AN EBSD INVESTIGATION OF ULTRAFINE-GRAIN TITANIUM FOR BIOMEDICAL APPLICATIONS (POSTPRINT)

G.S. Dyakonov and I.P. Semenova
Ufa State Aviation Technical University

G.S. Dyakonov, E. Zemtsova, and R.Z. Valiev
Saint Petersburg State University

S. Mironov
Tohoku University

S.L. Semiatin
AFRL/RX

15 JULY 2015
Interim Report

Distribution Statement A.
Approved for public release: distribution unlimited.

© 2015 ELSEVIER LTD

(STINFO COPY)

AIR FORCE RESEARCH LABORATORY
MATERIALS AND MANUFACTURING DIRECTORATE
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750
AIR FORCE MATERIEL COMMAND
UNITED STATES AIR FORCE
AN EBSD INVESTIGATION OF ULTRAFINE-GRAIN TITANIUM FOR BIOMEDICAL APPLICATIONS

Abstract

High-resolution electron backscatter diffraction (EBSD) was used to examine the grain structure in long rods of ultrafine-grain (UFG) commercial-purity titanium produced for medical implants. The UFG material was obtained by equal channel angular pressing (ECAP) using a Conform scheme followed by rod drawing. The microstructure was found to be bimodal consisting of relatively coarse elongated grains containing well-developed substructure and ultrafine grains. The mean grain size was 0.3 μm, and the fraction of high-angle boundaries was 45%. The material had a strong <101-0>-fiber texture. An analysis of the microstructure–properties relationship showed that the increase in material strength developed during severe plastic deformation resulted from grain refinement and substructure evolution in comparable measure.

Subject Terms

- EBSD
- Titanium alloys
- Nanostructured materials
- Equal channel angular processing
- Grain refinement
6. AUTHOR(S)
 3) S. Mironov - Tohoku University
 4) S. L. Semiatin - AFRL/RX

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 3) Tohoku University, 6-6-02 Aramaki-aza-Aoba, Sendai 980-8579, Japan
 4) AFRL/RX Wright Patterson AFB, OH 45433
An EBSD investigation of ultrafine-grain titanium for biomedical applications

G.S. Dyakonova,b, E. Zemtsovab,c, S. Mironovd, I.P. Semenovaa, R.Z. Valievb, S.L. Semiatine

a Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, 12K Marx St., Ufa 450000, Russia
b Laboratory for Mechanics of Bulk Nanostructured Materials, Saint Petersburg State University, 26 Universitetskyy Prospect, 198504 Peterhof, Saint Petersburg, Russia
c Institute of Chemistry, Saint Petersburg State University, 26 Universitetskyy Prospect, Saint Petersburg 198504, Russia
d Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza-Aoba, Sendai 980-8579, Japan
e Air Force Research Laboratory, Materials and Manufacturing Directorate, AFRL/RXCM, Wright-Patterson AFB, OH 45433-7817, USA

A R T I C L E I N F O

Article history:
Received 11 July 2015
Received in revised form 11 September 2015
Accepted 17 September 2015
Available online 21 September 2015

Keywords:
EBSD
Titanium alloys
Nanostructured materials
Equal channel angular processing
Grain refinement

A B S T R A C T

High-resolution electron backscatter diffraction (EBSD) was used to examine the grain structure in long rods of ultrafine-grain (UFG) commercial-purity titanium produced for medical implants. The UFG material was obtained by equal channel angular pressing (ECAP) using a Conform scheme followed by rod drawing. The microstructure was found to be bimodal consisting of relatively coarse elongated grains containing well-developed substructure and ultrafine grains. The mean grain size was \(\sim 0.3\,\mu m \), and the fraction of high-angle boundaries was \(\sim 45\% \). The material had a strong \(<1010>-fiber texture.\) An analysis of the microstructure–properties relationship showed that the increase in material strength developed during severe plastic deformation resulted from grain refinement and substructure evolution in comparable measure.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Due to excellent biocompatibility, commercial-purity titanium is a very attractive material for orthopedic and dental applications. However, the use of ordinary coarse-grain titanium is limited by its relatively low strength. To increase its strength to a desirable level, a two-step approach has been developed recently [1–6]. The method is based on severe plastic deformation (SPD) and typically includes warm equal-channel angular pressing (ECAP) followed by cold rolling, axisymmetric extrusion, or rod drawing. The strengthening developed during the two-step approach is commonly accepted to originate from extensive grain refinement to the ultrafine range. To obtain the desired properties in a repeatable fashion, however, careful microstructure control is necessary.

