contributing to the rise of a moral hazard?

B. PROBLEM STATEMENT

Over the course of the last half century, the federal government has undertaken an ever-increasing role in providing disaster assistance. A review of our history shows that federal intervention in disaster recovery before the Great Depression was essentially non-existent and consisted mainly of expressions of sympathy but little financial aid.¹ Since that time, federal involvement in financing recovery has increased to absorbing approximately 60 percent of recovery costs.² Has the trend of greater federal involvement in disaster assistance given rise to a moral hazard that has resulted in a disincentive to minimize risk?

Moral hazard is a term adopted by the insurance industry. It refers to how the redistribution of risk changes a person’s behavior. When people do not assume the full risk of an action or decision, they are not inclined to make a fully responsible or moral choice.³ Related to federal involvement in disaster assistance, moral hazard occurs when the public expects the government to intervene to provide recovery from the disaster, regardless of whether they have implemented strategies to minimize risk. As Supreme Court Justice Antonin Scalia opined, “The governmentalization of charity affects not just

the donor, but also the recipient… The transformation of charity into legal entitlement has produced donors without love and recipients without gratitude.”

Justice Scalia’s viewpoint of how charity is negatively affected when it is institutionalized clearly reflects his Protestant ethics.

In an article for *Homeland Security Affairs*, Naomi Zack presents a counter-application of government’s role in disasters based on the social contract theory. She states:

> If property is privately owned or owned by the local community, government does not owe restitution to citizens who have lost their property or had it destroyed. But as part of government’s benevolence, it is appropriate that it offer some compensation in those cases, much as a good neighbor might.5

She further expounds that according to Rousseau’s principle of *common good*, “part of government is to further what is good for society as a whole, in ways that are not necessarily decided by majority rule, or that amount to the greatest well-being of the greatest number.”6 Theories such as these present a view that emergency preparedness is a fundamental obligation of government that should motivate new policies.7 The question remains though, has disaster recovery, once the domain of charity, become an entitlement for people with little emphasis on personal responsibility or is it a fundamental obligation of government?

The role that expanded federal disaster assistance plays in creating a moral hazard may best be displayed through the NFIP. According to Hayes and Neal, “Floods have been, and continue to be, the nation’s most destructive natural hazard in terms of

6 Ibid.

7 Ibid.
economic loss and life-threatening events."8 From 1978 through 2015, the NFIP has provided total payments of more than $52 billion, and repeat losses accounted for a third of NFIP flood insurance payments.9

The National Flood Insurance Act of 1968 was designed to establish a comprehensive risk management program to:

1. reduce suffering and economic losses due to floods through the purchase of flood insurance;
2. promote state and local land-use controls to guide development away from flood-prone areas; and
3. reduce federal expenditures for disaster assistance and flood control.10

As Rawle King states, “The NFIP does not operate on the traditional insurance definition of fiscal solvency.”11 This is largely based on the NFIP providing insurance subsidies and grandfathered rates for properties that were constructed prior to the assessment of risk. In the event that premium and investment income is inadequate, the NFIP borrows funds from the U.S. Treasury to cover the losses with clauses for repayment.

The long-term fiscal soundness of the NFIP is questionable, mainly due to extensive flood insurance claims associated with the hurricane impacts in the mid-2000s, especially hurricanes Katrina and Rita in 2005 and Sandy in 2012.12 As of December 31, 2014, FEMA owed the Treasury $23 billion.13 The Biggert-Waters Flood Insurance Reform Act of 2012 (BW-12) contained provisions to strengthen the solvency of the

11 Ibid., 7.

program by, among other things, phasing out almost all discounted premiums.14 However, political resolve to address financial shortcomings of the NFIP was short-lived; the passage of the Homeowner Flood Insurance Affordability Act of 2014 (HFIAA) reinstated a majority of subsidies on primary residences and slowed down rate increases for a majority of policies impacted by the reform provisions of BW-12.15

The NFIP is symbolic of decades of flawed national disaster policy that now focuses on maintaining the status quo rather than rebuilding to prevent the next disaster.16 As Joseph Scanlon points out,

\begin{quote}
If change is to happen, it must come quickly. As each day passes, support for dramatic action will weaken. That means that development plans must be ready before disaster strikes. A disaster is not just a calamity but an opportunity, and a manager who is prepared can use it to alter the public agenda.17
\end{quote}

\section*{C. LITERATURE REVIEW}

This thesis started with an exploration of the expansion of federal involvement in disaster recovery over the course of the last half century. The research introduced the concept of moral hazard and its application to disaster recovery. As applied in the disaster research, moral hazard is the expectation that government will provide recovery from the disaster, regardless of whether people have implemented risk reduction strategies. A further exploration of disaster research has identified that the concept of moral hazard has broad application as an inevitable byproduct of expanded government involvement in disaster recovery.

\begin{flushright}

\end{flushright}
While the concept of moral hazard resonates as a challenge to government involvement in disaster recovery, what is the extent of its impact on risk reduction behavior? Understanding the origins of the concept of moral hazard and its evolution as part of the lexicon of disaster research is key to further exploration of the issue.

1. The Concept of Moral Hazard

The origins of moral hazard are attributed to the early insurance industry, and aspects of the concept applied to economics, law, and policy debate. As provided within the insurance industry, when people do not assume the full risk of an action or decision, they are not inclined to make a fully responsible or moral choice. Economic literature expands on the concept, providing that the redistribution of risk changes people’s behavior; “the tendency for insurance against loss to reduce incentives to prevent or minimize the cost of loss.” Writing in the *Journal of Risk and Insurance*, Rowell and Connelly explain, “the term ‘moral hazard’ when interpreted literally has a strong rhetorical tone, which has been used by stakeholders to influence public attitudes to insurance.”

Some authors have taken the social responsibility aspects of the concept to task. In Tom Baker’s article “On the Genealogy of Moral Hazard,” he explores the concept of moral hazard as an analytical tool applied to social responsibility questions. He asks, “To what extent are those that suffer responsible for their condition?” Baker also asks, “What obligations do we have to prevent or alleviate the suffering of others?”

Baker highlights in an editorial by James Glassman, who states, “What moral hazard means is that, if you cushion the consequences of bad behavior, then you encourage that bad behavior. The lesson of moral hazard is that less is more.”

22 Ibid.
Economist-politician Dick Armey further described this concept as “social responsibility is a euphemism for personal irresponsibility.” These types of arguments serve as the basis that behavior is negatively changed through the transfer of risk from one party to another.

As summarized by Baker, the conventional argument has been that “moral hazard signifies the perverse consequences of well-intentioned efforts to share the burdens of life, and it also helps deny that refusing to share those burdens is mean-spirited or self-interested.” Baker continues with, “the real lesson of moral hazard should be that the world is a relational web and cannot be reduced to truisms.” Given that researchers have liberally applied the concept of moral hazard to federal government involvement in disaster recovery, is the application of the concept of moral hazard justified?

2. Origins of Moral Hazard

The origins of moral hazard can be traced back to the Victorian era dice game of “hazard,” which has evolved into the modern game of craps. As described by Baker, hazard was a popular game of chance in both England and the United States. The calculation of the odds of hazard resulted in Pascal’s theory of probability, which served as the basis for the early insurance enterprise. In the early nineteenth-century, scientists expanded on the doctrine of chance and hypothesized that observation of the past could predict the future for both moral and physical phenomena.

26 Ibid., 240.

The first references to moral hazard come from the nineteenth-century fire insurance trade, when insurers were concerned with an unwholesome mix of bad character and temptation that needed to be controlled. The term moral hazard first appeared in the *Practice of Fire Underwriting* written by Arthur C. Ducat in 1862. As the Late Secretary and Chief Surveyor for the Chicago Board of Underwriters, Ducat wrote,

> The remarks upon the subject of incendiarism, and the moral hazard, may seem, perhaps, of greater length than the subject would seem to warrant; but it is a subject of the greatest importance. There is no one hazard that insurance companies have to guard and contend against as great as this. No premium is adequate, in such-cases; and when the anxiety of a company to do business, or the thirst of an agent for his commission, is so great as to shut their eyes against the fact, inevitable ruin must sooner or later be the result.

As Ducat posits, an insurance policy should not be issued where morally questionable characteristics exist.

> Benjamin Hale notes, “talk of moral hazard has been around since as long as the modern insurance industry, which dates based as far as 1662.” For nineteenth-century insurers, moral hazard was applied to both the character of people and situations. For the insurance industry, the character of an individual plays a pivotal role in determining the chance that coverage would be needed. Furthermore, the insurance contracts need to be structured to remove the temptation to use the contract.

> As defined by Rowell and Connelly, “The essential idea was that the purchase of insurance encouraged moral hazard which could manifest as either (1) a deliberate act of fraud or (2) an act of carelessness.” To this day, the basic understanding of moral

34 Ibid., 11–12.
hazard remains virtually unchanged in the insurance industry, and morality remains a fundamental element in the process to determine insurability. The efforts to remove immorality from the insurance trade have played a key role in the transformation of the industry into the mass consumer enterprise that it is today.

Economists argue that market forces seek an optimized equilibrium and play a fundamental role in defining what is acceptable and not acceptable. For instance, economist Kenneth Arrow explains, “when the market fails to achieve an optimal state, society will, to some extent at least, recognize the gap, and nonmarket social institutions will arise attempting to bridge it.” He continues with, “The welfare case for insurance policies of all sorts is overwhelming. It follows that the government should undertake insurance in those cases where this market, for whatever reason, has failed to emerge.” Basically, Arrow argues that government may need to act when markets are unwilling, regardless of the potential moral hazard implications that are assumed. Arrow summarizes these arguments by stating, “the preference for redistribution expressed in government taxation and expenditure policies and private charity can be reinterpreted as desire for insurance.” In essence, the government should consider intervention where the market is unwilling to provide for the societal type of insurance. The economist’s viewpoint of moral hazard is more closely aligned with the work of Naomi Zack on disaster ethics and the emergence of a second social contract.

3. The Relation of Moral Hazard to Disaster Recovery

The concept of moral hazard was born out of the insurance industry as a component to ensure the soundness of the insurance transaction. Morality plays a key role in determining insurability as a protection for the insurance provider against chance. These concepts remain in the insurance trade, as noted in an Aetna Guide: “excluding

39 Ibid., 241.
41 Ibid., 961.
42 Ibid., 947.
morally hazardous applicants and structuring the insurance contract so that no one could make a gain through an insured loss.”43 Moral hazard within the insurance industry is based on the notion that redistribution of risk changes a person’s behavior.

Government disaster recovery programs are designed as an extension of or supplement to private insurance.44 So it is no surprise that the application of moral hazard concepts in disaster recovery aligns with the interpretations of the insurance industry. While many commentators have argued that current federal disaster recovery programs are entitlements that have created a moral hazard, Carolyn Kousky and Leonard Shabman do not believe the evidence of moral hazard in recovery programs for individuals and households is compelling.45 In an article for the Natural Hazards Observer, they argue that federal aid programs are not enough to cover losses from severe damage.46 However, they do allow that these counter indicators to moral hazard are limited to specific assistance programs.

4. Federal Disaster Recovery Contributing to Moral Hazard

“Where is my FEMA debit card?” became a humorless punchline for disaster relief workers in the aftermath of Hurricane Katrina and the subsequent response to Hurricane Rita. As an assistance measure to displaced individuals, FEMA initiated a $2 billion program to provide $2,000 debit cards to those evacuated from the Gulf Coast.47 The program was rife with fraud and abuse. While FEMA acknowledged that it was a pilot program and did not work, Congressional members quickly pounced, referring to the program as a “cash cow.”48

45 Kousky and Shabman, “The Hazard of the Moral Hazard—Or Not.”
46 Ibid.
48 Ibid.
Has the expansion of federal disaster recovery programs contributed to the rise of moral hazard (the assumption that government will take care of recovery)? General Russell Honoré was the U.S. Army officer tasked by President Bush to respond to the failures in New Orleans following Hurricane Katrina. As remarked by General Honoré, every dollar we commit to mitigation and preparedness equates to seven to nine dollars we will spend on response and recovery.49

In an article for the Nelson A. Rockefeller Institute of Government, James Fossett argues that the government needs to stop improvising disaster recovery programs. Fossett acknowledged that response to Hurricane Sandy showed significant improvement over the immediate response of Hurricane Katrina. However, the long-term recovery process, starting with how the federal government financed the recovery assistance, remained improvised and fragmented.50 The supplemental appropriation process used by the federal government to fund the Disaster Recovery Fund (DRF) for Hurricane Sandy required state and local jurisdictions to deal with multiple federal agencies separately, and this fragmented recovery efforts.51 Also, the supplemental appropriations requiring congressional approval resulted in politics, which delayed assistance. Due to the ongoing deficit reduction debate, supplemental appropriations for Hurricane Sandy were delayed by several months.52 The resulting impact was that initial flood insurance program payouts were underpaid. In the interim, some assistance was provided to property owners through other programs. As the political stalemate was resolved, FEMA reopened cases to give an opportunity for additional flood insurance payments for Hurricane Sandy

51 Ibid.

52 Ibid.
claims, but the delay had already frustrated many policyholders. As Scanlon has described, disasters present a chance to alter the public agenda with timely, dramatic action to mitigate the next disaster; otherwise, we are destined to return to the status quo.

Since the 1950s, the federal government’s role in providing disaster assistance has continued to increase, and it has supplanted charity in this domain. With this expanded role, government policies should be formulated to provide rapid assistance and promote the opportunity to mitigate against the next disaster.

5. Federal Intervention through the NFIP

Aspects of the NFIP provide an example of federal policy contributing to moral hazard and limiting the reduction of risk. The NFIP was created to provide coverage to those that private insurance companies would not insure due to the level of risk. The NFIP includes requirements for communities to meet federal standards for floodplain management, but enforcement of requirements is lax. In addition, repetitive losses account for the disproportionate percentage of NFIP claims. As characterized in the 2011 NFIP Actuarial Rate Review, the NFIP is preferable to disaster relief as premiums fund at least part of disaster recovery from flood damage.

Following significant payouts for insurance claims to the hurricane impacts in the late-2000s, especially Hurricanes Katrina and Rita in 2005 and Sandy in 2012, the NFIP is on the verge of fiscal collapse. While Congress acted to shore up the NFIP’s financial issues through BW-12, outcry from constituents resulted in the repeal of those policies with the HFIAA. The implementation of these two pieces of legislation illustrates the dynamic political environment surrounding government involvement in disaster recovery. In The Dictator’s Handbook, Bruce Bueno de Mesquita and Alastair Smith describe,

55 Hayes and Neal, NFIP Actuarial Rate Review, 4.
The rules governing how people rule inevitably divorce what policies politicians really desire from what they say and do. Not that we doubt that politicians hold sincere views of good and bad public policy—rather those views are not terribly important and, besides, there are few ways to tell the difference between declarations based on opportunistic political expediency and true beliefs.56

The application of moral hazard to federal involvement in disaster recovery shares similarities with the interpretations of moral hazard from insurance. Although disaster assistance was once the sole domain of charitable organizations, it has now largely become a function of the government. As federal involvement in disaster assistance has expanded, the incentives to reduce risk are minimized. As risk is transferred from the individual to the government, the incentive for people to engage in meaningful activities to mitigate or prevent risk has waned. Furthermore, the impact of moral hazard has contributed to increased and repetitive disaster losses with increasing recovery costs falling on government.

D. RESEARCH DESIGN

This thesis seeks to explore how federal government’s involvement in disaster assistance might contribute to the rise of a moral hazard through a case study of the NFIP. Focus is on the NFIP to identify aspects of the program that may limit risk reduction behavior. NFIP data on claims and costs serve as the primary instrumentation to evaluate potential impacts of program policies and identify findings for application to the broader scope of government disaster assistance programs.

1. Object of Study

The NFIP serves as the subject of a case study to identify aspects of the program that limit risk reduction behavior and contribute to the rise of a moral hazard. Findings from the case study are considered against the broader spectrum of expanded federal government involvement in providing disaster assistance.

2. Study Limitations

A review of disaster research indicates the assumption of moral hazard related to federal government involvement in providing disaster assistance. For this case study, the theory of moral hazard and its application to limiting risk reduction behavior is considered valid. However, this researcher recognizes that this study may also show that moral hazard related to government involvement in providing assistance is a minor issue. While it is understood that other federal government disaster assistance programs may contribute to limiting risk reduction behavior and giving rise to moral hazard, the case study confines itself to an exploration of the NFIP.

3. Instrumentation (Data and Evidence)

The study reviews the origins of moral hazard and the application of the theory of moral hazard to government involvement in disaster assistance to provide a baseline. The NFIP serves as the case study of how government assistance can limit risk reduction behavior. Moreover, NFIP issues related to repetitive loss, program subsidies, and significant loss events are used as instrumentation to demonstrate how government assistance contributes to limiting risk reduction and giving rise to a moral hazard. Finally, data from the NFIP on claims, costs, and significant loss events provide evidence of programmatic elements impacting risk reduction behavior.

4. Steps of Analysis

As defined by Robert Yin in *Case Study Research: Design and Methods*, the case study is structured around five components: the study’s question, its propositions, its units of analysis, the logic linking the data to the propositions, and the criteria for interpreting the findings. This case study is a qualitative exploratory theory-building analysis of how the NFIP has contributed to limiting risk reduction behavior and given rise to a moral hazard. Claim and cost data from the NFIP serves as the unit of analysis to link expanded involvement by the federal government in disaster assistance to the rise of moral hazard.

While disaster research has largely accepted the theory of moral hazard related to government involvement in disaster assistance, it is recognized that the theory may not apply to the case study. The study looks for other contributing factors that are related to failures to provide long-term mitigation of flood hazards to determine what role the NFIP may or may not play in the rise of moral hazard.

5. **Intended Output**

The study seeks to provide a deeper understanding of how expanded federal involvement in disaster assistance contributes to the increase of moral hazard through a case study of the NFIP. From this case study, generalizations can be drawn to other government disaster assistance programs. This provides a better understanding of how federal intervention in disaster assistance can create the unintended consequence of moral hazard.

E. **THESIS CHAPTER OUTLINE**

Chapter I introduces the research questions to look at how federal involvement in providing disaster assistance limits risk reduction behavior, and it examines the NFIP as an exemplary example to study. Additionally, the chapter provides the problem statement, literature review, and research design as an introduction to the thesis.

Chapter II explores the evolution of federal involvement in providing flood assistance. This chapter includes a summary of the current NFIP related to the three primary program elements of flood hazard identification and risk assessment, floodplain management, and flood insurance. The chapter also includes a summary of significant legislative adjustments that have been implemented to address shortcomings in the NFIP.

Chapter III focuses on addressing the question of does the NFIP limit risk reduction? This chapter explores the NFIP through the issues of repetitive loss properties, the continued use of flood insurance subsidies, and significant flood events as contributing factors to the program limiting risk reduction.

The final chapter, Chapter IV, summarizes the findings associated with the study of the NFIP and seeks to apply them to the research questions. Also, the chapter aims to
apply the concepts presented against the broader spectrum of expanded federal involvement in providing disaster assistance limiting risk reduction.
II. A STUDY OF FEDERAL INVOLVEMENT IN FLOOD ASSISTANCE

Drabek defines disaster as,

Accidental or uncontrollable events, actual or threatened, that are “concentrated in time and space, in which a society, or a relatively self-sufficient subdivision of society, undergoes severe danger and incurs such losses to its members and physical appurtenances that the social structure is disrupted and the fulfillment of all or some of the essential functions of society is prevented.”58

Emergency management has long had a focus on natural hazards as the primary large-scale threat to populations across the globe. At the core of this threat is the hazard of flooding. Whether the impact to a community comes from flash flooding caused by a severe thunderstorm, storm surge from a tropical storm system, or riverine flooding from heavy rains, the destructive power of hydrological hazards has challenged community planners and emergency management doctrine since its inception.

