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Non-Newtonian Viscosity of Solutions of Ellipsoidal Particles*

HAROLD A. SCHERAGA
Department of Chemisiry, Cornell University, Ithaca, New York

(Received November 3, 1954)

The specific viscosity, and its dependence on velocity gradient,
plays an important role in studies of the structure of macromole-
cules in dilute solution. A satisfactory theoretical interpretation
of the non-Newtonian viscosity of solutions of ellipsoidal particles
has been given by Kuhn and Kuhn, and also by Saito, who made
use of Peterlin’s distribution function for the orientation of
particle axes i the streaming liquid and calculated the energy
dissipation due to both the hydrodynamic orientation and the
Brownian motion, Also, a theory for the non-Newtonian viscosity
of solutions of rod-like particles has been developed by Kirkwood.
These theories involve extensive computations which have been
carried out here with the aid of a computing machine by expressing

Saito’s results in terms of Legendre coefficients previously
evaluated in the related problem of double refraction of flow. As
a result, data are available for the dependence of the viscosity
factor » on axial ratio and on the parameter o, where «=G/0, G
being the velocity gradient in sec™ and © being the rotary diffusion
constant in sec™, With these data it will be possible to determine
the rotary diffusion constants of ellipsoidal particles from the
non-Newtonian viscosity of their solutions, and also to correct
viscosity measurements to zero velocity gradient in order to
obtain the intrinsic viscosity. Data are also included for the
evaluation of © from the dependence of » at =0 on the frequency
of periodic shear waves.

INTRODUCTION

HE interpretation of the hydrodynamic properties

of solutions of macromolecules has usually been
based upon a knowledge of the behavior of reasonable
models under the same experimental conditions. If the
macromolecule does not possess too much flexibility,
as seems to be the case for proteins, the rigid ellipsoid
of revolution appears to be a good model, Measurements
of two independent quantities permit one to compute
the size and shape of a rigid ellipsoid which has the
same hydrodynamic properties as the protein.! One of
these quantities is the intrinsic viscosity, obtainable
from the specific viscosity which, in general, depends
on the velocity gradient in the flowing solution. The
dependence of the viscosity of solutions on the size and
shape of the dissolved ellipsoidal particles and on the
velocity gradient has been treated by several inves-
tigators.~® The dependence on the velocity gradient
involves computational problems which have been
resolved in the present work with the aid of a computing
machine.? For this purpose the theory of Saito,” making
use of the hydrodynamic treatment of Jeffery* and the
distribution function of Peterlin? is easiest to put

* This work was supported by the Office of Naval Research
and by the National Science Foundation.
179’1%i91§é)5cheraga and L. Mandelkern, J. Am. Chem. Soc. 75,

2 G, B. Jeffery, Proc. Roy. Soc. (London), A102, 161 (1922-23).

3 A, Peterlin, Z. Physik 111, 232 (1938).

4R, Simha, J. Phys. Chem. 44, 25 (1940).

§ W. Kuhn and H. Xuhn, Helv. Chim. Acta 28, 97 (1945).

¢ J. G. Kirkwood, Rec. trav. Chim. 68, 649 (1949); J. G.
Kirkwood and P. L. Auer, J. Chem. Phys. 19, 281 (1951).

7 N. Saito, J. Phys. Soc. Japan 6, 297 (1951).

8B, H. Zimm (private communication) has obtained an asymp-
totic solution for ellipsoidal particles at very high velocity gradi-
ents, and Kirkwood (private communication) has obtained a
solution for thin rods as a function of velocity gradient.

9 These calculations were carried out at the Cornell Computing
Center with the aid of an IBM card-programmed calculator under
the direction of R. Lesser.

10 Kuhn and Kuhn (see reference 5) have also given a complete
treatment for the dependence of viscosity on velocity gradient
for dilute solutions of ellipsoidal particles. Sec their Eqs. (73)

into convenient form for computation. The calculation
is very similar to that previously carried out for the
related problem of double refraction of flow!! with the
aid of the Mark I computer of the Harvard Computa-
tion Laboratory, and makes use of some of the results
of the previous computations. As a result, data are
available for the dependence of the viscosity factor on
axial ratio and on velocity gradient. With these data
it will be possible to correct experimental measurements
to zero velocity gradient to obtain the intrinsic viscosity
which is easily related to the particle size and shape,
and also to determine the rotary diffusion constants of
asymmetrical particles from the dependence of the
viscosity on velocity gradient. Thus, such viscosity
experiments will provide two hydrodynamic quantities
useful in studies of the configurations of proteins in
dilute solution.!