To date, microstructural examinations in such materials have usually been performed using transmission electron microscopy (TEM) and x-ray measurements [1–3,5,6]. These investigations have revealed the formation of a fine-grain structure with a mean size of \(\sim 0.2\,\mu m \), high dislocation density, and a relatively-strong crystallographic texture. However, several important characteristics of the grain structure, in particular the grain-boundary character, are still unclear, thus hampering the development of quantitative microstructure–property relationships. To establish this relationship, high-resolution electron-backscatter diffraction (EBSD) was employed in the present work for a thorough characterization of the severely-deformed microstructure. The results of these measurements were used to elucidate the discrete contributions of grain refinement, dislocations, and solid–solution elements to the yield strength.

2. Material and experimental procedures

The material used in the present investigation was commercial-purity titanium (CP Ti) Grade 4 whose chemical composition is given in Table 1. In the as-received condition, it had an equiaxed grain size of \(\sim 25\,\mu m \).

The program material was subjected to ECAP via route \(B_6 \) using a Conform scheme [6,7]. This technique enables the production of an ultrafine microstructure in billets of long length (to several meters) and is suitable for commercial-production applications. In the present investigation, ECAP-Conform was performed on samples measuring \(11 \times 11\,mm^2 \) in cross section and 500 mm length at 250 °C to an accumulated true strain of \(\sim 4.2 \) (6 passes) using a die with a 120° square channel. The ram speed was 33 mm/s. After ECAP, the material was drawn at 200 °C to a total area reduction of
3.1. Microstructure observations

Longitudinal and transverse EBSD inverse-pole-figure (orientation) maps revealed the grain structure developed during ECAP/drawing (Fig. 1). In the maps, LABs and HABs are depicted by white and black lines, respectively.

At relatively-low magnification (Fig. 1a), the microstructure appeared to consist primarily of relatively-coarse, elongated grains aligned with the drawing direction. The grain length often exceeded 25 μm, whereas the thickness was only several microns. By and large, the grain shape mirrored the deformation imposed during the rod-drawing steps of the process, thereby suggesting that the observed grain structure probably originated from the geometric effect of strain per se.

At much higher magnification (Fig. 1b, c), on the other hand, it was evident that the microstructure also contained fine grains (≤ 1 μm) and was thus somewhat bimodal in nature. The higher-magnification EBSD results also indicated that the coarse elongated grains contained developed substructure. In this substructure, some sub-boundary segments exhibited misorientations above 15° (e.g., boundaries indicated by arrows in Fig. 1b and c), thus suggesting a gradual LAB-to-HAB transformation during straining. Furthermore, in some locations, the deformation-induced HABs delimited microstructural entities almost completely (areas indicated by rectangles in Fig. 1b and c); such features also appeared to indicate a gradual transition from subgrains to grains.

In terms of morphology and dimensions, the partially-transformed subgrains were broadly similar to the typical fine grains observed elsewhere in the microstructure. These observations thus indirectly indicate that grain refinement probably occurred via continuous dynamic recrystallization. Considering the relatively-low processing temperature (∼0.24Tm, where Tm is melting point), this hypothesis is reasonable. Nevertheless, its confirmation requires more-detailed examination of microstructure evolution at different levels of accumulated strain.

It was also found that the fine grains were not distributed randomly throughout the microstructure but tended to cluster near original grain boundaries (Fig. 1b and c). The preferential grain refinement in these areas was surmised to be associated with relatively high local strains generated at grain boundaries.