A review of disaster declaration data from FEMA supports these assertions. From 1953 to 2015, natural hazards account for 99.6 percent of all major disaster declarations.59 Furthermore, the data shows that flooding or flood-related impacts account for 78.2 percent of all major disaster declarations for the same period (see Figure 1).60 An article by Melanie Gall et al. studied the trends of natural hazard losses in the United States and shows that “since the 1960s, nearly 85 percent of direct economic losses can be attributed to severe atmospheric and hydrological events.”61

60 Ibid.

Figure 1. Major Disaster Declarations, 1953–2015

62 Source: Federal Emergency Management Agency, “Disaster Declarations.” See Appendix A. Data is limited to major disaster declarations and excludes emergency declarations and fire management assistance grants.
The threat of natural hazards is not limited to the United States. In a journal article, David Strömberg notes, “between 1980 and 2004, two million people were killed and five billion people cumulatively affected by around 7,000 natural disasters... the direct economic damage from natural disasters between 1980 and 2004 is estimated at around $1 trillion.” Data also supports a trend of natural disasters, and specifically flooding, having a greater impact on populations—fueled by expanded development into areas at risk and the enhanced threat of flooding from climate change.

The data clearly demonstrates the prominence of weather-related hazards as the primary source of major disasters in the United States. In response to the impacts of natural hazards, federal government involvement in assisting with the impacts of major disasters has also continued to evolve and expand. Before the 1950s, federal government involvement in disasters was largely limited to expressions of sympathy that sometimes included token financial assistance. The task of response and recovery from disasters was left to local communities with states, churches, and volunteers providing support. The origins of expanded federal involvement in providing disaster assistance can be traced to massive flooding along the lower Mississippi River valley in 1927.

A. THE EVOLUTION OF FEDERAL INVOLVEMENT IN FLOODING

For much of our country’s history, implementation of measures to control flood waters was the responsibility of individual landowners and state and local governments. The federal government limited its early involvement to clearing obstructions and improving navigation through the U.S. Army Corps of Engineers. However, the role of the federal government was forever changed with major flooding along the lower Mississippi River Valley in the 1920s and 1930s.

64 Platt, *Disasters and Democracy*, 137.

66 Ibid.
Almost as soon as European settlers arrived in the lower Mississippi River Valley, they built levees in an attempt to prevent flooding. Levee construction was not a government-driven effort; rather, it was left to individual landowners along the river valley. The approach lacked comprehensive planning and standards of engineering and construction that resulted in a patchy and inadequate levee system from the upper midwest downstream to New Orleans. By the late 1850s, settlers in Louisiana, Mississippi, and Arkansas had constructed 2,000 miles of levees on both shores of the river to protect the lower Mississippi River Valley. The flood of 1858–1859 showed these efforts to be inadequate as many levees failed, causing extensive flooding in the region. Following the Civil War, levee construction became the responsibility of local boards with taxing authority to raise funds for flood control projects. However, this funding proved to be inadequate as floods continued to destroy river-control efforts, and there were major overflows in 1874, 1882, 1883, 1884, 1890, 1897, 1903, 1912, and 1913. With insufficient flood control funding and the need to understand the river’s hydraulics, landowners began to turn to the federal government for assistance.

In the winter of 1927, persistent heavy rains along the tributaries of the Mississippi caused flooding in Oklahoma, Kansas, Illinois, and Kentucky. By mid-April, the initial flooding of the tributaries combined with record rain across Missouri, Illinois, Arkansas, Mississippi, Texas, and Louisiana. It created what Secretary of Commerce Herbert Hoover called “the greatest disaster of peace times in our history” as flooding had dramatic impacts across the entirety of the lower Mississippi River Valley. The flood overwhelmed the levee system throughout the lower Mississippi River Valley,

67 Ibid.
68 Ibid.
69 Ibid.
71 O’Brien, “Making the Mississippi River.”
flooded 23,000 square miles, forcing 700,000 people from their homes, and destroying an estimated $400 million worth of property.74 The influence of a disaster to affect politics is highlighted when President Coolidge chose to do nothing to assist states and communities impacted by the massive flooding.75 Then Secretary of Commerce Herbert Hoover chaired a special committee to handle the disaster and used the position to garner the publicity that led to his nomination as the 1928 Republican nominee for the presidency.76

Major riverine floods resulted in the passage of several flood control acts that expand federal involvement in structural flood-control projects, such as the construction of dams and levees, to protect life and property.77 Even so, disaster assistance to flood victims remained limited. Despite billions of dollars in federal investments for structural flood-control projects, the impacts on lives and property losses from floods continued to increase.

Historically, the catastrophic nature of flooding limits the ability to develop a rate structure that adequately reflects the full-risk to flood-prone properties.78 Based on this issue, by the 1950s a private insurance market that could profitably provide flood insurance at an affordable price did not emerge. As highlighted in \textit{Disasters and Democracy},

\begin{quote}
Flood zoning, like almost all that is virtuous, has great verbal support, but almost nothing has been done about it. A few local governments have restricted the use of low-lying lands, but not enough for us to point to any substantial amount of experience or any great degree of progress.79
\end{quote}

74 O’Brien, “Making the Mississippi River.”
75 Ambrose, “Man vs. Nature.”
76 Ibid.
79 Platt, \textit{Disasters and Democracy}, 210–212.
These issues led to the development of initial proposals for the federal government to provide flood insurance. While not implemented by Congress at the time, it did introduce the concept of federal government support of a flood insurance program.

In 1965, Hurricane Betsy devastated the southeastern United States; this resulted in Congress passing the Southeast Hurricane Disaster Relief Act. The legislation began to redefine federal policies and approaches to flood control, including providing direct financial assistance to flood victims and authorizing a feasibility study of a national flood insurance program. Based on the information from the feasibility study, a task force was formed to advocate for flood control within the context of floodplain development based on the following five major goals:

- Improve basic knowledge about flood hazards;
- Coordinate and plan new development in the floodplain;
- Provide technical services;
- Move toward a practical national program of flood insurance; and
- Adjust federal flood control policy to sound criteria and changing needs.

The combination of the feasibility study and task force report provided the basis for the National Flood Insurance Act of 1968. Expanding on the previously established goals of the task force, the legislation established the NFIP with the purpose of:

- Better indemnify individuals for flood losses through insurance;
- Reduce future flood damages through State and community floodplain management regulations; and
- Reduce Federal expenditures for disaster assistance and flood control.

B. THE NATIONAL FLOOD INSURANCE PROGRAM

The NFIP is designed as a mitigation program with the underlying goal of reducing future loss of life and property from flooding. In Rawle King’s view, “Congress established the NFIP to address the nation’s flood exposure and challenges inherent in financing and managing flood risks in the private sector.” The NFIP consists of three main elements:

- Flood hazard identification and risk assessment: Creation of flood insurance rate maps to identify areas across the nation at risk of flooding;
- Floodplain management: Coordination with local communities to minimize the impact of flooding through floodplain management ordinances based on federally defined minimum standards; and
- Flood insurance: Creation of a federally subsidized insurance program that protects homes and businesses by providing a mechanism to pre-fund the risk from flood losses.

As stated by FEMA, “overall, the program reduces the socio-economic impact of disasters by promoting the purchase and retention of general risk insurance, but also of flood insurance, specifically.” While subsidized by the federal government, the program relies on partnerships with private insurance and servicing contractors. The program also encompasses public policy and relies on the cooperation with local communities to adopt and enforce standards. The following sections outline the NFIP components and highlight the legislative initiatives implemented to address shortcomings in the program.

1. Flood Hazard Identification and Risk Assessment

The NFIP establishes policies for the federal government to identify flood-prone areas and map zones at risk for flooding. The common tool for communicating risk to a

community and its residents is the FIRM,\(^{86}\) which identifies areas at risk of flooding (see Figure 2 for an example of a FIRM). On a FIRM, areas at risk for flooding are identified as special flood hazard areas (SFHA) that assist in the determination of requirements for flood insurance and establish a flood insurance rate. FIRMs also assist local officials with identifying locations within the community where floodplain management regulations are required to be implemented.

\(^{86}\) FIRMs are also referred to as flood maps.

An initial challenge to the NFIP was the need to develop flood insurance rate maps for all communities participating in the program. During the early implementation of the NFIP, while FIRMs were being drafted for communities at risk, an emergency program was established that used less detailed maps based on local information that estimated the risk. The emergency program was conceived as a temporary measure to increase participation in the NFIP. However, constant delays kept the program in place through the early 1980s. The delays in the establishment of FIRMs resulted in continued development in at-risk locations. Development that occurred during this timeframe was termed pre-FIRM and was grandfathered into the NFIP with eligibility for subsidized insurance rates not reflective of the level of risk. Properties that were grandfathered into the NFIP have expected losses five times that of properties developed by FIRM criteria. Losses related to pre-FIRM development continue to plague the NFIP and highlight the importance of establishing sound hazard identification and risk assessment information before implementation of floodplain management and flood insurance programs.

The federal government implementation of flood hazard identification and risk assessment is a multi-billion-dollar program that is administered by FEMA. Over 22,000 communities participate in the NFIP with ongoing efforts to modernize and update flood maps. These efforts are currently focused on digitizing map products to improve accessibility to the public. The mapping of flood risk is a dynamic process that must

The selected FIRM is Panel 290 of 1150 for Harris County, Texas (chosen for the areas extensive history of flooding and it includes the author’s childhood home). The FIRM depicts the floodway, 100-year flood zone (zone AE), and 500-year flood zone (zone X) for Cypress Creek located in northern Harris County. Note that some development is located in the floodway, 100-year flood zone, and 500-year flood zone.

89 Ibid.
continually be updated as communities’ experience population growth and development, methodologies of evaluation are improved, and changes in climate affect flood risk.

The process to issue or update a FIRM starts with a flood insurance survey (FIS). FEMA defines an FIS as “a compilation and presentation of flood risk data for specific watercourses, lakes, and coastal flood hazard areas within a community.” The FIS report contains detailed information on identified floodways and the base flood elevation based on a detailed hydrologic analysis. The base flood is defined as a flood that has a one percent chance of being equaled or exceeded in any given year, sometimes referred to as the 100-year flood standard. The base flood elevation is the primary mechanism to define the SFHA for at-risk zones within a community. Within the SFHA, properties purchased with federally backed or regulated lenders are required to purchase flood insurance through the NFIP. Also, participating communities in the NFIP are mandated to implement federally defined floodplain management standards in SFHA.

At-risk zones identified on FIRMs are based on the type of flood hazard and methodology used to establish the level of flood hazard. Within the SFHA, two types of high-hazard zones are identified, “A” and “V” zones. A zones are subject to inundation from the one percent base flood event. V zones are subject to wave action or storm surge, typically along coastal areas. Flood insurance prices vary by zone and the structural characteristics of the building, most notably the relative height of the lowest floor above the base flood elevation. The NFIP groups similar risks in flood zones and assigns properties located in the zone the same flood insurance rate. FIRMs also identify

95 Ibid.

96 Ibid.
moderate and low-risk zones. “B” or moderate risk zones are subject to inundation from
the 0.2 percent base flood event (sometimes referred to as the 500-year flood zone). “C”
or low-risk zones are areas where flood insurance is encouraged, but there are no
requirements for it. Also, the NFIP uses an “X” designator for moderate to low risk areas
where the flood hazard is undetermined. Appendix B lists each of the zones and
methodology used to define the zone under the NFIP.

The flood hazard identification and risk assessment capability developed as part
of the NFIP serves as a critical component to communicate flood risk to communities and
establish flood insurance rates for participants. Ongoing efforts on the part of FEMA
continue to update and modernize the flood-risk information to make it more accessible
to the public and improve the accuracy of FIRMs. Information developed out of the flood
hazard identification and risk assessment process serves as the basis for identifying
locations within a community that are subject to the requirements of the NFIP related
current. Both of these elements will be explored in the following sections.

2. Floodplain Management

One of the goals of the NFIP is to reduce the losses and damages caused by
flooding. The primary method used to accomplish this goal is the establishment of
floodplain management standards designed to mitigate the flood hazard. Floodplain
management standards apply the base flood elevation as the minimum elevation that the
lowest level must be set at or above for all new or substantially improved development.97
The intent of this standard is not to prohibit development, but rather to ensure that
development is constructed in such a way as to be protected from a base flood event.
Also, floodplain management standards require that management of new developments
not to increase the flood hazard within an area.

For a community to participate in the NFIP, it must adopt floodplain management ordinances adhering to the minimum standards established at the federal level. The ordinances must apply to all development that might take place in identified SFHA depicted on a FIRM. Development is not merely the construction or modification of buildings but includes the construction of bridges, roads, levees, water treatment facilities, and modifications to land. Any development in an SFHA must be permitted by the local community, with elevation certifications issued by a licensed surveyor or engineer, thus ensuring that development will not be damaged by a base flood event or increase the flood risk in the area.

As identified, pre-FIRM development is a substantial challenge to the NFIP due to the grandfathered status of property developed before the establishment of the base flood elevation. While pre-FIRM development remains a challenge, the NFIP seeks to address pre-FIRM issues through requirements for those properties to come into compliance with floodplain management regulations anytime a pre-FIRM development undergoes substantial improvement or suffers substantial damage. Substantial improvement or substantial damage is based on changes or repairs made to a structure that results in the improvement or repair cost exceeding 50 percent of the market value of the development. While there are exemptions and variances can be requested, the general rule is that the structure must come into compliance with floodplain management requirements. These compliance requirements represent an ongoing effort of the NFIP to address early implementation issues.

The base flood elevation is established based on the 100-year flood standard (i.e., a one percent chance of a flood event for any given year). Since the program’s inception,

98 “Local Floodplain Development Regulations,” YouTube video, posted by Gary Taylor, October 15, 2014, https://www.youtube.com/watch?v=o4EJ4qrrkK0&list=PLADFiMUo5Nk7ajNQxa8N5s9G1IJ4gRrsZ&index=1.

100 “Substantial Damages and Substantial Improvements,” YouTube video, posted by Gary Taylor, October 15, 2014, https://www.youtube.com/watch?v=Wt3lMwCRhd0&list=PLADFiMUo5Nk7ajNQxa8N5s9G1IJ4gRrsZ&index=3.
the NFIP has used the 100-year standard as a reasonable level of protection without imposing overly stringent requirements or create excessive costs for property owners.101 Over the course of the NFIP, critics have questioned if the 100-year standard remained appropriate in light of continued losses due to flooding. Both in 1976 and 1983, the federal government commissioned studies of the 100-year standard to determine its continued appropriateness as the minimum standard within the NFIP.102 The studies’ findings led to the continued use of the 100-year standard.103

Regardless, questions remain over whether the 100-year base flood elevation standard is sufficient to mitigate the impact of flooding. On January 30, 2015, President Barack Obama issued an amendment to executive order 11988 originally published in 1977 (floodplain management), to establish a more conservative flood-risk reduction standard for federally funded projects as part of \textit{The President’s Climate Action Plan}.104 The revised standard provides three methodologies for establishing a modified flood risk elevation:

\begin{itemize}
 \item Use data and methods informed by best available, actionable climate science;
 \item Build two feet above the 100-year flood elevation for standard projects, and three feet above for critical buildings like hospitals and evacuation centers; or
 \item Build to the 500-year (0.2 percent annual chance) flood elevation.105
\end{itemize}

While the revised standards apply to federally funded projects, the original NFIP 100-year base flood elevation standard and associated subsidized insurance rates remain in place for the vast majority of the program.106 Communities do have the option to adopt

101 National Academies Keck Center, \textit{Reducing Flood Losses}, 113.

102 Ibid., 5–6.

103 Ibid.

105 Ibid.

stricter flood elevation standards as part of their floodplain management program; this is referred to as freeboard.107 At the time of the issuance of the executive order in 2015, the White House indicated that at least 350 communities across the country had already met or exceeded the revised standards outlined in the executive order.108 However, when considered in the context of the participation of over 22,000 communities in the program, the figure represents only a small percentage of communities opting for stricter flood elevation standards.

While floodplain management serves as the primary method to mitigate the impacts of flooding, data to support the effectiveness of the program is limited. FEMA operates a process to assess a community’s floodplain management ordinance and enforcement actions through community assistance visits (CAV) and community assistance contacts (CAC).109 However, given resource limitations, FEMA must use criteria to prioritize communities that are assessed based on known or suspected deficiencies.110 When violations or compliance issues are identified, communities receive an opportunity to implement corrective actions. A community may be placed on probation or suspension from the NFIP for failure to address violations or program deficiencies. While the CAV/CAC program serves to ensure compliance with the NFIP, results of CAV/CAC findings are not readily available.

Furthermore, Ed Pasterick who served with FEMA for 41 years working in NFIP noted in 1988, “There has never been a comprehensive assessment of the level of compliance nationwide.”111 In 2006, FEMA commissioned a series of evaluations of the NFIP that included an assessment of community compliance with NFIP floodplain management requirements. Researchers findings in the report, “extrapolated that between 70 and 85 percent of NFIP communities nationwide are probably fully compliant or can

107 Freeboard is an additional elevation requirement above the 100-year base flood elevation standard that provides for a margin of safety against extraordinary or unknown risks.

108 White House, “Fact Sheet.”

110 Ibid., 18.

be expected to remedy identified noncompliance within two years.”112 While researchers worked to provide a methodology for their findings, the report admitted uncertainty in what the estimation of compliance indicates.113 The lack of readily available data creates a deficiency to identify trends and issues that may be common to compliance with the floodplain management requirements of the NFIP.

3. Community Rating System

The Community Rating System (CRS) is a program that was implemented in 1990 as an enhancement to the floodplain management component of the NFIP. The CRS is a voluntary incentive-based program that recognizes communities for implementing proactive floodplain management activities exceeding the NFIP’s minimum floodplain management standards.114 Under the program, FEMA awards points for activities that are used to establish a community’s CRS “class” from class 10 (lowest rating) to class 1 (highest rating). There are 19 CRS activities divided among four categories: public information (seven activities), mapping and regulations (five activities), flood damage reduction (four activities), and flood warning and response (three activities). CRS activities are designed to:

- Increase awareness of flood risk;
- Increase awareness of opportunities to protect life and property;
- Enhance public safety;
- Reduce damage to public property and infrastructure; and
- Reduce economic disruption and loss.115

Communities participating in the CRS program can receive discounts from five to 45 percent on standard flood insurance policies.

113 Ibid.

115 Ibid.
While the CRS program is recognized as a strong enhancement to the NFIP, FEMA continues to look for enhancements for the CRS program as a core objective of the program’s strategic plan.116 The strategic plan outlined five objectives and numerous strategies for the sustainment and continuous improvement of the CRS.117 As of May 2016, FEMA indicated that only five percent of the over 22,000 NFIP communities were participating in the CRS. While seemingly a low percentage of participation, these communities represent more than 69 percent of all flood insurance policies with an average standard flood insurance policy discount of 11.4 percent.118

4. Flood Insurance

Private insurance has long steered away from the developing a flood insurance market because of the difficulties associated with accurately assessing the highly variable risk of flood hazards. The lack of private insurance options serves as the basis for the development of the flood insurance component of the NFIP. As provided in section 1304 of the National Flood Insurance Act of 1968, the NFIP “will enable interested persons to purchase insurance against loss resulting from physical damage to or loss of real property or personal property related thereto arising from any flood.”119 NFIP flood insurance provides the mechanism to compensate policyholders for flood damages and lessens the impact on taxpayers, who would otherwise be called upon to assist through federal disaster assistance programs.120

117 Ibid., iii.

119 Office of the General Council, \textit{All-Hazard Authorities}, 7.

120 Federal Emergency Management Agency, \textit{NFIP: Program Description}, 22.
NFIP flood insurance is based on a public/private partnership between FEMA and private insurance providers. While FEMA administers the program, the sale and service of flood insurance is facilitated by private insurance providers.121 NFIP flood insurance is available for business and residential structural and content protection.122 Approximately 85 percent of NFIP flood insurance policies are sold to property owners in participating NFIP communities through a program known as “Write Your Own” (WYO).123 Currently, 73 private insurance providers write the WYO policies and process claims in exchange for a fee from the NFIP.124 The remainder of NFIP flood insurance policies is purchased through a FEMA contractor.125

The NFIP includes several varieties of policy options. For example, the Standard Flood Insurance Policy (SFIP) specifies the terms and conditions of the agreement between FEMA and the WYO provider.126 SFIP provides flood insurance coverage for partial or complete inundation from inland and tidal waters, accumulation of surface waters from any source, or impacts from mudflows.127 The SFIP is mandatory for all properties located in the SFHA that are purchased through a mortgage from a federally backed or regulated lender.128 Also, some lenders require the purchase of flood insurance for properties located outside of the SFHA to manage risk. Properties located outside of the SFHA in moderate to low hazard zones (zones B, C, and X) are eligible for lower-cost preferred risk policies (PRP).129 The NFIP also provides increased cost of compliance (ICC) coverage for properties that may be required to implement structural improvement measures to come into compliance with local floodplain management

121 Ibid., 22–23.
123 Kousky and Shabman, \textit{Pricing Flood Insurance}, 3.
125 Kousky and Shabman, \textit{Pricing Flood Insurance}, 3.
127 Ibid.
128 Kousky and Shabman, \textit{Pricing Flood Insurance}, 3.
NFIP flood insurance does not provide coverage for land, property, and belongings outside of the main building or most self-propelled vehicles, and it does not cover finished basements, buildings entirely over water, or buildings principally underground. Table 1 outlines the insurance coverage limits set by the NFIP for structures and contents.