EXPERIMENTAL OBSERVATION

If a viscous liquid is maintained between two parallel
planes of area 4, one of which moves relative to the
other with a velocity V, the velocity gradient in the
liquid will be G=dV/dr in sec™, where 7 is taken in a
direction normal to the two planes. The viscosity
coefficient 7o of the liquid is a measure of the internal
fricticn which determines the value of the tangential
force & required to maintain the velocity gradient G
between the planes. According to Newton,

F=neGA. (1)

This situation is most easily realized experimentally
if the liquid is placed in the annular gap between
two concentric cylinders of a Couette-type apparatus,
and one of the cylinders rotated. If the gap is large G

and (74). The equivalence of their treatment and that of Saito
(see reference 7) and Kirkwood (see reference 6) has been demon-
strated by Saito and Sugita [J. Phys. Soc. Japan 7, 554 (1952)7.

U Scheraga, Idsall, and Gadd, J. Chem. Phys. 19, 1101 (1951);
Annals of the Computation Laboratory of Harvard University,
26, 219 (1951).
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1527 NON-NEWTONIAN VISCOSITY OF SOLUTIONS

varies withr, but if it is small compared with the cylinder
radius, the behavior of G approaches that for the ideal
case of two parallel planes of infinite extent, where it is
constant. The determination of 5o in the Couette
apparatus is carried out by rotating the outer cylinder
(the inner one being suspended freely by a torsion wire)
and measuring the torque transmitted by the liquid
from the outer to the inner cylinder.!?

If no is independent of G the liquid is said to be
Newtonian in its viscous behavior; if %y depends on G
it is said to be non-Newtonian. If G exceeds a certain
critical value in a given experiment the flow becomes
turbulent; we are concerned here only with values of
G below this critical region so that the flow is laminar.
Most pure liquids in laminar flow exhibit Newtonian
behavior whereas many solutions of macromolecules
are non-Newtonian. Dilute solutions of relatively
small and symmetrical molecules like serum albumin
approach Newtonian hehavior whereas dilute solutions
of large asymmetrical molecules like tobacco mosaic
virus are non-Newtoman.

The viscosity coefficient defined in Eq. (1) is also a
measure of the dissipation of energy in the flowing
liquid, the amount of work done in overcoming frictional
resistance per unit time per unit volume being G®ny.
When large particles are suspended in a flowing liquid
made up of small molecules, there is an increased energy
dissipation which depends on the size and shape of the
dissolved particles.”® The total energy dissipation per
unit time per unit volume" in the solution is G*.

awy
C=Gno+n ——-> ) (2)
a/n

where 7 is the viscosity coefficient of the solution, 7, is
that for the pure solvent, # is the number of particles
per unit volume, and (dW/dt)y is the average increment
in rate of energy dissipation per unit volume due to
the presence of a single dissolved particle; Gy is that
part of the energy dissipation due to the solvent when
present alone and is assumed to be the same even when
the particles are dissolved in the solvent. As a result,
7 will be greater than n,. If each ellipsoidal particle has
a volume of v=4mrab?*/3 where a is the semiaxis of
revolution and b is the equatorial radius then

dW
<~——> — G, 3)
dﬁ Av

12 For experimental details and results of viscosity measurements
see A. E. Alexander and P. Johnson, Colloid Science (Oxford
University Press, New York, 1949), Chap. XIII.