3.2. α→ω martensitic phase transformation

It has been reported that SPD at relatively high imposed levels of stress (order of several GPa) may induce an α→ω martensitic phase transformation in titanium [9-12]. For the rod processed by ECAP/drawing in the present effort, EBSD measurements (Fig. 2) revealed the presence of a very small fraction (∼3.5 vol%) of the ω phase. The ω phase comprised fine (∼0.15 μm) nearly-equiaxed particles along grain boundaries in the α phase (Fig. 2). Therefore, the α→ω phase transformation did appear to make a contribution, albeit small, to the formation of the fine-grain microstructure shown in Fig. 1b and c. However, the α and ω phases have similar hexagonal crystal structures and thus mis-indexing could have occurred during EBSD analysis. Therefore, additional study is necessary to verify these observations.

Assuming the Orowan mechanism, the magnitude of the strength increment due the omega phase was estimated to be very small (i.e., ∼10 MPa), and thus it was ignored in the present work.

3.3. Grain size of the α phase

The size of the α grains quantified by the linear-intercept and grain-reconstruction methods revealed some noticeable differences (Fig. 3a and b). For the linear-intercept approach, only the grain thickness was measured, i.e. the HAB spacing in a direction perpendicular to the axis of the drawn rod.

The mean grain size of the α phase measured by the linear-intercept method was ∼0.4 μm in the longitudinal cross section and ∼0.3 μm in the transverse section (Fig. 3a). Therefore, the grain size of the ECAP/drawn rod fit the typical definition for ultrafine-grain materials. When all of the EBSD-detected boundaries (i.e.,
those with misorientations above 2° were included in the analysis, the mean intercept length was determined to be \(\sim 0.15 \mu m \). This value is very close to that based on TEM observations reported in literature [1–3,5,6].

It should be stressed that the volume fraction of coarse grains (\(\geq 1 \mu m \)) was high (Fig. 3b). Not surprisingly, the area fraction of such grains measured in longitudinal cross section was substantially higher than that observed in the transverse section (i.e., 78% vs 54%). This observation can be rationalized on the basis of the preferential concentration of fine grains along the boundaries of the coarse elongated grains (Fig. 1b and c). Indeed, due to the elongated-shape of the coarse grains, the specific area of their boundaries in transverse cross sections should be larger than in longitudinal sections. Correspondingly, the volume fraction of fine grains should appear relatively high in transverse sections as was observed.

3.4. Texture of the \(\alpha \) phase

The EBSD orientation data for the \(\alpha \) phase were used to derive an inverse pole figure for the drawing direction (Fig. 4). These results indicated that a strong texture consisting of \(\langle 10 \bar{1}0 \rangle / / \text{drawing axis} \) (i.e., a \(<10 \bar{1}0 \rangle \)-fiber texture) had been formed. This observation agrees well with x-ray measurements of the same material [6] and is as expected for cold-drawn \(\alpha \) titanium [13].

The critical resolved shear stress for plastic deformation of \(\alpha \) titanium is lowest for prism slip (\(\{10 \bar{1}0\} \times 11 \bar{2}0 \rangle \)), intermediate for basal slip (\(\{0001\} \times 11 \bar{2}0 \rangle \), and highest for pyramidal \(\langle c+a \rangle \) slip. Thus, the development of an ideal \(<10 \bar{1}0 \rangle \)-fiber texture indicated that on average 2 of the 3 prism slip planes/systems were likely activated symmetrically in most of the crystallites (relative to the drawing direction), thereby leading to a stable orientation for most of the grains, for which the Schmid factor would be

Fig. 1. Selected portions of EBSD inverse-pole-figure maps for the radial direction showing the microstructure in (a, b) longitudinal and (c) transverse cross sections of the severely-deformed final rod. In the maps, LABs and HABs are depicted as white and black lines, respectively. For simplicity, only HABs are shown in (a).