Table 1. NFIP Flood Insurance Coverage Limits

<table>
<thead>
<tr>
<th>Coverage Type</th>
<th>Structure Limit</th>
<th>Content Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential (1–4 Family Home)</td>
<td>$250,000</td>
<td>$100,000</td>
</tr>
<tr>
<td>Other Residential</td>
<td>$500,000</td>
<td>$100,000</td>
</tr>
<tr>
<td>Business</td>
<td>$500,000</td>
<td>$500,000</td>
</tr>
<tr>
<td>Renter (Contents Only)</td>
<td>------</td>
<td>$100,000</td>
</tr>
</tbody>
</table>

NFIP flood insurance revenue is maintained in an authorized account called the National Flood Insurance Fund (NFIF). The NFIF is funded through three methods:

- Flood insurance policy premiums, fees, and surcharges (as of December 31, 2015, the NFIP has approximately 5.2 million policies in force with $3.45 billion in annual earned premiums);
- Direct annual appropriations for specific components of the NFIP; and
- Borrowing from the U.S. Treasury when the NFIF is insufficient to pay flood insurance claims.

131 “Flood Insurance: Is Purchase Required?”

133 Brown, Introduction to FEMA’s National Flood Insurance, 19.

135 Brown, Introduction to FEMA’s National Flood Insurance, 19.
Up until the mid-2000s, The NFIP has generally been able to cover its costs, needing to borrow only limited amounts from the U.S. Treasury and repaying the loans with interest. 136 However, Hurricanes Charley, Frances, Ivan, and Jeanne in 2004, Hurricanes Katrina and Rita in 2005, Hurricane Ike in 2008, and Hurricane Sandy in 2012 all resulted in massive flood insurance claims that bankrupted the program and required over $30 billion from the U.S. Treasury. 137 The majority of the hurricane debt will likely never be repaid by the NFIP.

The majority of NFIP flood insurance policies are based on full-risk rates established through FEMA’s annual NFIP actuarial rate review (an estimated 80 percent of policies). 138 FEMA’s annual evaluation of insurance rates is based on hydrological modeling resulting from using a tool developed by the U.S. Army Corps of Engineers. 139 However, approximately half of properties charged full-risk rates are located outside of SFHAs about which not enough data is available to use modeling. 140

It should be noted that FEMA had regularly published the annual NFIP actuarial rate review every year through 2011; however, no rate review has been posted since the October 1, 2011 rate review and there is no identifiable explanation. Also, a review of the annual NFIP actuarial rate review shows that the NFIP claims expenditures associated the impacts of Hurricanes Katrina and Rita in 2005 have been excluded from calculations. 141 It is recognized by the researcher that this methodology of rate calculation provides balance to the actuarial rate setting process wherein an extreme event would skew the determinations. However, the discontinuation of publishing the annual NFIP actuarial rate review coincides with the additional impact of Hurricane Sandy in 2012. In light of the string of extreme hurricane-related flooding impacts to the NFIP, perhaps the

136 Ibid., 24.
137 Ibid.
139 Ibid.
140 Ibid.
141 Hayes and Neal, NFIP Actuarial Rate Review.

While the majority of NFIP flood insurance policies are based on full-risk rates, approximately 20 percent of policies are based on pre-FIRM subsidized rates.142 Pre-FIRM properties were built in the SFHA before FEMA published the FIRM (generally, FIRMs were published between 1974 and 1983).143 Pre-FIRM properties are considered “grandfathered” policies, which allows for a subsidized premium to continue for a property, even if a new FIRM indicates a higher level of flood risk.144 The pre-FIRM program was created to encourage participation and designed to not unfairly penalize homeowners with high rates who built before the program was established.145 On average, the pre-FIRM subsidized policies pay between 40 to 45 percent of the full-risk premium needed to fund the long-term expectation of loss.146 The NFIP does not include provisions for FEMA to recoup the lost revenue from claims associated with pre-FIRM properties.147 While progress has been made to reduce the number of pre-FIRM properties through requirements placed on properties that undergo substantial improvement or substantial damage and phasing out of discounts for second homes, business, and repetitive loss properties, pre-FIRM policies continue to account for a significant percentage of NFIP losses.148

A considerable item of concern within the flood insurance component of the NFIP is coverage of repetitive loss properties. FEMA defines repetitive loss and a subgroup referred to as severe repetitive loss as follows:

\begin{itemize}
\item142 Ibid., 34.
\item143 Carolyn Kousky and Erwann Michel-Kerjan, “A Look at 35 Years of Flood Insurance Claims,” Resources, no. 191 (Winter 2016): 43.
\item144 National Research Council, Affordability (Report 1), 44–45.
\item145 Kousky and Shabman, Pricing Flood Insurance, 6.
\item146 Hayes and Neal, NFIP Actuarial Rate Review, 9.
\item147 Kousky and Shabman, Pricing Flood Insurance, 6.
\item148 Ibid.
\end{itemize}
Repetitive loss: “Insured properties with two or more flood losses greater than $1,000 within any 10-year period.”149

Severe repetitive loss: “Insured properties that have incurred four or more flood-related losses of at least $5,000 each, or at least two separate claims with the cumulative amount of the building payments exceeding the value of the structures on the property.”150

The NFIP is structured to prevent FEMA from refusing coverage to any policyholder in a participating community and cannot directly compel property owners to mitigate losses or arbitrarily impose actuarial rates on repetitive loss properties.151

An analysis of data provided by FEMA related to repetitive losses indicates that approximately 3.8 percent of NFIP policies have experienced a repetitive loss claim with an average of 2.98 claims per repetitive loss property.152 Table 2 highlights the disproportionate share of claims and costs associated with repetitive loss properties versus the NFIP as a whole. In addition, there is a clear connection between repetitive losses and establishment of FIRM. FEMA has estimated that 90 percent of all repetitive loss properties were constructed before the publishing of a FIRM for those locations, highlighting the unintended consequences of not phasing out the grandfathered status of pre-FIRM properties.153

150 Ibid.

152 The 3.8-percent of NFIP policies experiencing repetitive loss claims was determined based on the number of repetitive loss properties divided by the number of active policies for 2015. FEMA has indicated that repetitive loss properties account for 1-percent of NFIP insured properties, but does not provide a methodology for comparison.

153 King, \textit{National Flood Insurance Program}, 18.
Table 2. Repetitive Losses Claims and Payments (1978–2015)

<table>
<thead>
<tr>
<th></th>
<th>Number of Claims</th>
<th>Claim Payments</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFIP Flood Insurance Totals(^{154})</td>
<td>1,637,394</td>
<td>$ 52,175,519,500</td>
</tr>
<tr>
<td>Repetitive Loss Property Totals(^{155})</td>
<td>580,967</td>
<td>$ 15,901,034,599</td>
</tr>
<tr>
<td>Percent of Total NFIP Claims/Costs</td>
<td>35.5%</td>
<td>30.5%</td>
</tr>
</tbody>
</table>

The significance of repetitive loss properties to the NFIP goes beyond the substantial cost to the program. As noted by the American Association of Actuaries in a July 2011 report, a major concern is, “the question of whether the NFIP should continue to insure properties that are likely to have further losses and whether these properties are being subsidized by the rest of the NFIP insureds.”\(^{156}\)

FEMA has started several initiatives to address the repetitive loss issues. Initial efforts were focused on inventorizing repetitive loss properties to pursue actions to mitigate future losses through reconstruction, elevation, or flood proofing.\(^{157}\) More recent actions have included efforts to phase out premium subsidies through grant-based voluntary buyouts or imposition of full actuarially based rates for property owners who refused to accept mitigation of flood hazards.\(^{158}\) As the NFIP approaches its fiftieth anniversary, it is clear that the impacts of early implementation continue to plague the long-term viability of the program.

5. Mitigation Programs as an Extension of the NFIP

During President Clinton’s administration, FEMA Director James Lee Witt worked to transform the agency based on a foundation of mitigation and prevention of

\(^{158}\) Ibid.
hazards.159 Congress tasked the agency to do a cost-benefit analysis of mitigation programs implemented in response to the Great Flood of 1993 that affected the majority of the midwestern United States. The analysis indicated that for every dollar spent on mitigation, it saved anywhere from $3 to $5 on future losses.160 This type of analysis makes a powerful argument for focusing federal disaster assistance programs on mitigation of hazards before disaster strikes. However, as highlighted in a Congressional Research Service report in 2011, increases in losses are outpacing FEMA mitigation efforts by a factor of 10 to 1.161 Regardless, the federal government has implemented numerous programs to promote mitigation.

In 1988, Congress passed the Robert T. Stafford Disaster Relief and Emergency Assistance Act, commonly referred to as the Stafford Act. The Stafford Act is the statutory authority for federal involvement in providing disaster assistance. A major component of mitigation efforts implemented as part of the Stafford Act is the Pre-Disaster Mitigation (PDM) Grant Program and the Hazard Mitigation Grant Program (HMGP). Both programs provide funding to state and local jurisdictions to develop mitigation plans and implement mitigation projects for all hazards that could impact a community.

The current fiscal year (FY) 2016 PDM grant program provides $90 million to state and local jurisdictions.162 Current priorities are the development of mitigation plans and projects and the funding of projects that are identified as climate resilient mitigation activities (CRMA), wildfire mitigation activities, non-flood mitigation activities, flood mitigation activities, and emergency power for critical facilities.163 The HMGP differs from other programs in that funding is connected to the amount of federal disaster

160 Ibid.

161 King, \textit{National Flood Insurance Program}, 18.

163 Ibid., 4.
assistance funding allocated under a major disaster declaration. Under the HMGP, 15 to 20 percent of federal public assistance and individual assistance dollars are allocated to mitigation projects.\(^{164}\) The majority of HMGP dollars should be assigned to projects associated with the type of disaster resulting in the major disaster declaration. However, a percentage may be used for all-hazard projects.

While numerous initiatives were launched to address the mitigation of all hazards, the Flood Mitigation Assistance (FMA) Grant Program was focused on the mitigation of flood hazards. The FMA Grant Program was authorized as part of the National Flood Insurance Reform Act of 1994.\(^{165}\) The initial FMA Grant Program provided $20 million a year with a 75/25 cost share for eligible projects that dealt with the elevation, acquisition, relocation, and demolition of flood-prone structures.\(^{166}\) The Biggert-Waters Flood Insurance Reform Act of 2012 greatly expanded the program with a renewed focus on mitigating repetitive loss and severe repetitive loss properties.\(^{167}\) The current allocation for the FY2016 FMA Grant Program is $199 million with cost sharing percentages remaining in place.\(^{168}\)

Each of these mitigation grant programs demonstrates a commitment by the federal government to address the reduction of all-hazards. The question is how much more is needed to change the long-term trajectory of disaster impacts effectively?

C. SUMMARY OF LEGISLATIVE ADJUSTMENTS TO THE NFIP

The previous sections have outlined the current NFIP and highlighted several of the issues and challenges that the program faces. Since the original passage of the National Flood Insurance Act of 1968, which created the NFIP, the program has

\(^{168}\) Ibid.
undergone numerous changes, generally in response to catastrophic flood-related disasters that exposed weaknesses in the NFIP. The following sections outline the significant legislative changes that have been implemented to address identified shortcomings and strengthen the program for future disasters.

1. **Flood Disaster Protection Act of 1973**

In June 1972, Tropical Storm Agnes tracked from Yucatan Peninsula, across Florida, and settled over the northeastern United States. The storm produced widespread rains of six to 12 inches with some areas receiving 14 to 19 inches and resulted in widespread flood across Pennsylvania, Virginia, New York, Maryland, and Ohio. The storm was responsible for 122 deaths and $2.1 billion in damage, mainly in the northeast. At the time, the storm cost more in disaster assistance than any previous disaster had. The significance of the financial losses was largely attributed to weak participation by communities in the NFIP as most were relying on federal disaster assistance to provide for recovery.

As a result of Tropical Storm Agnes, Congress moved to strengthen provisions of the National Flood Insurance Act through the passage of the Flood Disaster Protection Act of 1973. The act prohibited federal agencies from aiding construction projects for communities that did not participate in the NFIP and established mandatory flood insurance requirements for properties purchased with federally-backed mortgages located in SFHA. The result of these changes was a dramatic increase in communities participating in the NFIP; it went from 2,200 communities in 1973 to 15,000 communities by 1977. Also, individual policies rose from 100,000 policies in 1972 to 1,200,000 policies by 1979.

170 Ibid.

172 Ibid.

173 Ibid.

In 1993, major riverine flooding along the Mississippi and Missouri Rivers caused major flooding across North Dakota, South Dakota, Nebraska, Kansas, Minnesota, Iowa, Missouri, Wisconsin, and Illinois and resulted in 50 deaths and nearly $15 billion in damage. At the time, the disaster was considered to be one of the most significant and damaging natural disasters to impact the United States. The following year, Congress passed the National Flood Insurance Reform Act of 1994 to decrease the financial burden of flooding through increased participation in the NFIP. The following elements were implemented to address the objective of the legislation:

- Established fines for mortgage lenders that failed to ensure the mandatory purchase of flood insurance on properties located in special flood hazard areas;
- Increased the coverage limits of National Flood Insurance Program flood insurance policies;
- Provided supplemental increased cost of compliance coverage to assist property owners with the cost of bringing flood-damaged properties into compliance with local ordinances;
- Established the flood mitigation grant program to help states and communities develop and implement mitigation measures that reduce future flood damage;
- Codified the National Flood Insurance Program Community Rating System, which rates communities and provides them financial incentives to adopt floodplain management standards above those set by the National Flood Insurance Program; and
- Required FEMA to assess its flood hazard map inventory at least once every five years.175

3. Flood Insurance Reform Act of 2004

The Flood Insurance Reform Act of 2004 was established by Congress to address repetitive loss claims within the NFIP. Two grant programs were created to address both

175 Office of the Inspector General, FEMA’s Implementation, 2.
repetitive loss properties and severe repetitive loss properties through acquisition, demolition, relocation, or structurally elevation of structures.

As FEMA described:

The severe repetitive loss grant program is designed to reduce or eliminate claims under the National Flood Insurance Program through project activities that will result in the greatest savings to the National Flood Insurance Fund in the shortest period of time.176

The severe repetitive loss grant program differed from other mitigation grant programs due to penalties that could be imposed on property owners who declined mitigation assistance through increases in NFIP premium rates.177 The program required participation by the local community with requirements for both enforcement of floodplain management ordinances and a local match of federal grant funds.

The act also called for the implementation of a repetitive loss mitigation grant program designed to promote mitigation measures to reduce flood damages to insured properties that have had more than one claim to the NFIP. The repetitive loss grant program differs from the severe repetitive loss grant program in that it does not require local matching funds.

The repetitive loss and severe repetitive loss grant programs represented the primary initiatives of the 2004 NFIP reform act. Other initiatives included boosting policyholder awareness about individual flood insurance policies, increasing the availability of policyholder information on guidance about the flood insurance claims process, and establishing training requirements for insurance professionals.178

The disastrous losses associated with the hurricane seasons in the mid-2000s severely impacted the fiscal solvency of the NFIP. The U.S. Government Accountability Office (GAO) concluded that the NFIP “is unlikely to generate sufficient revenue to

\begin{footnotesize}
\begin{itemize}
 \item 176 Ibid., 6.
 \item 177 Ibid.
\end{itemize}
\end{footnotesize}
cover future catastrophic losses or repay the billions of dollars borrowed from the Department of Treasury.” To strengthen the fiscal solvency of the NFIP, Congress passed the Biggert-Waters Flood Insurance Reform Act of 2012 (BW-12). Key provisions of the legislation required implementation of changes to the NFIP that would phase out subsidized NFIP flood insurance premiums and raise rates to reflect the true flood risk. Also, the legislation called for changes in how FEMA published updated FIRMs, including provisions for improved communication to impacted policyholders.

As noted by FEMA, approximately 20 percent of policies receive subsidies under the NFIP (commonly referred to as pre-FIRM properties). For subsidized non-primary/secondary residences, properties that have experienced repetitive losses, and business/non-residential properties in the SFHA changes were implemented to increase NFIP flood insurance premium rates by 25 percent annually until the rates reflected the true risk. Primary residences in SFHAs would keep subsidized rates until the property was sold, the policy lapsed, the property suffered repetitive or significant flood losses, or a new policy was purchased, at which time full-risk rates would apply. “grandfathered” rates would be phased out at a 20 percent increase per year when new or updated FIRMs were adopted by a local community. FEMA was also tasked with conducting a study on the affordability of the NFIP; it was completed by the National Academies of Sciences in 2015 and 2016.

As changes to NFIP flood insurance rates were being initiated, property owners who had received the benefit of subsidized flood insurance rates rallied against the implemented changes. In particular, coastal communities were quick to petition congressional representatives to delay the implementation of adjustments to flood insurance rates. They claimed the changes would gut housing markets and devastate local economies.

182 Ibid., 1–2.
183 Ibid., 2.
184 National Research Council, Affordability (Report 1), 150.
economies, which were already reeling from the impacts of recent hurricanes. Congressionl resolve to improve the NFIP fiscal solvency through the measures required by BW-12 quickly began to dissolve as constituents voiced their concerns. In response, through the Consolidated Appropriations Act of 2014, Congress included provisions to prohibit implementation of certain flood insurance rate increases while a new law was developed.

5. **Homeowner Flood Insurance Affordability Act of 2014**

As a permanent measure to address the controversial components of the BW-12, Congress implemented the Homeowner Flood Insurance Affordability Act of 2014 (HFIAA), which repealed or modified certain provisions enacted in 2012 and made additional changes to the NFIP program. Those provisions included the following:

- **Refunds:** A refund program was initiated for certain flood insurance policies that were affected by the pre-FIRM subsidy elimination. Pre-FIRM subsidized rates were reinstated for those policies impacted by the provisions of BW-12.

- **Premium rates for subsidized policies:** Provisions to increase subsidized flood insurance policies to full-risk rates were reduced under the HFIAA. With few exceptions, rate increases were reduced to 18 percent annually versus the original provision for increases of 25 percent annually. Also, pre-FIRM rates can be transferred to a new owner when a property is sold, pending additional provisions from FEMA.

- **New surcharge on all policies:** As a new provision, implemented a surcharge on all NFIP flood insurance policies. A surcharge of $25 is applied to policies on primary residences and $250 on all other policies. The surcharge will remain in effect until all pre-FIRM subsidies are eliminated.

• Grandfathering: Repealed the provisions of BW-12 that required the phasing out of grandfathered NFIP flood insurance properties.

• Flood insurance advocate: Requires FEMA to designate flood insurance advocate to advocate for NFIP policyholders.187

The HFIAA includes additional provisions to continue to address issues associated with the NFIP. One of those provisions that will likely result in additional enhancements of the NFIP is the requirement for development of an NFIP affordability framework. Under the provisions of the HFIAA, FEMA is required to develop the affordability framework within 18 months of completion of the affordability study provisioned under BW-12.188 Guidance in the legislation for the framework is focused on improved communication of flood risk, targeted financial assistance for low-income populations, additional focus on mitigation actions, and considerations of the impact of increases in premium rates and updates to FIRMs.189

D. CHAPTER SUMMARY

It is important to understand why federal policymakers chose to expand the role of government to provide insurance for flood losses. Federal disaster assistance data clearly indicates the prominence of flooding and flood-related hazards as the most significant hazard in the United States. It accounts for 78.2 percent of all major disaster declarations from 1953 through 2015.190 A review of the nation’s early history indicates flooding has always been a significant issue, especially along the major rivers that play a prominent role in agriculture, industry, and commerce. For example, the Great Mississippi River Flood of 1927 served as a turning point for federal policymakers to initiate multibillion-dollar flood control programs to tame the nation’s major rivers. As highlighted in the book Disasters and Democracy:

Few natural events have had a more lasting impact on our engineering concepts, economic thought, and political policy in the field of floods.