121n the treatment presented here it is assumed that there is
no interaction between dissolved particles and, therefore, no
increment in energy dissipation due to such interactions. This
situation is realized experimentally by making viscosity measure-
‘r:lniznts at various concentrations and extrapolating to infinite

ilution.

where v is a factor dependent on the shape of the
particle, Inserting Eq. (3) in Eq. (2) we obtain®
=70
lim
"0 g5m0

=7, 4

where #2 is the volume concentration of the particles
in the solution. If, in turn, the data are extrapolated to
zero velocity gradient, then v={7%], where [n], is the
intrinsic viscosity for volume concentration. Since
concentration is usually expressed as ¢ in g/100 cc
and the quantity computed for a protein of molecular
weight M is the equivalent hydrodynamic volume V,,
the working form of Eq. (4) will be

[r= tim = ( al ) —V—) (%)

&0 me  \100/\ M

where IV is Avogadro’s number and [%] is the intrinsic
viscosity for concentration in g/100 cc. Since the treat-
ment here is confined to the rigid ellipsoid of revolution
model, we are concerned only with the quantity » for
an ellipsoid of volume ». In the special case where the
ellipsoid becomes a sphere, » takes on the Einstein
value of 2.5 and is independent of G; such a solution
exhibits Newtonian viscous behavior. If the dissolved
particles are asymmetrical, then the solution will
exhibit non-Newtonian viscosity wherein » will be
larger than 2.5 at zero G and will decrease with increas-
ing G, i.e., (dW/dt) decreases as the velocity gradient
is increased due to increasing orientation of the asym-
metrical particles in the streaming liquid. For any
velocity gradient the average increment in rate of
energy dissipation per unit volume, due to the presence
of the particles, is given by Eq. (3) where » depends on
G and on the axial ratio p=a/b. Therefore the factor
v is determinable from a knowledge of (dW/di)y as a
function of G for particles of a given size and shape in
a solvent of viscosity coefficient »q.

THEORY

The evaluation of the increment in energy dissipation
is based on the theory that a solution of ellipsoidal
particles in laminar flow is in an equilibrium steady state
dependent upon the magnitude of two opposing forces,
one arising from the velocity gradient which tends to
orient the particles in the direction of the stream lines,
the other due to the Brownian motion which tends to
produce a random orientation. The Brownian motion
may be characterized by a rotary diffusion constant
O (in sec™*) which depends on the volume and shape
of the ellipsoid.!® To evaluate » the distribution function
F (8, ¢,) for the orientation of the major axes of the

1 It should be pointed out that the notation for  differs among
various authors. For example, several authors (see references

1 and 15) have defined p as b/a¢ where a and b have the same

meaning as used here.
15 I, Perrin, J. phys. radium §, 497 (1934).
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particles at any time at a given value of G must first
be computed.!® This has been carried out by Peterlin®
using Jeffery’s® hydrodynamic treatment. Once the
distribution function is known then (dW/d()y may be
evaluated for any distribution according to Saito’s
theory.”®® We shall thus outline the Jeffery-Peterlin-
Saito treatment wherein the quantities required for
the evaluation of » have been obtained by means of a
computing machine.

The distribution function for ellipsoidal particles
suspended in a continuous liquid medium under the
condition of laminar flow obeys the general diffusion
equation *

oF
—= OAF—~div(Fo) (6)

where A is the Laplacian operator and w is the angular
velocity of the rotating ellipsoid due to the hydrody-
namic forces and has been computed by Jeffery as a
function. { G and R, where

p—1
r=l2
P+

For a prolate ellipsoid ¢>b, whereas for an oblate onc
a<b. Therefore, R=1 for an infinitesimally thin rod, 0
for a sphere, and —1 for an infinitesimally flat disk.

If the particles are relatively small (no dimension
greater than 10 000 A), then within a very short time
after initiation of the rotation of the cylinder a steady
state is reached in which d7/9¢=0. For the steady state
Peterlin,® making use of Jeffery’s results for w, expressed
the solution of the diffusion equation in terms of slowly
converging series of spherical harmonics.

(7

» 1
F= Z —Ri[— iﬂ Ao, jP‘ln

=0 2 n=

7 n
+ 2 3 (@nm, ; cOS2meo+bam, jsin2'llz¢)P2n2"']. (8)

n=1 m=l

The Legendre coeflicients anp, ; and dam, ; are functions
of the parameter a=G/0. Py, are spherical functions of
cos ¢ and Py,?™ are their derivatives of order 2.
Recurrence relations are available’!! for computation
of these Legendre coefficients. Evaluation of these
coefficients gives I as a function of &« and R. This
distribution function has been used previously for flow
birefringence calculations!! based on the theory of
Peterlin and Stuart.}’

Using this distribution function for the particle
orientation as a function of «, Peterlin® computed » by
taking into account the energy dissipation due only to
the rotation of the particle in the hydrodynamic field.