Fig. 2. Selected portion of an EBSD map for the alpha (white) and omega (red) phases taken from the longitudinal cross section of severely-deformed rod. In the map, LABs and HABs are depicted as red and black lines, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Distribution A. Approved for public release (PA): distribution unlimited.

For such a strong crystallographic and mechanical texture, the strain compatibility requirements along the longitudinal boundaries of the coarse elongated grains may have been relaxed, and the requirement for (c+a) slip or twinning to accommodate the radial compressive strain during drawing could have been reduced. Thus, the driving force for grain subdivision would have been expected to be low as well. In reality, however, the measured texture was characterized by an orientation spread (Fig. 4), and some degree of strain incompatibility would have developed across the longitudinal boundaries. This inhomogeneity was probably one of the possible sources of the observed grain refinement (Fig. 1b and c). Nevertheless, the formation of the strong <1010>-fiber texture would have retarded the refinement process and resulted in the retention of the relatively-high volume fraction of coarse, elongated grains found in the material (Fig. 3b).

In addition to the <1010>-fiber texture, a minor fraction of a <2110>-fiber was also observed (Fig. 4). This texture component was found to predominate in the α phase. Therefore, its detection in the α phase may have resulted from indexing errors during EBSD mapping. Due to the very low volume fraction of this texture component (<1 pct., Fig. 4), its influence on material strength was likely minimal, and thus was ignored.

3.5. Misorientation distribution of the α phase

Misorientation distributions measured in both cross sections were found to be broadly similar to each other. For the sake of brevity, therefore, only misorientations measured for the longitudinal section are shown in Fig. 5.

The misorientation-angle distribution was dominated by a low-angle peak (Fig. 5a). It should be noted the LABs were preferentially concentrated within the relatively-coarse elongated grains (Fig. 1b). Therefore, the observed low-angle maximum was likely attributable to the relatively slow LAB-to-HAB transformation kinetics (as discussed in Section 3.4) rather than the sharp fiber texture (Fig. 4). As expected, the HAB fraction in the transverse section was larger than that in the longitudinal section (45% vs. 39%)4. With the exception of the low-angle maximum, the misorientation-angle distribution was relatively smooth with no significant peaks. In addition, almost no twin misorientations were found. This observation indicated that twinning was likely not operative during the final drawing step. Even if twins had formed at low strains, subsequent deformation would have destroyed the twin relationship.

In contrast to the misorientation-angle distribution per se, the misorientation-axis distribution was somewhat complex. Excluding the LABs, the axes were clustered near <1010>, <2110>, <0001>, and <4131> (Fig. 5b). In particular, the clustering of misorientation axes near the <1010> and <2110> poles was observed for almost the entire misorientation range (Fig. 5b). It is likely therefore that this effect was associated with the development of the <1010>- and <2110>-fiber textures (Fig. 4). For example, the formation the <1010>-fiber texture implies that the grains with <1010> //drawing axis were rotated arbitrarily about the drawing direction.

The cluster near <0001> mainly comprised HABs with 15°–30° misorientations (Fig. 5b). As shown previously [14,15], this effect in severely deformed α titanium may be attributed to dislocation boundaries originating from predominantly prism slip. The cluster of rotation axes near <4131> was produced by the HABs with highest possible misorientations (Fig. 5b). Their origin is not clear and requires additional study.

4. Discussion

EBSD measurements enabled the detailed characterization of the grain structure in UFG titanium. Based on these data (and pertinent results in the published literature), the specific contribution of various mechanisms to the overall strength of UFG titanium have been quantified and are discussed in this section. Assuming that different strengthening mechanisms act independently and thus are additive in nature, the yield strength can be expressed as the following:

\[\text{Yield strength} = \sum \text{Yield strength of each mechanism} \]

4 In some respects, the criterion for the LAB-to-HAB transition is subjective. Assuming a 10° criterion for differentiation of LABs and HABs, the HAB proportion was 52% in the longitudinal section and 62% in the transverse section.
\[\sigma = \sigma_0 + \sigma_f + \sigma_d \]

in which \(\sigma_0 \), \(\sigma_f \), and \(\sigma_d \) denote the friction stress, the grain-refinement strengthening, and the strength increment due to substructure, respectively.