188 Ibid., 4.
189 Ibid.
Prior to 1927 control of floods in the United States was considered largely a local responsibility. Soon after 1927, the control of floods became a national problem and a federal responsibility.191

Despite the increased role of the federal government in managing flood control measures, “disaster assistance was viewed as a moral responsibility of neighbors, churches, charities, and communities.”192 By the 1950s, private insurance for flood losses was largely non-existent and efforts to limit development in floodplains was given little more than verbal support.193 Federal support for flood victims of Hurricane Betsy served as a turning point for expanded government involvement in assisting communities and individuals with flood hazards. The passage of the National Flood Insurance Act of 1968, which established the NFIP, initiated a new era of federal government involvement in identifying, managing, and assisting communities and individuals from the threat of flooding.

The primary components of the NFIP seek to provide for the hazard identification and risk assessment of flood hazards, minimize the impact of flooding through floodplain management, and they have the underlying objective of insurance as “the preferred mechanism for disaster assistance.”194 Each of these components contributes to reducing the risk and impact from flood hazards on communities and individuals. However, nearly 50 years after passage of the NFIP, flooding remains the most significant and costly hazard in the United States and requires seemingly never ending support from the federal government to manage risk and provide recovery assistance.

\begin{itemize}
\item 191 Platt, \textit{Disasters and Democracy}, 151–153.
\item 192 Ibid., 154–155.
\item 193 Kousky and Shabman, \textit{Pricing Flood Insurance}, 2; Platt, \textit{Disasters and Democracy}, 211.
\item 194 Hayes and Neal, \textit{NFIP Actuarial Rate Review}, 2.
\end{itemize}
III. DOES THE NFIP LIMIT RISK REDUCTION?

The previous chapter outlined the evolution of federal involvement in flood disasters that resulted in the creation of the NFIP, outlined the current scope of the NFIP programs, and highlighted some of the critical issues that continue to compromise the program. This chapter seeks to apply our understanding of the NFIP to the question, to what extent is the NFIP limiting risk reduction and serving as an example of a federal disaster assistance program contributing to the rise of a moral hazard?

As previously outlined, the concept of moral hazard is based on how the redistribution of risk negatively changes behavior—that the transfer of risk will result in the “tendency to take risks or alter behavior, because the negative costs or consequences that could result will not be felt by the person taking the risk.”195 It is worth examining what components of the NFIP potentially limit risk reduction and contribute to a moral hazard. Three components offer insight on limitations of the program to meet its objective to prevent future loss of life and property from the hazard of flooding. Repetitive loss properties, pre-FIRM subsidized policies, and the inability of the program to absorb the impact of significant flood events are all elements that hinder the ability of the program to meet its long-term objective. Examining each of these identified factors in relation to the concept of moral hazard can provide insight on whether the NFIP limits risk reduction.

A. REPETITIVE LOSS PROPERTIES

Repetitive loss properties are insured properties that have filed multiple NFIP flood insurance claims due to repetitive flood losses. The continued coverage of repetitive loss properties represents one of the clearest and most obvious indicators of the NFIP limiting risk reduction and contributing to the rise of a moral hazard. As provided in the definitions of moral hazard from insurance and economics, allowing for repetitive

loss in the NFIP is indicative of the “tendency for insurance against loss to reduce incentives to prevent or minimize the cost of loss.”196

FEMA’s administration of the NFIP identifies repetitive loss properties and a subset of those properties, identified as severe repetitive loss properties, as a critical issue with special attention applied to mitigating flood hazards for those properties. FEMA NFIP flood insurance claim and loss data indicates that while repetitive loss properties only account for approximately 3.8 percent of NFIP policies (as outlined in Appendix C) they account for 35.5 percent of claims and 30.5 percent of claim payments.197 FEMA has also estimated that 90 percent of repetitive loss properties were constructed before the publishing of FIRMs for those locations, which gives an indication of the high-risk the program assumed without a clear methodology to mitigate the risk in the long-term.198 NFIP policies specifically prevent FEMA from refusing coverage to any policyholder in a participating NFIP community and cannot compel property owners to mitigate losses or impose actuarial rates on repetitive loss properties; these represent policies that would never be supported by private insurance providers.199 The policy elements that allowed for the insuring of properties without an understanding of risk, automatic coverage without the requirement to reduce the risk, and provide a guaranteed coverage without risk of cancellation, all demonstrate an asymmetric transfer of risk from the property owner to the government. Each of these policy elements creates a framework in which moral hazard can exist and risk reduction is not incentivized.

Part of the underlying inquiry related to the NFIP limiting risk reduction is a determination of whether policyholders truly understand the risk of a flood impacting their property. Related to repetitive loss properties, the answer appears obvious given that once a property suffers a loss from a flood, it would remain at risk unless some action was taken to reduce future risk. This supports the moral hazard argument that individuals

198 King, National Flood Insurance Program, 18.
have the full understanding of the risks they face. However, as explained by Kousky and Shabman:

If individuals fully understood disaster risks, however, they would be aware of the many costs of disasters not covered by aid or insurance: the suffering and worry; the time lost to recovery and rebuilding; the loss of irreplaceable items, particularly those that may carry sentimental value, such as family photographs; not to mention the possibility of injury or even loss of life.\(^{200}\)

As noted, 90 percent of repetitive loss properties are pre-FIRM properties that were constructed before the risk was assessed and communicated.\(^{201}\) While properties that suffer repetitive losses should have an understanding of the risk of flooding, the question remains: are those property owners in a position to adjust the risk of flooding through mitigation measures?

FEMA has continuously attempted to address the issue of repetitive loss properties through developing methods to mitigate flood losses and providing mitigation grant funding for the acquisition, demolition, relocation, or flood proofing of properties. Congress has supported these efforts through various mitigation grants and the Flood Insurance Reform Act of 2004, which was specifically implemented based on the issues associated with repetitive loss properties. Despite these efforts, “the annual increase in new repetitive loss properties is outpacing FEMA mitigation efforts by a factor of 10 to 1.”\(^{202}\) Furthermore, as highlighted by Erwann Michel-Kerjan, “many residents living in hazard-prone areas not only lack interest in purchasing natural hazard insurance and keeping it, they also rarely undertake voluntary loss-prevention measures to protect their property.”\(^{203}\) Many factors contribute to the failure of individuals to mitigate the risk, including “a lack of accurate knowledge about risk; budget constraints; and myopia.”\(^{204}\)

Mitigation of flood risk—specifically, elevating high-risk properties above the base flood

\(^{201}\) King, National Flood Insurance Program, 18.
\(^{202}\) Ibid.
\(^{204}\) Ibid.
elevation—has been demonstrated to be an effective risk reduction measure.205 However, elevating an existing structure comes with a significant cost that would only be paid back over an extended period; this leaves little incentive to make such an investment over the short-term.206 While the evidence supports that mitigation measures are an effective methodology to reduce flood risk, they require a long-term perspective that investment in reducing the risk is preferred to maintaining the status quo provided through the insurance program that would only require those measures in the most extreme circumstances.

An analysis of NFIP flood insurance claims shows that repetitive losses have remained a constant percentage of total flood insurance claims throughout the history of the NFIP, regardless of what actions have been initiated to reduce repetitive loss. Figures 3 and 4 provide an annual comparison of total NFIP flood insurance claims and costs in relation to repetitive loss property claims and costs. The percentage of claims associated with repetitive loss properties has remained relatively steady over the course of the flood insurance program. However, the percentage of costs related to repetitive loss properties has shown a general downward trend. Of note is the relatively small percentage of claims and costs associated with repetitive loss properties in the historical loss years of 2005 (Hurricanes Katrina and Rita), 2008 (Hurricane Ike), and 2012 (Hurricane Sandy). A probable explanation for this anomaly is the massive scope of impacts from these hurricanes extending well beyond areas identified as high-risk for flooding. The evidence indicates that repetitive loss claims remain an ongoing problem for the NFIP. That public policy has not reduced those properties that remain at a high risk of repeatedly being impacted by flooding. Conversely, trends also indicate that losses associated with repetitive loss properties are declining; this is perhaps indicative that the NFIP is reducing the magnitude of impacts from flood events.

206 Michel-Kerjan, “Catastrophic Economics,” 414.
Figure 3. **Flood Insurance Loss Claims (1978–2015), Total Claims versus Repetitive Loss Claims**

Figure 4. **Flood Insurance Loss Dollars Paid (1978–2015), Total Losses versus Repetitive Losses**

207 Adapted from: Federal Emergency Management Agency, “Policy & Claim Statistics;” FEMA Region VI, *FEMA NFIP Repetitive Loss Report*. Note: The scale for the “number of loss claims” was capped at 100,000 to improve the display of the information; 2005 claims totaled 213,587 and 2012 claims totaled 150,832.

208 Adapted from: Federal Emergency Management Agency, “Policy & Claim Statistics;” FEMA Region VI, *FEMA NFIP Repetitive Loss Report*. Note: The scale for the “number of loss dollars paid” was capped at $4,000,000 to improve the display of the information; 2005 loss dollars totaled $17,770,118,000 and 2012 loss dollars totaled $9,266,395,000.
Moral hazard is an important element in considering the issue of repetitive loss properties209 since they are documented as a clear and obvious issue for the NFIP. While repetitive loss properties account for a small percentage of flood insurance policies, they account for a disproportionately significant number of claims and associated costs. The data shows that generally these properties are located in high-risk areas and were constructed before the assessment of risk through the NFIP mapping process. As a result, the vast majority of repetitive loss properties pay subsidized pre-FIRM flood insurance rates.210 Whereas the implementation of mitigation measures has proven to be effective at reducing vulnerability, research indicates that most property owners are indifferent to mitigation programs due to “a lack of accurate knowledge about risk; budget constraints; and myopia.”211 Furthermore, NFIP policies that provide insurance coverage without the requirement to reduce risk and that guarantee coverage without risk of cancellation limit the incentive to reduce risk.

\textbf{B. PRE-FIRM SUBSIDIZED POLICIES}

Historically, the catastrophic nature of flooding limits the ability to develop a rate structure that adequately reflects the full risk to flood-prone properties.212 Based on this issue, a private insurance market that can profitably provide flood insurance at an affordable price has not emerged. This lack of a market has pressed the government to undertake a “public program that encompasses social goals” where a private market failed to emerge.213 It also created the economic challenge of government management of a flawed market model. Given the correlated risk of property owners located in high-risk flood zones, the use of traditional insurance principles to gather a large pool of independent risks to reduce the risk to the insurance program was not possible.214 These

\begin{flushleft}
\begin{footnotesize}
209 Michel-Kerjan, “Catastrophic Economics,” 415.
210 King, \textit{National Flood Insurance Program}, 18.
211 Michel-Kerjan, “Catastrophic Economics,” 414.
212 Congressional Budget Office, \textit{The National Flood Insurance Program}, 13.
213 Flood Insurance Subcommittee, \textit{The National Flood Insurance Program}, 5.
214 King, \textit{National Flood Insurance Program}, 8.
\end{footnotesize}
\end{flushleft}
circumstances give rise to the government using flood insurance subsidies to build and maintain participation in the NFIP.

Similar to the continued coverage of repetitive loss properties, the use flood insurance subsidies appears to represent a clear indicator of the NFIP limiting risk reduction and contributing to the rise of moral hazard. Flood insurance provided by the NFIP is based on two general classes of properties: those insured at full actuarial rates and those insured at subsidized rates. Congress authorized subsidized rates for structures constructed before the effective date of a FIRM as an important aspect of the NFIP’s startup process to encourage participation and to avoid unfairly penalizing homeowners who built before the program was established. The NFIP includes grandfathered premiums that allow a subsidized rate class to continue even if a new FIRM indicates a higher level of flood risk. Regulators believed these policies would be phased out over time as properties were lost to age or flooding. An initial estimate in a 1966 housing and urban development report predicted subsidies would be needed for about 25 years. However, the useful life of buildings has been significantly extended by modern construction techniques, with at least one FEMA report estimating the need for subsidies continuing until 2050. According to FEMA, subsidized and grandfathered rates have declined from 75 percent of policies in 1978 to the current estimated 20 percent of policies; this currently equates to over one million policies.

Pre-FIRM subsidized and grandfathered policies typically pay 40 to 45 percent of the full actuarial rates charged to other policyholders. Pre-FIRM properties are exempt from many of the NFIP’s floodplain management requirements unless they are

215 King, Federal Flood Insurance, 14.
216 Ibid.
220 King, Federal Flood Insurance, 15; Hayes and Neal, NFIP Actuarial Rate Review, 34.
221 Hayes and Neal, NFIP Actuarial Rate Review, 9.
substantial damaged or undergo substantial improvements.222 The NFIP attempts to recoup lost revenue from pre-FIRM subsidized policies through post-FIRM revenues and cover grandfathered policies by charging higher premiums across all other policies in the shared flood zone.

A private insurance provider would not share the government policies that establish and maintain the pre-FIRM discounts. As stated by the American Academy of Actuaries, “At times, Congress and FEMA have prioritized societal and marketing goals, such as increasing the policies in force and gaining acceptance of new FIRMs by affected communities, over developing and maintaining full-risk rates.”223 FEMA’s actuarial rate review justifies public policy providing insurance at less than full-risk rates as an extension of disaster assistance:

It was anticipated that very high premiums would cause great resistance to insurance purchase. However, with reasonable premiums, property owners purchasing insurance at less than full-risk rates would still be funding at least part of their recovery from flood damage. This was considered preferable to the previous arrangement of disaster relief that came solely from taxpayer funding.224

These elements are consistent with social contract theory and economics view of moral hazard: the theory that government should intervene when a market is unwilling to provide societal insurance, thus providing for the “common good.” While federal policymakers have worked to reduce subsidies and move the flood insurance program towards the goal of being actuarial sound, there will always remain a percentage of policyholders who would not be protected except for government intervention.

Similar to repetitive loss properties, pre-FIRM discounted policies represent a significant disproportionate percentage of claims and costs. The GAO has estimated that pre-FIRM discounted policies experience up to five times more flood damage than properties built in compliance with NFIP regulations.225 Common sense seems to dictate

222“Substantial Damages and Substantial Improvements.”
224Hayes and Neal, \textit{NFIP Actuarial Rate Review}, 4.
that higher numbers of claims and losses should have been anticipated. By their very
definition, pre-FIRM properties were constructed before the assessment of risk through
the NFIP mapping process and the implementation of floodplain management
requirements. Although assistance to reduce the risk of flooding through mitigation
programs is available for pre-FIRM properties, as previously outlined research indicates,
most property owners are indifferent to mitigation programs.\footnote{226 Michel-Kerjan, “Catastrophic Economics,” 414.}
As posited by Kunreuther and others, “[subsidies] undermine the incentives for policyholders to carry
out mitigation measures… because the subsidized rates are not affected by such
measures.”\footnote{227 Congressional Budget Office, The National Flood Insurance Program, 6; Howard C. Kunreuther
and Erwann O. Michel-Kerjan, At War with the Weather: Managing Large-Scale Risks in a New Era of
Catastrophes (Cambridge, MA: MIT Press, 2009), 256–261.}
While progress has been made to reduce the number of pre-FIRM
properties, a significant number of high-risk properties remain in high-risk zones.

FEMA uses the combination of subsidized and full-risk premiums to generate
revenue sufficient to cover a “historical average loss year.”\footnote{228 Hayes and Neal, NFIP Actuarial Rate Review, 5; King, National Flood Insurance Program, 16.}
By authorizing and continuing to use pre-FIRM subsidized and grandfathered policies, “it is impractical for
the NFIP to be actuarially sound in the aggregate.”\footnote{229 Hayes and Neal, NFIP Actuarial Rate Review, 5.}
While FEMA has worked to address the impacts of discounted premiums, its continued use limits the ability of the
NFIP to maintain fiscal solvency when faced with catastrophic losses.\footnote{230 Ibid.}
As a result of the catastrophic loss years of 2005 (Hurricanes Katrina and Rita) and 2008 (Hurricane
Ike), FEMA requested 18 short-term funding extensions of the NFIP resulting in close to
Ben Berkowitz and Roberta Rampton, “Superstorm Sandy Will Test Federal Flood Insurance Program,”
Given the fiscal bankruptcy of the NFIP, political forces from across the spectrum petitioned Congress to improve the financial
sustainability of the NFIP.\footnote{232 Beer and Hoffman, “Underwater,” 39.} The result was a sweeping reform of the NFIP with the

\footnote{226 Michel-Kerjan, “Catastrophic Economics,” 414.}
\footnote{227 Congressional Budget Office, The National Flood Insurance Program, 6; Howard C. Kunreuther
and Erwann O. Michel-Kerjan, At War with the Weather: Managing Large-Scale Risks in a New Era of
Catastrophes (Cambridge, MA: MIT Press, 2009), 256–261.}
\footnote{228 Hayes and Neal, NFIP Actuarial Rate Review, 5; King, National Flood Insurance Program, 16.}
\footnote{229 Hayes and Neal, NFIP Actuarial Rate Review, 5.}
\footnote{230 Ibid.}
Ben Berkowitz and Roberta Rampton, “Superstorm Sandy Will Test Federal Flood Insurance Program,”
overwhelming bipartisan passage of the Biggert-Waters Flood Insurance Reform Act of 2012 (BW-12).233

BW-12 initiated the phasing out of subsidized and grandfathered policies in addition to other program changes.234 FEMA maintained that 81 percent of NFIP policyholders already pay actuarial rates and would not be directly impacted by BW-12.235 The remaining 19 percent of policyholders that pay discounted premiums were affected by BW-12 based on the classification of their property. For the approximate five percent of policies for non-primary residences, businesses, and repetitive loss properties, BW-12 initiated an immediate 25 percent increase annually until flood insurance rates reflect the full risk.236 For the approximate 10 percent of subsidized primary residences, BW-12 would not impact the subsidies until the property was sold or the policy lapsed.237 The remaining four percent of properties, including subsidized multifamily structures, were placed in a hold status until additional guidance could be developed.238 BW-12 also phased out grandfathered rates with a 20 percent annual increase until full-risk rates were achieved.239 The provisions of BW-12 to phase out subsidies and grandfathering provisions of the NFIP were aimed at restoring the NFIP to solid financial health.240

As the provisions of BW-12 began to take effect, the backlash against the rate increases associated with the legislation was swift. In 2013 reports began surfacing of massive premium increases for policyholders in high-risk areas that redefined flood

233 Ibid., 40.
238 Ibid., 2.
58
insurance reform arguments away from the long-term sustainability of the NFIP.241 In addition, local grassroots efforts combined with support from lobbying organizations worked to “reframe the issue away from sound environmental policy and fiscal prudence… [to] now revolve around the plight of local economies, homeowners, and the still-recovering housing market.”242 In response, Congress was quick to respond to the outcry with a reversal of the strongest provisions of BW-12.243

In early 2014, Congress reinstated the discounts for most policyholders and slowed the increase for others with the passage of the HFIAA. The interaction between Congress and policyholders exemplifies the core essence of moral hazard; when people do not assume the full risk of an action or decision, they are not inclined to make a fully responsible or moral choice. As the economic argument for moral hazard declares, “people never would have flocked to the Jersey shore or Florida coast… had the government not offered the phony protection of subsidized insurance.”244 As further explained by Justice Scalia, these interactions help to show that the govermentalization of charity leads to the transformation of charity into legal entitlement.245 The continuation of NFIP subsidies and grandfathered discounted premiums has effectively transformed the program into a legal entitlement for many policyholders; this limits the options for decision makers. As summarized by Bjorn Beer,

> Biggert-Waters represented a rare moment when fiscal and environmental common sense overlapped just long enough for policymakers to look beyond the horizon of a 30-year mortgage. The undoing of these reforms proves that our political system can’t even see past the horizon of the next election. Perhaps it is all a reflection of what behavioral scientists say is \textit{Homo sapiens}’ hard-wired myopia. We’ve evolved an excellent ability to

242 Beer and Hoffman, “Underwater,” 42.

243 Knowles and Bouie, “Flood Zone Foolishness.”

244 Ibid.

245 Scalia, “Is Capitalism or Socialism More Conducive.”
notice short-term dangers like a spike in our insurance, but we’re lousy at seeing long-term threats like sea level rise.246

C. SIGNIFICANT FLOOD EVENTS

The NFIP is not structured to withstand claims and losses associated with a catastrophic loss year; it uses the borrowing authority with the U.S. Treasury to cover excessive losses.247 On the contrary, the NFIP has been structured to cover claims associated with a “historical average loss year.”248 Nevertheless, before Hurricane Katrina, the NFIP had generally remained fiscally solvent, only needing to borrow funds from the U.S. Treasury four times since the mid-1980s and repaid the debt each time.249 In many ways, this is a testament to the sound management and administration of the program.