16 See reference 11 for the definition of the coordinate system
in the Couette cylinder apparatus.
7 A, Peterlin and H. A, Stuart, Z. Physik 112, 1 (1939).

SCHERAGA 1528
His results were at variance with those of Simha* who
took into account the energy dissipation arising also
from the Brownian motion. Simha’s treatment was
applied only to the limiting case of a=0 where the
particles have random orientation due to the Brownian
motion and can be considered as rotating with uniform
angular velocity. A complete theory for » as a function
of o was finally obtained by Kirkwood and Auer® for
rods, and by Kuhn and Kuhn,’ and also by Saito,? for
ellipsoids.®® These theories consider that Peterlin’s
distribution function F correctly describes the orienta-
tion of ellipsoidal particles, and that the increment in
energy dissipation, (dW/df)y, contains contributions
not only from the hydrodynamic orientation but also
from the Brownian motion.!® The result obtained by
Saito? is

y= (]+K——L)f I sin'$ sin®2 odQ)

+L f I sin®3dQ+M f F cos®3d§

N
- Fsin®¥sin2¢dQ (9)

o

where the coefficients J, K, L, M, N depend only on
the axial ratio p of the ellipsoid® and are defined as
follows:

; i 010”
T Zb%zo’@o”’
1 1
K=— X
ab? 21)2&0’
1 2
L= — (10)
ab? Bo’ (6> 1)
11
M=
alb? b"’ao'
6 -
N=—
ab? d’ao-b"Bo

18 This problem was discussed extensively at the International
Rheological Congress, Scheveningen (FHolland), 1948, the Proceed-
ings of which have been published.

9 Tor further justification that there is a contribution to the
energy dissipation from the Brownian motion see Kuhn and
Kuhn (reference 5) and also Saito and Sugita (reference 10).
An apparent disagreement over the effect of the rotary Brownian
motion on the viscosity of solutions of rod-like macromolecules
was reported in the discussion following Kirkwood’s paper
[J. Polymer Sci. 12, 1 (1954)]) which was presented at the
Uppsala Symposium on Macromolecules. This disagreement has
been resolved by Saito [J. Polymer Sci. 14, 212 (1954)7].

2 While Egs. (10) appear to be functions of ¢ and b, rather than
of #, the substitution of Eqgs. (12) into Egs, (10) leads to a depend-
ence on only the ratio a/b. ‘

o




1529 NON-NEWTONIAN VISCOSITY OF SOLUTIONS
The quantities ay, ao’, o’’, Bo, 8o/, Bo’/ are functionsof ¢ is known.
a : ffery.?
and & defined by Jeffery (sints sin®Z e
“= fw " [ Lp-Zp 4P O palin
¥ 1] e —— —
0 (@+0)}i+a) f [15 a0 ]

@ dx
@°=f0 (@) Hpt)?

,_f“’ dw
T <a2+x>*(b2+m>“’ )
(11

fn (a2+»)3<b2+m>2’
f <a2+x)*<b2+w>3’

B! = f o m)i(bﬁ-{-x)f

Evaluation of these integrals gives

1 2
et 2]
B~ p

1 { +A}
@0’—[)3(102_1) [’ 9 ]
X!
___1’_.__{ o2
4aPB(pr—1)2 2p
2p° P 3pd
@0’= [1"} 1L };
aABR(pr— 1) 2 4%
200 (P 1, (p-1) A}
ar(p—1el e 8 16p )
2 3 (2f>2+1)

1/ — e am
W 2 4 }

wf =

@l =

where

L (1)
A= lrj) ? for prolate ellipsoids (p>1)

(1) p+ (=)}

~—2 arc cosp
z=————— for oblate ellipsoids (p<1).

(1—p7?