4.1. Friction stress due to solid–solution strengthening

In commercial-purity titanium, the friction stress is dominated by solid–solution strengthening, which in turn is controlled by the content of the interstitial solutes oxygen, nitrogen, and carbon [13]. The total interstitial content is sometimes converted to an oxygen equivalent via simple summation of the fractions of these elements. For the present material, the oxygen equivalent was \(\approx 0.4 \text{ wt}\% \) (Table 1) or \(\approx 1 \text{ at}\% \). At ambient temperature, the friction stress for this level of interstitials was estimated to be approximately 425 MPa [13].

4.2. Grain-boundary strengthening

The strength increment associated with grain boundaries was described using the conventional Hall–Petch (HP) relation. However, because of the bimodal nature of the grain microstructure (Fig. 1b, c), the total HP strength was formulated as the sum of the contributions from the coarse grains (\(\sigma_{cc} \)) and the fine grains (\(\sigma_{ic} \)), i.e.

\[\sigma_g = \sigma_{cc} + \sigma_{ic} = k_{HP} f_{cc} d_{cc}^{-0.5} + (1 - f_{cc}) d_{ic}^{-0.5} \]

(2)

Here, \(k_{HP} \) is Hall–Petch constant (\(\approx 0.3 \text{ MPa} \times m^{0.5} \) at ambient temperature [13]), \(f_{cc} \) is volume fraction of the coarse grains (0.54), and \(d_{cc} \) and \(d_{ic} \) denote the mean thicknesses of the coarse and fine grains, respectively (i.e., 1.7 \(\mu \text{m} \) and 0.3 \(\mu \text{m} \), respectively). The calculated grain-boundary strengthening is shown in Table 3.

It should be pointed out that the Hall–Petch constant \(k_{HP} \) used in the present calculations (0.3 MPa \(\times m^{0.5} \)) was obtained for coarse-grain titanium [13], which is prone to mechanical twinning.

Table 3

<table>
<thead>
<tr>
<th>Predicted strengthening (MPa)</th>
<th>Measured yield strength (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friction stress</td>
<td>HABs Dislocations LABs Total</td>
</tr>
<tr>
<td></td>
<td>425 340 146 311 1222 1190</td>
</tr>
</tbody>
</table>

Twinning is believed to reduce \(k_{HP} \) in commercial-purity titanium [16]. In the present UFG material, however, twinning was suppressed, and thus the grain-boundary strengthening may be larger than that predicted above (Table 3). For instance, for a Hall–Petch constant of 0.4 MPa \(\times m^{0.5} \), the strength increment would be \(\approx 450 \text{ MPa} \).

4.3. Substructure strengthening

Substructure strengthening results from free (mobile) dislocations as well as low-angle (dislocation-) boundaries within the grains defined by HABs. It can thus be expressed as the following

\[\sigma_d = \sigma_d + \sigma_{LAB} \]

(3)

Dislocation strengthening is usually described by the classic Taylor relation:

\[\sigma_d = \frac{3M\alpha b^2}{d} \]

(4)

Here, \(M \) is the Taylor factor, \(\alpha \) is a constant of the order of 0.1–0.5 [13] (taken to be 0.15 in the present work), \(G \) denotes the shear modulus of titanium (\(\approx 40 \text{ GPa} \)), \(b \) is the Burgers vector (\(\approx 0.295 \text{ nm} \) for \(\langle a \rangle \) dislocations), and \(\rho \) is the density of free dislocations.

As mentioned above, the critical resolved shear stress for the different slip systems in hcp titanium varies considerably, and thus the evaluation of the Taylor factor can be challenging. However, in light of the relaxed degree of constraint due to the formation of an elongated grain structure with a sharp \(<1010> \)-fiber texture, the material flow along the drawing direction is dominated by prism slip, as discussed in Section 3.4. For uniaxial tension along the drawing axis and the predominance of the prism slip, the mean Taylor factor was calculated to be 2.6.