Unfortunately, the catastrophic losses associated with the 2004, 2005, 2008, and 2012 hurricane seasons created a fiscal crisis requiring intercession. Should the catastrophic losses of these historic hurricane seasons serve as an indictment of the failures of the program to prepare for repeated significant losses or simply be written off as an anomaly that should be covered as federal disaster assistance? Perhaps the answer is that both assertions are correct. The NFIP is conceived as a social program that is legislatively limited when it comes to addressing the potential for catastrophic losses.250 This creates a mechanism by which policymakers have undermined the ability of the program to achieve actuarial soundness required to address catastrophic losses.251 In addition, the NFIP is an extension of federal disaster assistance programs.252 The severe hurricane impacts from 2004 through 2012 represent one of the most costly disaster periods in United States history. In particular, Hurricanes Katrina and Sandy pushed all

247 Kousky and Shabman, Pricing Flood Insurance, 9.
248 Hayes and Neal, NFIP Actuarial Rate Review, 5.
249 Ibid., 6.
251 Kousky and Shabman, Pricing Flood Insurance, 9.
252 Hayes and Neal, NFIP Actuarial Rate Review, 4.
aspects of government, private, and non-profit disaster assistance programs beyond the breaking point; the NFIP was no exception.

A review of the history of federal involvement in responding to floods shows that every time government intervention has been challenged by disaster, programs are adjusted to meet the emerging challenge. Figure 5 provides a “cause and effect” chain of major flood-related disasters and the legislative response to those disasters. It also highlights the limitations of policymakers, who have difficulty seeing past the scope of the current disaster to plan for the potentially greater impact of future disasters.
Figure 5. Diagram Depicting the Cause and Effect Relationship between Significant Flood Disasters and the Resulting Legislation

Throughout the history of the NFIP, significant loss events have accounted for a greater and greater percentage of flood insurance claims and losses (see Figures 6 and 7). While the numbers vary significantly from year-to-year pending on impacts from disasters, significant loss events currently average 64 percent of claims and 84 percent of
losses for the NFIP. Given that the NFIP was never designed to fund catastrophic losses, it should not be surprising that the program could not fiscally manage the historic hurricane impacts of 2004 through 2012. Kousky and Shabman acknowledge that even if the program were fully funded at actuarial rates, it would not be able to absorb those catastrophic losses. From this perspective, policymakers should recognize the limitations of how the program is formulated and simply write off these catastrophic losses as part of federal disaster assistance.

Figure 6. Flood Insurance Loss Claims (1978–2015) Total Claims versus Significant Event Claims

254 Kousky and Shabman, Pricing Flood Insurance, 9.

Figure 7. Flood Insurance Loss Dollars Paid (1978–2015) Totals Losses versus Significant Event Losses256

However, addressing the catastrophic impacts of recent disasters may only represent the tip of the iceberg for the issue of significant loss events. Given the predicted impacts of climate change related to the threat of flooding, significant loss events are forecasted to become far more widespread, and they may represent the single greatest threat to the long-term sustainment of the NFIP. A study completed for FEMA on the impacts of climate change indicates that by the year 2100, the average increase in SFHA nationally may be approximately 40 to 45 percent, and no significant decreases in the floodplain depth and SFHA are anticipated in any region of the United States.257 Also, the study indicates that the need for NFIP flood insurance policies may increase by 80 to

100 percent due to both population growth in SFHAs (by 30 percent) and climate change increasing the size of SFHAs (by 70 percent).258

The impact of significant loss events is clearly a threat to the long-term sustainability of the NFIP. Policymakers must continue to address the fiscal challenges facing the program by placing it in a more financial sound framework that allows for improved management of the program when faced with significant loss events. Furthermore, hazard identification and floodplain management policies must start to address the estimated impacts of climate change increasing the threat of flooding. Finally, policymakers must proactively deal with the emerging challenge of climate change or risk the collapse of the NFIP from sustained significant loss event impacts.

258 Ibid., 6-2.
IV. CONCLUSION

A. THE MORAL HAZARD ARGUMENT

Moral hazard is a concept originating in the early insurance industry with broad application in economics, law, and policy debate. Moral hazard is defined as when people do not assume the full risk of an action or decision, they are not inclined to make a fully responsible or moral choice; how the redistribution of risk adversely changes people’s behavior.259 With the expansion of federal government involvement in providing disaster assistance, many commentators have asserted that government involvement contributes to the rise of moral hazard and reduces incentives to reduce risk.260

Does federal involvement in provision of disaster assistance limit risk reduction and contribute to the rise of a moral hazard? Though I concede that moral hazard cannot be universally applied to all disaster assistance programs, many of these programs share commonalities with insurance, wherein the concept of moral hazard originated. It is from this perspective that an examination of the NFIP can provide insight into the unintended consequences of government involvement in providing disaster assistance may not only limit risk reduction but also may give rise to a moral hazard.

1. The Challenge of Floods

It has been argued that flooding and flood-related hazards are the most prominent and significant hazards in the United States. A review of the historical impacts of flooding demonstrates the lasting impact that flooding has historically had on the nation’s “engineering concepts, economic thought, and political policy.”261 The initiation point for federal involvement in providing disaster assistance can traced to the transition of flood control measures from a local community responsibility to a federal government responsibility following the Great Mississippi River Flood of 1927. The evolution of federal government providing disaster assistance continued to expand with the significant

261 Platt, Disasters and Democracy, 151–153.
impacts of Hurricane Betsy in 1965, which resulted in the passage of the Southeast Hurricane Disaster Relief Act. This act included provisions to conduct a feasibility study of the federal government providing a national program for flood insurance. Findings from that study resulted in the passage of the National Flood Insurance Act of 1968, which created the NFIP and tasked the federal government with the responsibility of conducting flood hazard identification and risk assessment, coordinating floodplain management, and providing flood insurance.

Over the course of the last half-century, the federal government role has continued to expand and evolve with the government taking an ever-increasing role in providing disaster assistance. While government programs are designed to address all hazards, flooding and flood-related impacts account for the vast majority of direct economic losses as well as for 78.2 percent of all major disaster declarations.262 Given that the NFIP is the principal federal program designated to address the hazard of flooding, it provides a model example for the study of how government involvement can limit risk reduction. Furthermore, findings may provide perspective on how government involvement in disaster assistance might contribute to the rise of a moral hazard.

2. The Role of the NFIP in Reducing Risk

The NFIP was created as a mitigation program with the goal of preventing future loss of life and property from the hazard of flooding. Policymakers have used the NFIP as an extension of disaster recovery, noting “[flood insurance] was considered preferable to the previous arrangement of disaster relief that came solely from taxpayer funding.”263 The NFIP consists of three main elements: flood hazard identification and risk assessment, floodplain management, and flood insurance.

Through the NFIP flood hazard identification and risk assessment component, the federal government identifies flood-prone areas and maps zones at risk for flooding. The standard tool for communicating risk to a community and its residents is the FIRM. Areas

263 Hayes and Neal, NFIP Actuarial Rate Review, 4.
at high risk for flooding are identified as SFHAs, based on the 100-year base flood elevation in areas prone to flood water inundation or based on wave action or storm surge in coastal areas. Additional flood hazard information is communicated on FIRMs to provide a graphic assessment of the total flood hazard present in a community. The flood hazard identification and risk assessment information are used to determine requirements for floodplain management and flood insurance.

The NFIP goal to reduce losses and damages caused by flooding is primarily addressed through the establishment of floodplain management standards, which are designed to mitigate the flood hazard. For a community to participate in the NFIP, it must adopt floodplain management ordinances that adhere to the minimum standards established at the federal level.264 The intent of these standards is not to prohibit development, but rather to ensure that development is constructed in such a way as to be protected from a base flood event. While the federal government establishes the standards, the land-use authority required to regulate floodplain development is a power reserved by the Constitution to states and delegated to the respective state’s political subdivisions (local jurisdictions).265 Hence, while the federal government establishes the standards for floodplain management, state and local jurisdictions must adopt and enforce the standards to mitigate the hazard. The federal government further promotes the adoption of best practices by state and local jurisdictions through the CRS program, which incentivizes these actions by offering flood insurance discounts.

The NFIP indemnifies individuals from flood losses through the flood insurance program providing coverage for business and residential structures as well as content protection.266 The flood insurance program is considered an extension of disaster assistance funded by policyholders to lessen the impact on taxpayers who would

264 “Local Floodplain Development Regulations.”

266 “Flood Insurance: Is Purchase Required?”
otherwise be called upon to assist through other federal disaster assistance programs.267 The flood insurance program is administered through a partnership between FEMA and private insurance providers, which facilitate the sale and servicing of flood insurance. Flood insurance premiums are set on the basis of covering the “historical average loss year” versus collecting premiums sufficient to cover claims from catastrophic losses with provisions to borrow from the U.S. Treasury when the NFIF has insufficient funds to pay claims.268

To summarize, the NFIP is designed as a flood mitigation program that identifies and assesses flood hazards, coordinates floodplain management, and provides flood insurance. The NFIP currently has over 22,000 communities participating with more than 5.2 million policies in force providing total coverage in excess of $1.2 trillion.269 The NFIP has generally remained fiscally solvent for much of its history.270 However, the catastrophic losses associated with the impacts of 2004, 2005, 2008, and 2012 hurricane seasons has generated $24 billion in debt to the U.S. Treasury with revenue unlikely to cover future catastrophic losses or repay the billions of dollars in debt.271 Given the current fiscal crisis facing the program, analysis of program elements hampering the sound administration of the program can provide insight into program elements that limit risk reduction.

\section*{B. NFIP STUDY FINDINGS}

The following section highlights findings from the case study of the NFIP and applies those findings to the broader scope of federal government involvement in providing disaster assistance.

\begin{footnotesize}
\begin{enumerate}
\item 267 Federal Emergency Management Agency, \textit{NFIP: Program Description}, 22.
\item 268 Hayes and Neal, \textit{NFIP Actuarial Rate Review}, 16; Kousky and Shabman, \textit{Pricing Flood Insurance}, 9; Brown, \textit{Introduction to FEMA’s National Flood Insurance}, 19.
\item 270 Hayes and Neal, \textit{NFIP Actuarial Rate Review}, 6.
\end{enumerate}
\end{footnotesize}
1. **How the NFIP Limits Risk Reduction**

I am of two minds about the NFIP’s role in limiting risk reduction. On the one hand, the program provides a framework for the identification and assessment of flood risk, provides a methodology to reduce risk through the establishment of floodplain management standards, provides flood insurance to indemnify individuals for flood losses where a private insurance market failed to emerge, and offers mitigation programs to reduce overall risk. On the other hand, the program allows for repetitive loss without mechanisms to refuse future coverage, compel policyholders to mitigate against future loss, or impose actuarial rates as a penalty for repetitive claims. Moreover, nearly 50 years after initiation of the NFIP, the program continues to provide pre-FIRM subsidies and grandfathered rates for high-risk properties that undermine the use of mitigation measures to effectively reduce long-term risk.

When it comes to the topics of the repetitive loss and pre-FIRM subsidies, most of us would readily agree these policies weaken the fiscal solvency of the NFIP, which requires taxpayers to accept greater financial risk from future catastrophic losses. Where the agreement usually ends, however, is the question of how to effectively address policy shortcomings. Whereas some are convinced that these policies must be phased out to provide for the long-term sustainability of the NFIP, others maintain that elimination of these policies would reduce participation in the NFIP and negatively impact local economies and housing markets.

By focusing on the implications of sustainability and fiscal solvency, the continuation of these policies overlooks the deeper problem of limiting risk reduction. The majority of repetitive loss and pre-FIRM properties are located in high-risk areas. While losses associated with flooding have significant impacts beyond the physical damage to structures and belongings, many chose to rebuild and remain because there is little concern of losing their flood insurance coverage or being required to implement costly mitigation measures against future losses. Furthermore, the use of subsidized rates for pre-FIRM or grandfathered policies removes the incentive to mitigate or reduce the risk as the implementation of those measures does little to change the cost of flood insurance. Ultimately, what is at stake here is that these policies allow for life and
property to be placed at greater risk of experiencing loss from flooding. In the end, the transfer of risk from the policyholder to the government has resulted in a disincentive to reduce risk and promoted the rise of a moral hazard.

2. Failure to Prepare for Future Disasters

In Chapter III, it is outlined how the NFIP has not been structured to withstand claims and losses associated with catastrophic losses; instead relying on its borrowing authority with the U.S. Treasury to cover excessive losses.272 A review of the history of federal involvement in provision of assistance for flooding shows a cause and effect pattern in which major flood-related disasters exceed existing government response capabilities, which requires the paradigm to be reset for the next disaster. The pattern highlights the limited view of policymakers, who focus on disasters of the past versus promotion of resilience to enhance protections for future threats.

NFIP claim and loss data support the notion that significant loss events represent the most significant challenge to the long-term sustainment of the program. Furthermore, trend patterns and studies of the potential impacts of climate change provide an indication of these impacts continuing to increase. It should be no surprise that the NFIP is financially compromised; it is not structured for catastrophic losses and is repeatedly tested by significant loss events. Whereas losses associated with significant loss events provide ample evidence that the NFIP is fiscally flawed, it does little to support the argument that the NFIP limits risk reduction for individual policyholders. Nevertheless, it highlights the shortcomings of policymakers to address an emerging issue that will further compromise the NFIP.

The shortcomings of policymakers to address the sustainment of the NFIP presents a parallel argument that there is moral hazard in the current policymaking environment. It can be argued that when policymakers limit the sustainability of the NFIP to historical average losses versus catastrophic losses, they fail to provide for the long-term resilience of the program. The legacy of these shortcomings is that the NFIP will

272 Kousky and Shabman, Pricing Flood Insurance, 9.
continue to be challenged by significant loss events and will not be prepared to deal with the emerging hazard of climate change.

3. **Broader Implications of Federal Involvement**

This inquiry looked to explore the extent the NFIP limits risk reduction. While the NFIP clearly seeks to reduce risk through each of the main program elements, the evidence indicates aspects of the program limit risk reduction, primarily through the funding of repetitive loss and use of subsidies. Furthermore, from a broader policy perspective, the failure of policymakers to enhance the resilience of the program to absorb catastrophic losses has a limiting effect on the long-term sustainability of the program.

What does this perspective tell us about how federal involvement in disaster assistance might contribute to the rise of a moral hazard? An important takeaway is that federal involvement does not arbitrarily mean that behavior is negatively altered. However, it is important to evaluate the extent to which a policy provides benefits beyond what would be considered reasonable, thus creating incentives to limit risk reduction.

Kousky and Shabman assert, “there is no compelling evidence for a moral hazard in disaster relief programs for households.”\(^{273}\) This is supported by their review of available disaster relief for individuals, providing an indication that programs are designed to minimize moral hazard through limitations placed on the aid provided.\(^{274}\) Although I agree with Kousky and Shabman related to individual assistance programs, public assistance programs provide an alternative to federal involvement contributing to a moral hazard.

Through the Stafford Act, the federal government provides public assistance to state and local communities impacted by major disasters. While jurisdictions must exceed a per capita impact to qualify for a major disaster declaration, once issued, at least 75

\(^{274}\) Ibid.
percent of the recovery expense for emergency response measures and restoration of public infrastructure is shifted to the federal government—with no cap set on assistance.\(^{275}\) The transference of disaster recovery costs offers a similar dynamic to the NFIP reducing resolve to minimize risk. From a practitioner’s perspective, this is best exhibited through the emphasis that state and local jurisdictions place on preparedness and response, while often neglecting mitigation and recovery readiness. Policymakers have begun to recognize the need to adjust policy given the substantial financial commitments transferred to the federal government when public assistance is included in a major disaster declaration (note that 94 percent of major disaster declarations include public assistance versus the 45 percent that include individual assistance).\(^{276}\) In response to calls from Congress, the GAO, and the Department of Homeland Security’s Office of Inspector General, FEMA is exploring the use of a disaster deductible as a means to reform how the federal government supports states following a disaster.\(^{277}\)

These findings have important consequences for the broader domain of evaluating the unintended consequences of federal involvement in providing disaster assistance. While there is an imperative for the government to provide disaster assistance, it is important to evaluate whether that assistance negatively alters the risk reduction approach of those at risk from the disaster. A continued focus on reducing risk and promoting resilience should be at the core of government disaster assistance.

C. RECOMMENDATIONS

Based on the thesis findings, the following section touches on recommendations for resolving policy shortcomings, enhancing the resiliency of the NFIP in the era of climate change, and identifies areas for future research.

1. **Resolve Policy Shortcomings**

In conclusion, as I have suggested, aspects of the NFIP limit risk reduction and contribute to the rise of a moral hazard. Specifically, NFIP policies that support continued coverage of repetitive loss, use of subsidies to desensitize risk, and failure to adjust for catastrophic losses all impact the sustainability and resilience of the program. Measures included in BW-12 demonstrate a resolve to enhance the sustainability and resilience of the NFIP following the catastrophic losses of the late 2000s. Unfortunately, that resolve was short-lived, and many of the major components that addressed those shortcomings rolled back with the passage of the HFIAA. Congresswomen Maxine Waters, who sponsored both the original reform and reversal, was quick to blame FEMA for the legislative backlash with what she termed “bungled management” of the reform. While it is true that BW-12 resulted in public outcry regarding the rapid removal of flood insurance subsidies (phased out over a four- to five-year cycle), it does not necessarily follow that these measures were inappropriate. In an analysis of the matter in 2010 by Michel-Kerjan, he explains, “It would make sense also to reduce gradually the subsidy currently given to these homeowners, perhaps over a period of 10 or 15 years so it is easier to do politically.” In short, Michel-Kerjan suggested a far more gradual phase out of subsidies that may have avoided the political backlash.

As these issues are inherent to the original implementation of the NFIP, it is important for policymakers to consider adjustments in an incremental manner to enhance the sustainability of the program while minimizing the public’s resistance. Such are the terms needed to reverse the establishment of a moral hazard.

2. **Enhancing Resiliency of the NFIP in the Era of Climate Change**

The United Kingdom has adopted legislation and incorporated policies into its national frameworks to address climate change as an emerging hazard. The United States should mirror the efforts utilized by the United Kingdom to map out the forecasted impacts of climate change and require communities to address the emerging hazard.

278 Beer and Hoffman, “Underwater,” 42.
Current U.S. efforts have implemented some of these elements into recovery programs for Hurricane Sandy, such as a $50 billion investment to address climate change mitigation strategies. While a positive step, this effort also highlights the reactive nature of current U.S. policy. To require plans to be developed in advance will create a proactive framework for investment before disaster strikes.

3. Areas for Future Research

Given the NFIP’s substantial financial issues and other challenges, there is an extensive library of research available for review. While it is hoped that this thesis contributes to the analysis of the NFIP, further research of the program is warranted. For example, a 2010 floodplain management report published by the Association of State Floodplain Managers, identified evaluation of state floodplain management programs as a glaring deficiency.280

Another area that warrants inquiry is the financial arrangement between the NFIP and WYO insurance services. A 2014 GAO report identifies that WYO expenses account for 12 percent and commissions account for 14 percent of NFIP premium expenses.281 While these percentages may be reasonable, further evaluation may reveal alternatives to control these costs.

APPENDIX A. FEMA DISASTER DECLARATION DATA

FEMA disaster declaration data was compiled from the FEMA’s online disaster declaration database (https://www.fema.gov/disasters). The Stafford Act provides for major disaster declarations (incident that exceeds the capabilities of state and local governments) and emergency declarations (supplemental assistance to state and local governments). An extension of FEMA public assistance programs is the Fire Management Assistance Grant (FMAG) program, which provides financial assistance to assist in reimbursement for equipment, supplies, and personnel to any declared fire that meets the FMAG requirements. To get the results on Table 3, this researcher applied filters to the FEMA incident descriptions to determine natural hazard, non-natural hazard, and flood/flood-related disasters.

Table 3. FEMA Disaster Declarations (1953–2015)285

<table>
<thead>
<tr>
<th>Year</th>
<th>Major Disaster Declarations</th>
<th>Natural Hazard Related Major Disaster Declarations</th>
<th>Non-Natural Hazard Related Major Disaster Declarations</th>
<th>Flood and Flood-Related Major Disaster Declarations</th>
<th>Percentage of Major Disaster Declarations Related to Flooding</th>
<th>Emergency Declarations</th>
<th>Fire Management Assistance Grants (FMAG)</th>
<th>Total Declarations (Major, Emergency, FMAG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1953</td>
<td>13</td>
<td>13</td>
<td>0</td>
<td>6</td>
<td>46%</td>
<td>0</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>1954</td>
<td>17</td>
<td>17</td>
<td>0</td>
<td>14</td>
<td>82%</td>
<td>0</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>1955</td>
<td>18</td>
<td>18</td>
<td>0</td>
<td>15</td>
<td>83%</td>
<td>0</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>1956</td>
<td>16</td>
<td>16</td>
<td>0</td>
<td>12</td>
<td>75%</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>1957</td>
<td>16</td>
<td>16</td>
<td>0</td>
<td>15</td>
<td>94%</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>1958</td>
<td>7</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td>100%</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>1959</td>
<td>7</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td>100%</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>1950s</td>
<td>94</td>
<td>94</td>
<td>0</td>
<td>76</td>
<td>81%</td>
<td>0</td>
<td>0</td>
<td>94</td>
</tr>
<tr>
<td>1960</td>
<td>12</td>
<td>12</td>
<td>0</td>
<td>10</td>
<td>83%</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>1961</td>
<td>12</td>
<td>12</td>
<td>0</td>
<td>11</td>
<td>92%</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>1962</td>
<td>22</td>
<td>20</td>
<td>2</td>
<td>20</td>
<td>91%</td>
<td>0</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>1963</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>19</td>
<td>95%</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>1964</td>
<td>25</td>
<td>25</td>
<td>0</td>
<td>24</td>
<td>96%</td>
<td>0</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>1965</td>
<td>25</td>
<td>25</td>
<td>0</td>
<td>20</td>
<td>80%</td>
<td>0</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>1966</td>
<td>11</td>
<td>11</td>
<td>0</td>
<td>10</td>
<td>91%</td>
<td>0</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>1967</td>
<td>11</td>
<td>11</td>
<td>0</td>
<td>10</td>
<td>91%</td>
<td>0</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>1968</td>
<td>19</td>
<td>19</td>
<td>0</td>
<td>14</td>
<td>74%</td>
<td>0</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>1969</td>
<td>29</td>
<td>29</td>
<td>0</td>
<td>29</td>
<td>100%</td>
<td>0</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>1960s</td>
<td>186</td>
<td>184</td>
<td>2</td>
<td>167</td>
<td>90%</td>
<td>0</td>
<td>0</td>
<td>186</td>
</tr>
<tr>
<td>1970</td>
<td>17</td>
<td>17</td>
<td>0</td>
<td>16</td>
<td>94%</td>
<td>0</td>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td>1971</td>
<td>17</td>
<td>17</td>
<td>0</td>
<td>12</td>
<td>71%</td>
<td>0</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>1972</td>
<td>48</td>
<td>48</td>
<td>0</td>
<td>45</td>
<td>94%</td>
<td>0</td>
<td>0</td>
<td>48</td>
</tr>
<tr>
<td>1973</td>
<td>46</td>
<td>46</td>
<td>0</td>
<td>43</td>
<td>93%</td>
<td>0</td>
<td>9</td>
<td>55</td>
</tr>
</tbody>
</table>

285 Adapted from Federal Emergency Management Agency, “Disaster Declarations.”
<table>
<thead>
<tr>
<th>Year</th>
<th>Major Disaster Declarations</th>
<th>Natural Hazard Related Major Disaster Declarations</th>
<th>Non-Natural Hazard Related Major Disaster Declarations</th>
<th>Flood and Flood-Related Major Disaster Declarations</th>
<th>Percentage of Major Disaster Declarations Related to Flooding</th>
<th>Emergency Declarations</th>
<th>Fire Management Assistance Grants (FMAG)</th>
<th>Total Declarations (Major, Emergency, FMAG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>46</td>
<td>46</td>
<td>0</td>
<td>43</td>
<td>93%</td>
<td>5</td>
<td>2</td>
<td>53</td>
</tr>
<tr>
<td>1975</td>
<td>38</td>
<td>38</td>
<td>0</td>
<td>31</td>
<td>82%</td>
<td>6</td>
<td>1</td>
<td>45</td>
</tr>
<tr>
<td>1976</td>
<td>30</td>
<td>30</td>
<td>0</td>
<td>27</td>
<td>90%</td>
<td>8</td>
<td>7</td>
<td>45</td>
</tr>
<tr>
<td>1977</td>
<td>22</td>
<td>22</td>
<td>0</td>
<td>16</td>
<td>73%</td>
<td>34</td>
<td>5</td>
<td>61</td>
</tr>
<tr>
<td>1978</td>
<td>25</td>
<td>25</td>
<td>0</td>
<td>24</td>
<td>96%</td>
<td>14</td>
<td>2</td>
<td>41</td>
</tr>
<tr>
<td>1979</td>
<td>42</td>
<td>42</td>
<td>0</td>
<td>36</td>
<td>86%</td>
<td>10</td>
<td>7</td>
<td>59</td>
</tr>
<tr>
<td>1970s</td>
<td>331</td>
<td>331</td>
<td>0</td>
<td>293</td>
<td>89%</td>
<td>77</td>
<td>38</td>
<td>446</td>
</tr>
<tr>
<td>1980</td>
<td>23</td>
<td>23</td>
<td>0</td>
<td>20</td>
<td>87%</td>
<td>6</td>
<td>2</td>
<td>31</td>
</tr>
<tr>
<td>1981</td>
<td>15</td>
<td>13</td>
<td>2</td>
<td>12</td>
<td>80%</td>
<td>0</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>1982</td>
<td>24</td>
<td>24</td>
<td>0</td>
<td>21</td>
<td>88%</td>
<td>3</td>
<td>0</td>
<td>27</td>
</tr>
<tr>
<td>1983</td>
<td>21</td>
<td>21</td>
<td>0</td>
<td>19</td>
<td>90%</td>
<td>1</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>1984</td>
<td>34</td>
<td>34</td>
<td>0</td>
<td>26</td>
<td>76%</td>
<td>4</td>
<td>4</td>
<td>42</td>
</tr>
<tr>
<td>1985</td>
<td>27</td>
<td>27</td>
<td>0</td>
<td>24</td>
<td>89%</td>
<td>0</td>
<td>9</td>
<td>36</td>
</tr>
<tr>
<td>1986</td>
<td>28</td>
<td>28</td>
<td>0</td>
<td>28</td>
<td>100%</td>
<td>0</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>1987</td>
<td>23</td>
<td>23</td>
<td>0</td>
<td>17</td>
<td>74%</td>
<td>1</td>
<td>7</td>
<td>31</td>
</tr>
<tr>
<td>1988</td>
<td>11</td>
<td>11</td>
<td>0</td>
<td>7</td>
<td>64%</td>
<td>0</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>1989</td>
<td>31</td>
<td>31</td>
<td>0</td>
<td>22</td>
<td>71%</td>
<td>0</td>
<td>1</td>
<td>32</td>
</tr>
<tr>
<td>1980s</td>
<td>237</td>
<td>235</td>
<td>2</td>
<td>196</td>
<td>83%</td>
<td>15</td>
<td>34</td>
<td>286</td>
</tr>
<tr>
<td>1990</td>
<td>38</td>
<td>38</td>
<td>0</td>
<td>32</td>
<td>84%</td>
<td>0</td>
<td>5</td>
<td>43</td>
</tr>
<tr>
<td>1991</td>
<td>43</td>
<td>43</td>
<td>0</td>
<td>34</td>
<td>79%</td>
<td>0</td>
<td>2</td>
<td>45</td>
</tr>
<tr>
<td>1992</td>
<td>45</td>
<td>44</td>
<td>1</td>
<td>33</td>
<td>73%</td>
<td>2</td>
<td>6</td>
<td>53</td>
</tr>
<tr>
<td>1993</td>
<td>32</td>
<td>31</td>
<td>1</td>
<td>26</td>
<td>81%</td>
<td>19</td>
<td>7</td>
<td>58</td>
</tr>
<tr>
<td>1994</td>
<td>36</td>
<td>36</td>
<td>0</td>
<td>21</td>
<td>58%</td>
<td>1</td>
<td>20</td>
<td>57</td>
</tr>
<tr>
<td>1995</td>
<td>32</td>
<td>31</td>
<td>1</td>
<td>27</td>
<td>84%</td>
<td>2</td>
<td>4</td>
<td>38</td>
</tr>
<tr>
<td>1996</td>
<td>75</td>
<td>75</td>
<td>0</td>
<td>54</td>
<td>72%</td>
<td>8</td>
<td>75</td>
<td>158</td>
</tr>
<tr>
<td>1997</td>
<td>44</td>
<td>44</td>
<td>0</td>
<td>33</td>
<td>75%</td>
<td>0</td>
<td>3</td>
<td>47</td>
</tr>
<tr>
<td>Year</td>
<td>Major Disaster Declarations</td>
<td>Natural Hazard Related Major Disaster Declarations</td>
<td>Non-Natural Hazard Major Disaster Declarations</td>
<td>Flood and Flood-Related Major Disaster Declarations</td>
<td>Percentage of Major Disaster Declarations Related to Flooding</td>
<td>Emergency Declarations</td>
<td>Fire Management Assistance Grants (FMAG)</td>
<td>Total Declarations (Major, Emergency, FMAG)</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>------------------------</td>
<td>-------------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>1998</td>
<td>65</td>
<td>65</td>
<td>0</td>
<td>47</td>
<td>72%</td>
<td>9</td>
<td>54</td>
<td>128</td>
</tr>
<tr>
<td>1999</td>
<td>50</td>
<td>50</td>
<td>0</td>
<td>39</td>
<td>78%</td>
<td>20</td>
<td>40</td>
<td>110</td>
</tr>
<tr>
<td>1990s</td>
<td>460</td>
<td>457</td>
<td>3</td>
<td>346</td>
<td>75%</td>
<td>61</td>
<td>216</td>
<td>737</td>
</tr>
<tr>
<td>2000</td>
<td>45</td>
<td>45</td>
<td>0</td>
<td>20</td>
<td>44%</td>
<td>6</td>
<td>63</td>
<td>114</td>
</tr>
<tr>
<td>2001</td>
<td>45</td>
<td>43</td>
<td>2</td>
<td>27</td>
<td>60%</td>
<td>11</td>
<td>44</td>
<td>100</td>
</tr>
<tr>
<td>2002</td>
<td>49</td>
<td>49</td>
<td>0</td>
<td>31</td>
<td>63%</td>
<td>0</td>
<td>70</td>
<td>119</td>
</tr>
<tr>
<td>2003</td>
<td>56</td>
<td>56</td>
<td>0</td>
<td>39</td>
<td>70%</td>
<td>19</td>
<td>48</td>
<td>123</td>
</tr>
<tr>
<td>2004</td>
<td>68</td>
<td>68</td>
<td>0</td>
<td>63</td>
<td>93%</td>
<td>7</td>
<td>43</td>
<td>118</td>
</tr>
<tr>
<td>2005</td>
<td>48</td>
<td>48</td>
<td>0</td>
<td>40</td>
<td>83%</td>
<td>68</td>
<td>39</td>
<td>155</td>
</tr>
<tr>
<td>2006</td>
<td>52</td>
<td>52</td>
<td>0</td>
<td>35</td>
<td>67%</td>
<td>5</td>
<td>86</td>
<td>143</td>
</tr>
<tr>
<td>2007</td>
<td>63</td>
<td>63</td>
<td>0</td>
<td>45</td>
<td>71%</td>
<td>13</td>
<td>60</td>
<td>136</td>
</tr>
<tr>
<td>2008</td>
<td>75</td>
<td>75</td>
<td>0</td>
<td>64</td>
<td>85%</td>
<td>17</td>
<td>51</td>
<td>143</td>
</tr>
<tr>
<td>2009</td>
<td>59</td>
<td>59</td>
<td>0</td>
<td>43</td>
<td>73%</td>
<td>7</td>
<td>49</td>
<td>115</td>
</tr>
<tr>
<td>2000s</td>
<td>560</td>
<td>558</td>
<td>2</td>
<td>407</td>
<td>73%</td>
<td>153</td>
<td>553</td>
<td>1266</td>
</tr>
<tr>
<td>2010</td>
<td>81</td>
<td>81</td>
<td>0</td>
<td>53</td>
<td>65%</td>
<td>9</td>
<td>18</td>
<td>108</td>
</tr>
<tr>
<td>2011</td>
<td>99</td>
<td>99</td>
<td>0</td>
<td>78</td>
<td>79%</td>
<td>29</td>
<td>114</td>
<td>242</td>
</tr>
<tr>
<td>2012</td>
<td>47</td>
<td>47</td>
<td>0</td>
<td>34</td>
<td>72%</td>
<td>16</td>
<td>49</td>
<td>112</td>
</tr>
<tr>
<td>2013</td>
<td>62</td>
<td>61</td>
<td>1</td>
<td>43</td>
<td>69%</td>
<td>5</td>
<td>28</td>
<td>95</td>
</tr>
<tr>
<td>2014</td>
<td>45</td>
<td>45</td>
<td>0</td>
<td>32</td>
<td>71%</td>
<td>6</td>
<td>33</td>
<td>84</td>
</tr>
<tr>
<td>2015</td>
<td>43</td>
<td>43</td>
<td>0</td>
<td>31</td>
<td>72%</td>
<td>2</td>
<td>34</td>
<td>79</td>
</tr>
<tr>
<td>Totals</td>
<td>2245</td>
<td>2235</td>
<td>10</td>
<td>1756</td>
<td>78.2%</td>
<td>373</td>
<td>1117</td>
<td>3735</td>
</tr>
</tbody>
</table>
APPENDIX B. FEMA NFIP FLOOD ZONE DEFINITIONS

The following zones (in Table 4) comprise the special flood hazard area (SFHA). FEMA defines these commonly used terms in floodplain management.286

<table>
<thead>
<tr>
<th>ZONE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>High hazard areas subject to inundation by the one percent annual chance flood event generally determined using approximate methodologies. Because detailed hydraulic analyses have not been performed, no base flood elevations or flood depths are shown.</td>
</tr>
<tr>
<td>AE and A1-30</td>
<td>High hazard areas subject to inundation by the one percent annual chance flood event determined by detailed methods. Base flood elevations are shown.</td>
</tr>
<tr>
<td>AH</td>
<td>High hazard areas subject to inundation by one percent annual chance shallow flooding (usually areas of ponding) where average depths are between one and three feet. Base flood elevations are derived from detailed hydraulic analyses are shown in this zone.</td>
</tr>
<tr>
<td>AO</td>
<td>High hazard areas subject to inundation by one percent annual chance shallow flooding (usually sheet flow on sloping terrain) where average depths are between one and three feet. Average flood depths derived from detailed hydraulic analyses are shown in this zone. Some Zone AO have been designated in areas with high flood velocities such as alluvial fans and washes. Communities are encouraged to adopt more restrictive requirements for these areas.</td>
</tr>
<tr>
<td>AR</td>
<td>High hazard areas that result from the decertification of a previously accredited flood protection system that is determined to be in the process of being restored to provide base flood protection.</td>
</tr>
</tbody>
</table>

ZONE	**DESCRIPTION**
A99 | High hazard areas subject to inundation by the one percent annual chance flood event, but which will ultimately be protected upon completion of an under-construction Federal flood protection system. These are areas of special flood hazard where enough progress has been made on the construction of a protection system, such as dikes, dams, and levees, to consider it complete for insurance rating purposes. Zone A99 may only be used when the flood protection system has reached specified statutory progress toward completion. No base flood elevations or depths are shown.
V | High hazard areas along coasts subject to inundation by the one percent-annual-chance flood event with additional hazards associated with storm-induced waves. Because detailed hydraulic analyses have not been performed, no base flood elevations or flood depths are shown.
VE and V1-30 | High hazard areas subject to inundation by the one percent annual chance flood event with additional hazards due to storm-induced velocity wave action. Base flood elevations are derived from detailed hydraulic analyses are shown.

The following zones (in Table 5) comprise areas outside of the SFHA. FEMA defines these commonly used terms in floodplain management.287

Table 5. Moderate to Low Risk Flood Areas

<table>
<thead>
<tr>
<th>ZONE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>B or X</td>
<td>Moderate hazard areas subject to inundation by the 0.2 percent annual chance flood event (500-year flood zone). Areas identified as moderate flood hazard are recommended to purchase flood insurance.</td>
</tr>
<tr>
<td>C or X</td>
<td>Low or undetermined hazard areas with flood insurance encouraged, but no requirement.</td>
</tr>
</tbody>
</table>

287 Ibid.
APPENDIX C. FEMA NFIP FLOOD INSURANCE CLAIM AND LOSS DATA (REPETITIVE LOSS COMPARISON)

Table 6 provides a comparison of NFIP flood insurance claims and loss dollars paid between the full NFIP program and repetitive loss properties.