The heavily-deformed titanium was characterized by large internal stresses, and thus the direct measurement of the dislocation density \(\rho \) was not possible. Nevertheless, recent x-ray estimates have suggested that it may be as high as \(\approx 10^{15} \text{ m}^{-2} \) [6]. Hence, \(\rho \) was taken to be \(\approx 10^{15} \text{ m}^{-2} \) in the present work.

In contrast to HABs, low-angle (dislocation) boundaries are assumed to be penetrable by slip and thus contribute to the overall strength via forest-like hardening. In such cases, the strengthening contribution of LABs is given by the following relation [17]:

\[\sigma_{LAB} = (\frac{3M\alpha b^2 f}{d_{LAB}^3}) \times \mu \]

(5)

in which \(\theta_{LAB} \) denotes the mean LAB misorientation, \(f \) is the LAB fraction, and \(d_{LAB} \) is the mean subgrain size. Unfortunately,
EBSD cannot reliably detect misorientations below 2°; therefore, accurate measurement of these three characteristics is difficult. Neglecting very low-angle boundaries, however, the mean LAB misorientation was found to be 7° (0.122 rad); the LAB fraction was 0.55, and the mean subgrain size was 0.15 μm. It should be pointed out that the present method tends to lead of course to an overestimate of the strengthening associated with LABs.

The calculated strength increments associated with dislocations and LABs are listed in Table 3.

4.4. Microstructure–strength relationship

Table 3 summarizes the contributions of the different strengthening mechanisms to the yield strength of the final product produced by ECAP+drawing. Summing these values resulted in a yield-strength prediction very close to the measured value.

The calculations in Table 3 also revealed that substructure strengthening is comparable in magnitude to that due to the Hall–Petch effect. The relatively-low LAB strengthening can rationalized on the basis of the retention of a significant volume fraction of coarse grains in the microstructure (Figs. 1a, 3b) and suggests that the already high strength level achieved in the present UFG titanium can be further improved. Nevertheless, the results do indicate that the creation of well-developed substructure may be sufficient to impart a desirable modicum of strength to commercial-purity titanium. That is to say, there may be no need to complete the LAB-to-HAB transformation.

5. Summary

High-resolution EBSD was applied to examine the grain structure, texture, and misorientation distribution developed in ultrafine-grain, commercial-purity titanium for biomedical applications. The material was produced using a two-step approach involving ECAP-Conform at 250 °C to a total true strain of 4.2 followed by drawing at 200 °C to an area reduction of 76%. The main conclusions from this work are as follows.

1. The final grain structure was bimodal consisting of relatively-coarse (≥ 1 μm) heavily-deformed, elongated grains surrounded by necklaces of fine, equiaxed grains. Although the mean grain thickness was ~0.3 μm, the microstructure was characterized by a relatively-large volume fraction (≥ 55%) of retained coarse grains. Assuming a 15° criterion to differentiate LABs and HABs, the HAB fraction was found to be ~45%.

2. Texture was dominated by a strong <1010>–fiber. This texture was deduced to retard the grain-refinement process.

3. The formation of the observed microstructure was hypothesized to be attributable to the geometric effect of strain and continuous dynamic recrystallization. No significant evidence of twinning was found. On the other hand, it is possible that a small volume fraction of the material (~3.5%) had undergone an α → ω martensitic phase transformation.

4. The contribution of substructure strengthening (due to dislocations and LABs) to the final material strength developed during SPD was found to be comparable to that due to the formation of a UFG microstructure.

Acknowledgments

R.Z. Valiev gratefully acknowledges the support from the Russian Federal Ministry for Education and Science (RZV Grant no. 14. B25.31.0017), and I.P. Semenova acknowledges the support of the said Ministry within the scope of the basic part of the State Assignment. This work was also supported in part by a grant from the Saint Petersburg State University No 6.37.431.2015.

References