Table 6. NFIP Losses and Claims (Comparison of Totals versus Repetitive Loss)\(^{288}\)

<table>
<thead>
<tr>
<th>Year</th>
<th>NFIP Flood Insurance Policies in Force</th>
<th>Number of Flood Insurance Loss Claims</th>
<th>Number of Repetitive Loss Claims</th>
<th>% of Claims from Repetitive Loss</th>
<th>Total Loss Dollars Paid</th>
<th>Loss Dollars Paid for Repetitive Loss</th>
<th>% of Loss Dollars Paid for Repetitive Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978</td>
<td>1,446,354</td>
<td>29,122</td>
<td>9,176</td>
<td>31.5%</td>
<td>$147,719,000</td>
<td>$76,676,217</td>
<td>51.9%</td>
</tr>
<tr>
<td>1979</td>
<td>1,843,441</td>
<td>70,613</td>
<td>21,235</td>
<td>30.1%</td>
<td>$483,281,000</td>
<td>$219,743,242</td>
<td>45.5%</td>
</tr>
<tr>
<td>1970s</td>
<td>99,735</td>
<td>30,411</td>
<td></td>
<td></td>
<td>$631,000,000</td>
<td>$296,419,459</td>
<td>47.0%</td>
</tr>
<tr>
<td>1980</td>
<td>2,103,851</td>
<td>41,918</td>
<td>15,750</td>
<td>37.6%</td>
<td>$230,414,000</td>
<td>$131,319,138</td>
<td>57.0%</td>
</tr>
<tr>
<td>1981</td>
<td>1,915,065</td>
<td>23,261</td>
<td>7,639</td>
<td>32.8%</td>
<td>$127,118,000</td>
<td>$71,854,885</td>
<td>56.5%</td>
</tr>
<tr>
<td>1982</td>
<td>1,900,544</td>
<td>32,831</td>
<td>13,520</td>
<td>41.2%</td>
<td>$198,296,000</td>
<td>$121,889,553</td>
<td>61.5%</td>
</tr>
<tr>
<td>1983</td>
<td>1,981,122</td>
<td>51,584</td>
<td>20,617</td>
<td>40.0%</td>
<td>$439,455,000</td>
<td>$233,014,629</td>
<td>53.0%</td>
</tr>
<tr>
<td>1984</td>
<td>1,926,388</td>
<td>27,688</td>
<td>9,814</td>
<td>35.4%</td>
<td>$254,643,000</td>
<td>$113,542,105</td>
<td>44.6%</td>
</tr>
<tr>
<td>1985</td>
<td>2,016,785</td>
<td>38,676</td>
<td>14,117</td>
<td>36.5%</td>
<td>$368,239,000</td>
<td>$170,266,051</td>
<td>46.2%</td>
</tr>
<tr>
<td>1986</td>
<td>2,119,039</td>
<td>13,789</td>
<td>5,686</td>
<td>41.2%</td>
<td>$126,385,000</td>
<td>$67,262,331</td>
<td>53.2%</td>
</tr>
<tr>
<td>1987</td>
<td>2,115,183</td>
<td>13,400</td>
<td>5,906</td>
<td>44.1%</td>
<td>$105,432,000</td>
<td>$61,394,724</td>
<td>58.2%</td>
</tr>
<tr>
<td>1988</td>
<td>2,149,153</td>
<td>7,758</td>
<td>3,740</td>
<td>48.2%</td>
<td>$51,023,000</td>
<td>$33,330,976</td>
<td>65.3%</td>
</tr>
<tr>
<td>1989</td>
<td>2,292,947</td>
<td>36,245</td>
<td>14,077</td>
<td>38.8%</td>
<td>$661,658,000</td>
<td>$257,873,072</td>
<td>39.0%</td>
</tr>
<tr>
<td>1980s</td>
<td>287,150</td>
<td>110,866</td>
<td></td>
<td></td>
<td>$2,562,663,000</td>
<td>$1,261,747,464</td>
<td>49.2%</td>
</tr>
<tr>
<td>1990</td>
<td>2,477,861</td>
<td>14,766</td>
<td>7,177</td>
<td>48.6%</td>
<td>$167,897,000</td>
<td>$97,386,942</td>
<td>58.0%</td>
</tr>
<tr>
<td>1991</td>
<td>2,532,713</td>
<td>28,549</td>
<td>12,589</td>
<td>44.1%</td>
<td>$353,682,000</td>
<td>$190,264,875</td>
<td>53.8%</td>
</tr>
<tr>
<td>1992</td>
<td>2,623,406</td>
<td>44,648</td>
<td>17,217</td>
<td>38.6%</td>
<td>$710,225,000</td>
<td>$308,285,133</td>
<td>43.4%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>NFIP Flood Insurance Policies in Force</th>
<th>Number of Flood Insurance Loss Claims</th>
<th>Number of Repetitive Loss Claims</th>
<th>% of Claims from Repetitive Loss</th>
<th>Total Loss Dollars Paid</th>
<th>Loss Dollars Paid for Repetitive Loss</th>
<th>% of Loss Dollars Paid for Repetitive Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>2,828,558</td>
<td>36,044</td>
<td>13,669</td>
<td>37.9%</td>
<td>$659,059,000</td>
<td>$273,273,143</td>
<td>41.5%</td>
</tr>
<tr>
<td>1994</td>
<td>3,040,198</td>
<td>21,584</td>
<td>10,632</td>
<td>49.3%</td>
<td>$411,075,000</td>
<td>$226,476,161</td>
<td>55.1%</td>
</tr>
<tr>
<td>1995</td>
<td>3,476,829</td>
<td>62,441</td>
<td>20,791</td>
<td>33.3%</td>
<td>$1,295,578,000</td>
<td>$538,817,089</td>
<td>41.6%</td>
</tr>
<tr>
<td>1996</td>
<td>3,693,076</td>
<td>52,678</td>
<td>23,343</td>
<td>44.3%</td>
<td>$828,039,000</td>
<td>$465,331,421</td>
<td>56.2%</td>
</tr>
<tr>
<td>1997</td>
<td>4,102,416</td>
<td>30,338</td>
<td>9,452</td>
<td>33.3%</td>
<td>$519,537,000</td>
<td>$179,297,721</td>
<td>34.5%</td>
</tr>
<tr>
<td>1998</td>
<td>4,235,138</td>
<td>57,353</td>
<td>26,564</td>
<td>46.3%</td>
<td>$886,352,000</td>
<td>$504,077,505</td>
<td>56.9%</td>
</tr>
<tr>
<td>1999</td>
<td>4,329,985</td>
<td>47,248</td>
<td>18,832</td>
<td>41.9%</td>
<td>$754,950,500</td>
<td>$397,183,092</td>
<td>52.6%</td>
</tr>
<tr>
<td>1990s</td>
<td>395,649</td>
<td>160,266</td>
<td>40.5%</td>
<td>$6,586,394,500</td>
<td>$3,180,393,082</td>
<td>48.3%</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>4,369,087</td>
<td>16,362</td>
<td>6,096</td>
<td>37.3%</td>
<td>$251,721,000</td>
<td>$114,743,051</td>
<td>45.6%</td>
</tr>
<tr>
<td>2001</td>
<td>4,458,470</td>
<td>43,601</td>
<td>15,921</td>
<td>36.5%</td>
<td>$1,276,957,000</td>
<td>$537,229,725</td>
<td>42.1%</td>
</tr>
<tr>
<td>2002</td>
<td>4,519,799</td>
<td>25,347</td>
<td>14,244</td>
<td>56.2%</td>
<td>$433,649,000</td>
<td>$287,911,901</td>
<td>66.4%</td>
</tr>
<tr>
<td>2003</td>
<td>4,565,491</td>
<td>36,931</td>
<td>15,290</td>
<td>41.4%</td>
<td>$780,776,000</td>
<td>$346,528,911</td>
<td>44.4%</td>
</tr>
<tr>
<td>2004</td>
<td>4,667,446</td>
<td>55,908</td>
<td>22,898</td>
<td>41.0%</td>
<td>$2,232,421,000</td>
<td>$1,078,091,106</td>
<td>48.3%</td>
</tr>
<tr>
<td>2005</td>
<td>4,962,011</td>
<td>213,587</td>
<td>41,114</td>
<td>19.2%</td>
<td>$17,770,118,000</td>
<td>$2,590,287,505</td>
<td>14.6%</td>
</tr>
<tr>
<td>2006</td>
<td>5,514,895</td>
<td>24,629</td>
<td>12,827</td>
<td>52.1%</td>
<td>$640,797,000</td>
<td>$388,271,066</td>
<td>60.6%</td>
</tr>
<tr>
<td>2007</td>
<td>5,655,919</td>
<td>23,189</td>
<td>12,439</td>
<td>53.6%</td>
<td>$614,014,000</td>
<td>$361,669,877</td>
<td>58.9%</td>
</tr>
<tr>
<td>2008</td>
<td>5,684,275</td>
<td>74,907</td>
<td>21,121</td>
<td>28.2%</td>
<td>$3,487,967,000</td>
<td>$807,410,672</td>
<td>23.1%</td>
</tr>
<tr>
<td>2009</td>
<td>5,700,235</td>
<td>31,033</td>
<td>14,955</td>
<td>48.2%</td>
<td>$779,898,000</td>
<td>$423,153,535</td>
<td>54.3%</td>
</tr>
<tr>
<td>2000s</td>
<td>545,494</td>
<td>176,905</td>
<td>32.4%</td>
<td>$28,268,318,000</td>
<td>$6,935,297,349</td>
<td>24.5%</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>5,645,436</td>
<td>29,155</td>
<td>13,174</td>
<td>45.2%</td>
<td>$773,575,000</td>
<td>$338,757,540</td>
<td>43.8%</td>
</tr>
<tr>
<td>2011</td>
<td>5,646,144</td>
<td>78,183</td>
<td>39,612</td>
<td>50.7%</td>
<td>$2,427,274,000</td>
<td>$1,275,904,553</td>
<td>52.6%</td>
</tr>
<tr>
<td>2012</td>
<td>5,620,017</td>
<td>150,832</td>
<td>29,216</td>
<td>19.4%</td>
<td>$9,266,395,000</td>
<td>$1,904,871,322</td>
<td>20.6%</td>
</tr>
<tr>
<td>2013</td>
<td>5,568,642</td>
<td>18,101</td>
<td>7,060</td>
<td>39.0%</td>
<td>$491,415,000</td>
<td>$199,825,828</td>
<td>40.7%</td>
</tr>
<tr>
<td>2014</td>
<td>5,406,725</td>
<td>12,887</td>
<td>4,575</td>
<td>35.5%</td>
<td>$376,648,000</td>
<td>$140,309,235</td>
<td>37.3%</td>
</tr>
<tr>
<td>2015</td>
<td>5,206,241</td>
<td>20,208</td>
<td>8,882</td>
<td>44.0%</td>
<td>$791,837,000</td>
<td>$367,508,767</td>
<td>46.4%</td>
</tr>
<tr>
<td>Totals</td>
<td>1,637,394</td>
<td>580,967</td>
<td>35.5%</td>
<td>$52,175,519,500</td>
<td>$15,901,034,599</td>
<td>30.5%</td>
<td></td>
</tr>
</tbody>
</table>

84
APPENDIX D. FEMA NFIP FLOOD INSURANCE CLAIM AND LOSS DATA (SIGNIFICANT LOSS EVENTS COMPARISON)

Table 7 provides a comparison of NFIP flood insurance claims and loss dollars paid between the full NFIP program and significant loss events.

Table 7. NFIP Losses and Claims (Comparison of Totals versus Significant Events)\(^{289}\)

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Number of Loss Claims</th>
<th>Number of Significant Loss Events</th>
<th>Number of Loss Claims from Significant Events</th>
<th>% of Loss Claims from Significant Events</th>
<th>Total Loss Dollars Paid</th>
<th>Loss Dollars Paid from Significant Events</th>
<th>% of Loss Dollars Paid from Significant Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978</td>
<td>29,122</td>
<td>3</td>
<td>11,424</td>
<td>39%</td>
<td>$147,719,000</td>
<td>$75,502,369</td>
<td>51%</td>
</tr>
<tr>
<td>1979</td>
<td>70,613</td>
<td>8</td>
<td>33,281</td>
<td>47%</td>
<td>$483,281,000</td>
<td>$304,197,758</td>
<td>63%</td>
</tr>
<tr>
<td>1970s</td>
<td>99,735</td>
<td>11</td>
<td>44,705</td>
<td>45%</td>
<td>$631,000,000</td>
<td>$379,700,127</td>
<td>60%</td>
</tr>
<tr>
<td>1980</td>
<td>41,918</td>
<td>3</td>
<td>18,626</td>
<td>44%</td>
<td>$230,414,000</td>
<td>$120,889,969</td>
<td>52%</td>
</tr>
<tr>
<td>1981</td>
<td>23,261</td>
<td>2</td>
<td>4,883</td>
<td>21%</td>
<td>$127,118,000</td>
<td>$34,372,935</td>
<td>27%</td>
</tr>
<tr>
<td>1982</td>
<td>32,831</td>
<td>5</td>
<td>13,105</td>
<td>40%</td>
<td>$198,296,000</td>
<td>$89,713,741</td>
<td>45%</td>
</tr>
<tr>
<td>1983</td>
<td>51,584</td>
<td>2</td>
<td>22,099</td>
<td>43%</td>
<td>$439,455,000</td>
<td>$224,222,522</td>
<td>51%</td>
</tr>
<tr>
<td>1984</td>
<td>27,688</td>
<td>3</td>
<td>9,221</td>
<td>33%</td>
<td>$254,643,000</td>
<td>$88,087,128</td>
<td>35%</td>
</tr>
<tr>
<td>1985</td>
<td>38,676</td>
<td>4</td>
<td>22121</td>
<td>57%</td>
<td>$368,239,000</td>
<td>$217,273,478</td>
<td>59%</td>
</tr>
<tr>
<td>1986</td>
<td>13,789</td>
<td>1</td>
<td>2,003</td>
<td>15%</td>
<td>$126,385,000</td>
<td>$34,838,406</td>
<td>28%</td>
</tr>
<tr>
<td>1987</td>
<td>13,400</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>$105,432,000</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>1988</td>
<td>7,758</td>
<td>1</td>
<td>3,003</td>
<td>39%</td>
<td>$51,023,000</td>
<td>$17,124,219</td>
<td>34%</td>
</tr>
<tr>
<td>1989</td>
<td>36,245</td>
<td>5</td>
<td>25,903</td>
<td>71%</td>
<td>$661,658,000</td>
<td>$563,179,707</td>
<td>85%</td>
</tr>
<tr>
<td>1980s</td>
<td>287,150</td>
<td>26</td>
<td>120,964</td>
<td>42%</td>
<td>$2,562,663,000</td>
<td>$1,389,702,105</td>
<td>54%</td>
</tr>
<tr>
<td>1990</td>
<td>14,766</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>$167,897,000</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>1991</td>
<td>28,549</td>
<td>3</td>
<td>14,281</td>
<td>50%</td>
<td>$353,682,000</td>
<td>$208,698,143</td>
<td>59%</td>
</tr>
<tr>
<td>1992</td>
<td>44,648</td>
<td>4</td>
<td>36,293</td>
<td>81%</td>
<td>$710,225,000</td>
<td>$596,307,287</td>
<td>84%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Number of Loss Claims</th>
<th>Number of Significant Loss Events</th>
<th>Number of Loss Claims from Significant Events</th>
<th>% of Loss Claims from Significant Events</th>
<th>Total Loss Dollars Paid</th>
<th>Loss Dollars Paid from Significant Events</th>
<th>% of Loss Dollars Paid from Significant Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>36,044</td>
<td>2</td>
<td>20,312</td>
<td>56%</td>
<td>$659,059,000</td>
<td>$485,415,616</td>
<td>74%</td>
</tr>
<tr>
<td>1994</td>
<td>21,584</td>
<td>1</td>
<td>6,226</td>
<td>29%</td>
<td>$411,075,000</td>
<td>$217,628,440</td>
<td>53%</td>
</tr>
<tr>
<td>1995</td>
<td>62,441</td>
<td>3</td>
<td>45,096</td>
<td>72%</td>
<td>$1,295,578,000</td>
<td>$1,065,441,979</td>
<td>82%</td>
</tr>
<tr>
<td>1996</td>
<td>52,678</td>
<td>2</td>
<td>39,565</td>
<td>75%</td>
<td>$828,039,000</td>
<td>$680,367,023</td>
<td>82%</td>
</tr>
<tr>
<td>1997</td>
<td>30,338</td>
<td>2</td>
<td>19,927</td>
<td>39%</td>
<td>$519,537,000</td>
<td>$260,570,775</td>
<td>50%</td>
</tr>
<tr>
<td>1998</td>
<td>57,353</td>
<td>9</td>
<td>37,570</td>
<td>66%</td>
<td>$886,352,000</td>
<td>$602,462,889</td>
<td>68%</td>
</tr>
<tr>
<td>1999</td>
<td>47,248</td>
<td>2</td>
<td>34,121</td>
<td>72%</td>
<td>$754,950,500</td>
<td>$580,185,168</td>
<td>77%</td>
</tr>
</tbody>
</table>

1990s: 395,649 claims, 34 significant, 245,391 from significant, 62% of total claims, $6,586,394,500 total loss, $4,697,077,320 from significant, 71% of total loss

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Number of Loss Claims</th>
<th>Number of Significant Loss Events</th>
<th>Number of Loss Claims from Significant Events</th>
<th>% of Loss Claims from Significant Events</th>
<th>Total Loss Dollars Paid</th>
<th>Loss Dollars Paid from Significant Events</th>
<th>% of Loss Dollars Paid from Significant Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>16,362</td>
<td>1</td>
<td>9,276</td>
<td>57%</td>
<td>$251,721,000</td>
<td>$158,283,182</td>
<td>63%</td>
</tr>
<tr>
<td>2001</td>
<td>43,601</td>
<td>2</td>
<td>33,089</td>
<td>76%</td>
<td>$1,276,957,000</td>
<td>$1,139,831,924</td>
<td>89%</td>
</tr>
<tr>
<td>2002</td>
<td>25,347</td>
<td>4</td>
<td>16,184</td>
<td>64%</td>
<td>$433,649,000</td>
<td>$311,366,397</td>
<td>72%</td>
</tr>
<tr>
<td>2003</td>
<td>36,931</td>
<td>1</td>
<td>19,938</td>
<td>54%</td>
<td>$780,776,000</td>
<td>$500,265,018</td>
<td>64%</td>
</tr>
<tr>
<td>2004</td>
<td>55,908</td>
<td>4</td>
<td>41,253</td>
<td>74%</td>
<td>$2,232,421,000</td>
<td>$1,944,634,409</td>
<td>87%</td>
</tr>
<tr>
<td>2005</td>
<td>213,587</td>
<td>5</td>
<td>195,055</td>
<td>91%</td>
<td>$17,770,118,000</td>
<td>$17,323,459,933</td>
<td>97%</td>
</tr>
<tr>
<td>2006</td>
<td>24,629</td>
<td>2</td>
<td>7,935</td>
<td>32%</td>
<td>$640,797,000</td>
<td>$266,554,094</td>
<td>42%</td>
</tr>
<tr>
<td>2007</td>
<td>23,189</td>
<td>1</td>
<td>8,640</td>
<td>37%</td>
<td>$614,014,000</td>
<td>$225,928,476</td>
<td>37%</td>
</tr>
<tr>
<td>2008</td>
<td>74,907</td>
<td>3</td>
<td>54,609</td>
<td>73%</td>
<td>$3,487,967,000</td>
<td>$2,953,956,144</td>
<td>85%</td>
</tr>
<tr>
<td>2009</td>
<td>31,033</td>
<td>3</td>
<td>11,040</td>
<td>36%</td>
<td>$779,898,000</td>
<td>$354,639,962</td>
<td>45%</td>
</tr>
</tbody>
</table>

2000s: 545,494 claims, 26 significant, 397,019 from significant, 73% of total claims, $28,268,318,000 total loss, $25,178,919,539 from significant, 89% of total loss

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Number of Loss Claims</th>
<th>Number of Significant Loss Events</th>
<th>Number of Loss Claims from Significant Events</th>
<th>% of Loss Claims from Significant Events</th>
<th>Total Loss Dollars Paid</th>
<th>Loss Dollars Paid from Significant Events</th>
<th>% of Loss Dollars Paid from Significant Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>29,155</td>
<td>2</td>
<td>14,210</td>
<td>49%</td>
<td>$773,575,000</td>
<td>$425,235,345</td>
<td>55%</td>
</tr>
<tr>
<td>2011</td>
<td>78,183</td>
<td>5</td>
<td>62,804</td>
<td>80%</td>
<td>$2,427,274,000</td>
<td>$2,117,240,479</td>
<td>87%</td>
</tr>
<tr>
<td>2012</td>
<td>150,832</td>
<td>3</td>
<td>144,045</td>
<td>96%</td>
<td>$9,266,395,000</td>
<td>$8,846,074,481</td>
<td>95%</td>
</tr>
<tr>
<td>2013</td>
<td>18,101</td>
<td>2</td>
<td>5,126</td>
<td>28%</td>
<td>$491,415,000</td>
<td>$157,764,848</td>
<td>32%</td>
</tr>
<tr>
<td>2014</td>
<td>12,887</td>
<td>1</td>
<td>2,137</td>
<td>17%</td>
<td>$376,648,000</td>
<td>$110,441,909</td>
<td>29%</td>
</tr>
<tr>
<td>2015</td>
<td>20,208</td>
<td>3</td>
<td>12,605</td>
<td>62%</td>
<td>$791,837,000</td>
<td>$658,629,902</td>
<td>83%</td>
</tr>
</tbody>
</table>

Totals: 1,637,394 claims, 113 significant, 1,049,006 from significant, 64% of total claims, $52,175,519,500 total loss, $43,960,786,055 from significant, 84% of total loss
APPENDIX E. FEMA NFIP SIGNIFICANT FLOOD EVENTS

FEMA significant flood event data was compiled from the FEMA’s online database (see Table 8). FEMA defines a “significant flood event” as an event, such as a major hurricane, with 1,500 or more paid losses or a flood event that is otherwise significant.290

Table 8. FEMA Significant Flood Events291

<table>
<thead>
<tr>
<th>FEMA Event Designation</th>
<th>Year</th>
<th>Number of Loss Claims from Significant Flood Event</th>
<th>Loss Dollars Paid for Significant Flood Event</th>
<th>Average Loss Dollars per Claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massachusetts Flood Feb. 1978</td>
<td>February 78</td>
<td>2,202</td>
<td>$20,145,418</td>
<td>$9,149</td>
</tr>
<tr>
<td>Louisiana Flood May 1978</td>
<td>May 78</td>
<td>7,343</td>
<td>$43,422,439</td>
<td>$5,913</td>
</tr>
<tr>
<td>WV, IN, KY, OH Floods Dec 1978</td>
<td>December 78</td>
<td>1,879</td>
<td>$11,934,512</td>
<td>$6,352</td>
</tr>
<tr>
<td>PA, CT, MA, NJ, NY, RI Floods</td>
<td>January 79</td>
<td>8,826</td>
<td>$31,487,015</td>
<td>$3,568</td>
</tr>
<tr>
<td>ND, MN Floods</td>
<td>April 79</td>
<td>2,141</td>
<td>$10,360,266</td>
<td>$4,839</td>
</tr>
<tr>
<td>Texas Flood April 1979</td>
<td>April 79</td>
<td>1,954</td>
<td>$20,131,418</td>
<td>$10,303</td>
</tr>
<tr>
<td>Florida Flood April 1979</td>
<td>April 79</td>
<td>1,488</td>
<td>$2,029,163</td>
<td>$1,364</td>
</tr>
<tr>
<td>Tropical Storm Claudette</td>
<td>July 79</td>
<td>9,664</td>
<td>$147,295,363</td>
<td>$15,242</td>
</tr>
<tr>
<td>Hurricane Frederic</td>
<td>September 79</td>
<td>2,947</td>
<td>$45,809,311</td>
<td>$15,544</td>
</tr>
<tr>
<td>Texas Flood September 1979</td>
<td>September 79</td>
<td>6,261</td>
<td>$47,085,222</td>
<td>$7,520</td>
</tr>
<tr>
<td>NJ, CT and NY Floods April 1980</td>
<td>April 80</td>
<td>2,159</td>
<td>$7,156,481</td>
<td>$3,315</td>
</tr>
<tr>
<td>Louisiana Flood April 1980</td>
<td>April 80</td>
<td>12,831</td>
<td>$86,279,354</td>
<td>$6,724</td>
</tr>
<tr>
<td>Hurricane Allen</td>
<td>August 80</td>
<td>3,636</td>
<td>$27,454,134</td>
<td>$7,551</td>
</tr>
<tr>
<td>Texas Flood Event June 1981</td>
<td>June 81</td>
<td>2,143</td>
<td>$13,414,893</td>
<td>$6,260</td>
</tr>
<tr>
<td>Texas Flood August 1981</td>
<td>August 81</td>
<td>2,740</td>
<td>$20,958,042</td>
<td>$7,649</td>
</tr>
<tr>
<td>Louisiana Flood April 1992</td>
<td>April 82</td>
<td>3,187</td>
<td>$20,785,522</td>
<td>$6,522</td>
</tr>
<tr>
<td>RI, MA, CT Floods June 1982</td>
<td>June 82</td>
<td>2,189</td>
<td>$15,684,431</td>
<td>$7,165</td>
</tr>
</tbody>
</table>

290 Ibid.

<table>
<thead>
<tr>
<th>FEMA Event Designation</th>
<th>Year</th>
<th>Number of Loss Claims from Significant Flood Event</th>
<th>Loss Dollars Paid for Significant Flood Event</th>
<th>Average Loss Dollars per Claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>The “No-Name Storm”</td>
<td>June 82</td>
<td>2,921</td>
<td>$10,474,435</td>
<td>$3,586</td>
</tr>
<tr>
<td>MO, IL Floods December 1982</td>
<td>December 82</td>
<td>3,172</td>
<td>$29,851,938</td>
<td>$9,411</td>
</tr>
<tr>
<td>Louisiana Flood December 1982</td>
<td>December 82</td>
<td>1,636</td>
<td>$12,917,415</td>
<td>$7,896</td>
</tr>
<tr>
<td>Louisiana Flood April 1983</td>
<td>April 83</td>
<td>11,581</td>
<td>$104,833,841</td>
<td>$9,052</td>
</tr>
<tr>
<td>Alicia</td>
<td>August 83</td>
<td>10,518</td>
<td>$119,388,681</td>
<td>$11,351</td>
</tr>
<tr>
<td>New Jersey Flood March 1984</td>
<td>March 84</td>
<td>4,096</td>
<td>$22,163,537</td>
<td>$5,411</td>
</tr>
<tr>
<td>New Jersey Flood April 1984</td>
<td>April 84</td>
<td>2,471</td>
<td>$33,300,119</td>
<td>$13,476</td>
</tr>
<tr>
<td>Kentucky Flood May 1984</td>
<td>May 84</td>
<td>2,654</td>
<td>$32,623,472</td>
<td>$12,292</td>
</tr>
<tr>
<td>Elena</td>
<td>August 85</td>
<td>8,234</td>
<td>$81,322,383</td>
<td>$9,876</td>
</tr>
<tr>
<td>Gloria</td>
<td>September 85</td>
<td>6,088</td>
<td>$39,194,422</td>
<td>$6,438</td>
</tr>
<tr>
<td>Isabel October 1985</td>
<td>October 85</td>
<td>1,612</td>
<td>$5,769,195</td>
<td>$3,579</td>
</tr>
<tr>
<td>Juan</td>
<td>October 85</td>
<td>6,187</td>
<td>$90,987,478</td>
<td>$14,706</td>
</tr>
<tr>
<td>California Flood February 1986</td>
<td>February 86</td>
<td>2,003</td>
<td>$34,838,406</td>
<td>$17,393</td>
</tr>
<tr>
<td>Louisiana Flood April 1988</td>
<td>April 88</td>
<td>3,003</td>
<td>$17,124,219</td>
<td>$5,702</td>
</tr>
<tr>
<td>Texas Flood May 1989</td>
<td>May 89</td>
<td>2,562</td>
<td>$59,020,120</td>
<td>$23,037</td>
</tr>
<tr>
<td>Tropical Storm Allison 1989</td>
<td>June 89</td>
<td>3,127</td>
<td>$39,303,958</td>
<td>$12,569</td>
</tr>
<tr>
<td>Hurricane Chantal</td>
<td>August 89</td>
<td>2,919</td>
<td>$39,510,677</td>
<td>$13,536</td>
</tr>
<tr>
<td>Hugo</td>
<td>September 89</td>
<td>12,840</td>
<td>$376,433,739</td>
<td>$29,317</td>
</tr>
<tr>
<td>Louisiana Flood November 1989</td>
<td>November 89</td>
<td>4,455</td>
<td>$48,911,213</td>
<td>$10,979</td>
</tr>
<tr>
<td>Louisiana Flood June 1991</td>
<td>June 91</td>
<td>1,919</td>
<td>$15,832,141</td>
<td>$8,250</td>
</tr>
<tr>
<td>Bob</td>
<td>August 91</td>
<td>2,821</td>
<td>$49,707,690</td>
<td>$17,621</td>
</tr>
<tr>
<td>Halloween</td>
<td>October 91</td>
<td>9,541</td>
<td>$143,158,312</td>
<td>$15,005</td>
</tr>
<tr>
<td>DE, NJ, PR Floods January 1992</td>
<td>January 92</td>
<td>3,211</td>
<td>$30,087,521</td>
<td>$9,370</td>
</tr>
<tr>
<td>Texas Flood March 1992</td>
<td>March 92</td>
<td>2,353</td>
<td>$50,956,063</td>
<td>$21,656</td>
</tr>
<tr>
<td>Andrew</td>
<td>August 92</td>
<td>5,587</td>
<td>$169,113,347</td>
<td>$30,269</td>
</tr>
<tr>
<td>Nor’easter 1992</td>
<td>December 92</td>
<td>25,142</td>
<td>$346,150,356</td>
<td>$13,768</td>
</tr>
<tr>
<td>March Storm</td>
<td>March 93</td>
<td>9,840</td>
<td>$212,596,101</td>
<td>$21,605</td>
</tr>
<tr>
<td>Midwest Flood</td>
<td>June 93</td>
<td>10,472</td>
<td>$272,819,515</td>
<td>$26,052</td>
</tr>
<tr>
<td>Texas Flood October 1994</td>
<td>October 94</td>
<td>6,226</td>
<td>$217,628,440</td>
<td>$34,955</td>
</tr>
<tr>
<td>CA Flood January 1995</td>
<td>January 95</td>
<td>3,410</td>
<td>$74,842,843</td>
<td>$21,948</td>
</tr>
<tr>
<td>FEMA Event Designation</td>
<td>Year</td>
<td>Number of Loss Claims from Significant Flood Event</td>
<td>Loss Dollars Paid for Significant Flood Event</td>
<td>Average Loss Dollars per Claim</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------</td>
<td>---</td>
<td>---</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Louisiana Flood</td>
<td>May 95</td>
<td>31,343</td>
<td>$585,071,593</td>
<td>$18,667</td>
</tr>
<tr>
<td>Opal</td>
<td>October 95</td>
<td>10,343</td>
<td>$405,527,543</td>
<td>$39,208</td>
</tr>
<tr>
<td>Northeast Flood Jan 1996</td>
<td>January 96</td>
<td>12,523</td>
<td>$186,623,944</td>
<td>$14,902</td>
</tr>
<tr>
<td>Northwest Flood</td>
<td>February 96</td>
<td>2,329</td>
<td>$61,903,974</td>
<td>$26,580</td>
</tr>
<tr>
<td>Bertha</td>
<td>July 96</td>
<td>1,166</td>
<td>$10,388,364</td>
<td>$8,909</td>
</tr>
<tr>
<td>Fran</td>
<td>September 96</td>
<td>10,315</td>
<td>$217,843,972</td>
<td>$21,119</td>
</tr>
<tr>
<td>Hortense</td>
<td>September 96</td>
<td>1,382</td>
<td>$20,465,346</td>
<td>$14,808</td>
</tr>
<tr>
<td>Josephine</td>
<td>October 96</td>
<td>6,512</td>
<td>$102,604,272</td>
<td>$15,756</td>
</tr>
<tr>
<td>Northeast Flood Oct 1996</td>
<td>October 96</td>
<td>3,480</td>
<td>$40,837,392</td>
<td>$11,735</td>
</tr>
<tr>
<td>California Flood December 1996</td>
<td>December 96</td>
<td>1,858</td>
<td>$39,699,759</td>
<td>$21,367</td>
</tr>
<tr>
<td>South Central Flood</td>
<td>February 97</td>
<td>4,529</td>
<td>$100,469,721</td>
<td>$22,184</td>
</tr>
<tr>
<td>Upper Midwest Flood</td>
<td>April 97</td>
<td>7,398</td>
<td>$160,101,054</td>
<td>$21,641</td>
</tr>
<tr>
<td>Pineapple Express</td>
<td>January 98</td>
<td>4,227</td>
<td>$57,680,410</td>
<td>$13,646</td>
</tr>
<tr>
<td>Nor'easter</td>
<td>February 98</td>
<td>3,212</td>
<td>$28,011,201</td>
<td>$8,721</td>
</tr>
<tr>
<td>Hurricane Bonnie</td>
<td>August 98</td>
<td>2,675</td>
<td>$23,073,621</td>
<td>$8,626</td>
</tr>
<tr>
<td>Texas Flood September 1998</td>
<td>September 98</td>
<td>4,876</td>
<td>$78,402,842</td>
<td>$16,079</td>
</tr>
<tr>
<td>Louisiana Flood September 1998</td>
<td>September 98</td>
<td>5,176</td>
<td>$50,999,758</td>
<td>$9,853</td>
</tr>
<tr>
<td>Hurricane Georges (Keys)</td>
<td>September 98</td>
<td>3,437</td>
<td>$43,208,306</td>
<td>$12,572</td>
</tr>
<tr>
<td>Hurricane Georges</td>
<td>September 98</td>
<td>9,097</td>
<td>$154,169,745</td>
<td>$16,947</td>
</tr>
<tr>
<td>Hurricane Georges (Panhandle)</td>
<td>September 98</td>
<td>1,679</td>
<td>$23,137,642</td>
<td>$13,781</td>
</tr>
<tr>
<td>Texas Flood October 1998</td>
<td>October 98</td>
<td>3,191</td>
<td>$143,779,364</td>
<td>$45,058</td>
</tr>
<tr>
<td>Hurricane Floyd</td>
<td>September 99</td>
<td>20,439</td>
<td>$462,326,389</td>
<td>$22,620</td>
</tr>
<tr>
<td>Hurricane Irene</td>
<td>October 99</td>
<td>13,682</td>
<td>$117,858,779</td>
<td>$8,614</td>
</tr>
<tr>
<td>Florida Flood October 2000</td>
<td>October 00</td>
<td>9,276</td>
<td>$158,283,182</td>
<td>$17,064</td>
</tr>
<tr>
<td>Tropical Storm Allison 2001</td>
<td>June 01</td>
<td>30,671</td>
<td>$1,100,703,344</td>
<td>$36,028</td>
</tr>
<tr>
<td>Tropical Storm Gabrielle</td>
<td>September 01</td>
<td>2,418</td>
<td>$34,828,580</td>
<td>$14,404</td>
</tr>
<tr>
<td>Texas Flood July 2002</td>
<td>July 02</td>
<td>1,897</td>
<td>$70,901,720</td>
<td>$37,376</td>
</tr>
<tr>
<td>Tropical Storm Isadore</td>
<td>September 02</td>
<td>8,467</td>
<td>$114,160,392</td>
<td>$13,483</td>
</tr>
<tr>
<td>Hurricane Lili</td>
<td>September 02</td>
<td>2,569</td>
<td>$37,269,589</td>
<td>$14,507</td>
</tr>
<tr>
<td>Texas Flood October 2002</td>
<td>October 02</td>
<td>3,251</td>
<td>$89,034,696</td>
<td>$27,387</td>
</tr>
<tr>
<td>FEMA Event Designation</td>
<td>Year</td>
<td>Number of Loss Claims from Significant Flood Event</td>
<td>Loss Dollars Paid for Significant Flood Event</td>
<td>Average Loss Dollars per Claim</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-----------</td>
<td>---</td>
<td>---</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Hurricane Isabel</td>
<td>September 03</td>
<td>19,938</td>
<td>$500,265,018</td>
<td>$25,091</td>
</tr>
<tr>
<td>Hurricane Charley</td>
<td>August 04</td>
<td>2,609</td>
<td>$50,914,481</td>
<td>$19,515</td>
</tr>
<tr>
<td>Hurricane Frances</td>
<td>September 04</td>
<td>4,966</td>
<td>$153,488,029</td>
<td>$30,908</td>
</tr>
<tr>
<td>Hurricane Ivan</td>
<td>September 04</td>
<td>28,297</td>
<td>$1,612,196,806</td>
<td>$56,974</td>
</tr>
<tr>
<td>Hurricane Jeanne</td>
<td>September 04</td>
<td>5,381</td>
<td>$128,035,093</td>
<td>$23,794</td>
</tr>
<tr>
<td>Hurricane Dennis</td>
<td>July 05</td>
<td>3,808</td>
<td>$119,867,428</td>
<td>$31,478</td>
</tr>
<tr>
<td>Hurricane Katrina</td>
<td>August 05</td>
<td>167,984</td>
<td>$16,318,248,752</td>
<td>$97,142</td>
</tr>
<tr>
<td>Hurricane Rita</td>
<td>September 05</td>
<td>9,529</td>
<td>$474,740,062</td>
<td>$49,821</td>
</tr>
<tr>
<td>Tropical Storm Tammy</td>
<td>October 05</td>
<td>4,116</td>
<td>$44,773,505</td>
<td>$10,878</td>
</tr>
<tr>
<td>Hurricane Wilma</td>
<td>October 05</td>
<td>9,618</td>
<td>$365,830,186</td>
<td>$38,036</td>
</tr>
<tr>
<td>PA, NJ, NY Floods June 2006</td>
<td>June 06</td>
<td>6,428</td>
<td>$229,292,230</td>
<td>$35,671</td>
</tr>
<tr>
<td>Hurricane Paul</td>
<td>October 06</td>
<td>1,507</td>
<td>$37,261,864</td>
<td>$24,726</td>
</tr>
<tr>
<td>Nor’easter April 2007</td>
<td>April 07</td>
<td>8,640</td>
<td>$225,928,476</td>
<td>$26,149</td>
</tr>
<tr>
<td>Torrential Rain June 2008</td>
<td>June 08</td>
<td>3,405</td>
<td>$144,684,258</td>
<td>$42,492</td>
</tr>
<tr>
<td>Hurricane Gustav</td>
<td>September 08</td>
<td>4,544</td>
<td>$112,393,983</td>
<td>$24,735</td>
</tr>
<tr>
<td>Hurricane Ike</td>
<td>September 08</td>
<td>46,660</td>
<td>$2,696,877,903</td>
<td>$57,798</td>
</tr>
<tr>
<td>Torrential Rain March 2009 TX</td>
<td>March 09</td>
<td>3,303</td>
<td>$127,530,808</td>
<td>$38,611</td>
</tr>
<tr>
<td>Torrential Rain Sept 2009 GA</td>
<td>September 09</td>
<td>2,067</td>
<td>$124,241,069</td>
<td>$60,107</td>
</tr>
<tr>
<td>Tropical Storm IDA VA</td>
<td>November 09</td>
<td>5,670</td>
<td>$102,868,085</td>
<td>$18,143</td>
</tr>
<tr>
<td>2010 Nor’easter</td>
<td>March 10</td>
<td>10,094</td>
<td>$194,837,326</td>
<td>$19,302</td>
</tr>
<tr>
<td>Torrential Rain TN</td>
<td>April 10</td>
<td>4,116</td>
<td>$230,398,019</td>
<td>$55,976</td>
</tr>
<tr>
<td>Torrential Rain NJ</td>
<td>March 11</td>
<td>1,873</td>
<td>$36,428,863</td>
<td>$19,449</td>
</tr>
<tr>
<td>Mid-Spring Storms</td>
<td>April 11</td>
<td>4,342</td>
<td>$145,807,074</td>
<td>$33,581</td>
</tr>
<tr>
<td>Late-Spring Storms</td>
<td>June 11</td>
<td>2,433</td>
<td>$134,607,082</td>
<td>$55,326</td>
</tr>
<tr>
<td>Hurricane Irene</td>
<td>August 11</td>
<td>44,266</td>
<td>$1,339,910,797</td>
<td>$30,270</td>
</tr>
<tr>
<td>Tropical Storm Lee</td>
<td>September 11</td>
<td>9,890</td>
<td>$460,486,663</td>
<td>$46,561</td>
</tr>
<tr>
<td>Tropical Storm Debbie</td>
<td>June 12</td>
<td>1,792</td>
<td>$42,694,074</td>
<td>$23,825</td>
</tr>
<tr>
<td>Tropical Storm Isaac</td>
<td>August 12</td>
<td>12,039</td>
<td>$554,103,065</td>
<td>$46,026</td>
</tr>
<tr>
<td>Superstorm Sandy</td>
<td>October 12</td>
<td>130,214</td>
<td>$8,249,277,342</td>
<td>$63,352</td>
</tr>
<tr>
<td>IL Flooding April 2013</td>
<td>April 13</td>
<td>3,394</td>
<td>$89,202,227</td>
<td>$26,282</td>
</tr>
<tr>
<td>FEMA Event Designation</td>
<td>Year</td>
<td>Number of Loss Claims from Significant Flood Event</td>
<td>Loss Dollars Paid for Significant Flood Event</td>
<td>Average Loss Dollars per Claim</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------------------</td>
<td>---</td>
<td>---</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Colorado Flooding Sept 2013</td>
<td>September 13</td>
<td>1,732</td>
<td>$68,562,621</td>
<td>$39,586</td>
</tr>
<tr>
<td>Florida Flooding April 2014</td>
<td>April 14</td>
<td>2,137</td>
<td>$110,441,909</td>
<td>$51,681</td>
</tr>
<tr>
<td>Texas Flooding May Jun 2015</td>
<td>May 15</td>
<td>6,687</td>
<td>$446,484,271</td>
<td>$66,769</td>
</tr>
<tr>
<td>South Carolina Flooding Oct 2015</td>
<td>October 15</td>
<td>3,836</td>
<td>$131,413,037</td>
<td>$34,258</td>
</tr>
<tr>
<td>2015 Early Midwest Winter Storms</td>
<td>December 15</td>
<td>2,082</td>
<td>$80,732,594</td>
<td>$38,776</td>
</tr>
<tr>
<td>Totals:</td>
<td>1,049,006</td>
<td></td>
<td>$43,960,786,055</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF REFERENCES

http://www.slate.com/articles/health_and_science/science/2014/03/biggert_waters_and_nfip_flood_insurance_should_be_strengthened.html.

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California