The integrals in Eq. (9) represent mean values of the
given trigonometric functions which may be expressed
in terms of spherical harmonics and evaluated after IF

4[1+4 f:zzf( D07 B 40 )] (13)
T e T —_ o 12
15 7 42 =

Jjun)

(cos® )y

- f F[Po+3P; 100

1 4dr
=;[1+*‘ 2 Riay, j]~ (14)

5 el
(sin%3 )y
=1— (cos™® ). (15)
(sin®} sin2 phn

in2
_ f F[sm ©
3
= — Z Ribu, FA (16)

167w
5 =

Whereas a complete set of Legendre coefficients
Anm,; and by ; would be required to determine the
distribution function F, it can be seen from Egs. (13)
to (16) that, after integration, the only ones which are
required for the evaluation of » are a1, ;, @20, j, @22, 7, b11, ;-

RESULTS AND DISCUSSION
As o approaches zero Eq. (9) reduces to the form
y=r—sa* - %))

where » and s are constants; i.e., » shows a quadratic
dependence on @ with a horizontal tangent at a=0.57
As @ increases, the complete solution for » as a function
of ¢ in Eq. (9) is obtainable by evaluation of the
coefficients @, j, 420, j, Ge2, 5, b1, ; of Egs. (13) to (16).
These coefficients have all been previously computed!
for values of & up to 200 in connection with the related
problem of double refraction of flow. As reported
previously,! a sufficient number of j-values required to
attain the limiting values of the summations appearing
in Egs. (13) to (16) was obtained for «=60. However,
for > 60, the additional j-values required could not
be obtained because of the limited internal storage
capacity of the Mark I computer. Therefore, no results
are reported here for o>60. For a<60 the values
obtained are probably accurate to well within 19,2

 See the Appendix and also reference 11 for some discussion
of the convergence of these series.
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HAROLD A. SCHERAGA 1530
TasrE L Prolate ellipsoids; » as a function of « for various axial ratios, p.

\u< 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 25 50 100 300
0.00 2.500 2908 3.685 4.663 5.806 7.099 8533 100 11,80 13.63 17.67 2219 2718 32.63 38,53 5519 1768 593.7 4279
0.25 2500 2907 3.683 4.661 5.802 7.094 8.526 1009 1179 13.62 17.65 22,17 2715 32.60 5513 1766 593.0 4274
0.50 2.500 2906 3.679 4.653 5.791 7.078 8506 1007 11.76 13.59 17.60 22,10 27.07 3250 38.37 54.96 1760 5910 4260
0.75 2.500 2903 3.672 4.641 5773 7.053 8474 1003 1171 1353 1752 2200 2694 3234 38.18 54.68 175.1 587.7 4235
1.00 2.500 2,890 3.663 4.624 5.748 7.019 B8.420 9973 11.65 1345 1741 2185 2676 32.12 37.91 5429 1738 5832 4202
125 2500 2,895 3.651 4.604 S5.717 6.977 8374 0904 11.56 13.34 1728 21,68 26.54 31.84 37.50 5381 172.1 577.6 4161
1.50 2.500 2.890 3.637 4.579 5.681 6.927 8310 9.823 1146 13.23 17.11 2147 26,28 31.53 37.21 53.25 1703 5711 4113
175 2.500 2.884 3.621 4552 5.640 6.872 8237 9,732 11.35 13.00 1694 21.24 2598 3117 36,78 52.62 1681 563.8 4059
200 2.500 2.877 3.604 4.522 5.596 6.811 8158 0.633 11.23 1295 16.74 2098 25.66 30,78 36.31 51,93 1658 5558 4000
225 2.500 2.871 3.586 4.490 5.548 6.746 8074 9.528 11.10 12.80 16.53 20.71 2532 3036 35.81 5120 163.4 547.4 3938
2,50 2,500 2.863 3.566 4.457 5499 6,678 7.086 9.418 1097 1264 1631 2043 2497 2993 3529 S0.44 160.8 5385 3873
3.00 2,500 2.848 3.526 4.387 539 6.537 7.801 0.190 10.69 1231 1586 19.84 24.24 20,03 3422 4886 1555 5203 3738
3.50 2,500 2.832 3485 4.316 5291 6.395 7.619 8958 1041 11.97 1541 19.25 2349 2812 33.13 47.26 150 S501.8 3602
4,00 2500 2.816 3.444 4.246 5.188 6.254 7.437 8731 10.13 11,64 1496 18,67 22.77 27.24 32.07 4570 1440 483.3 3470
450 2500 2.801 3.405 4.179 S5.089 6.119 7.263 8514 0.868 11.32 14,53 1812 22.07 26.38 31.05 4421 1399 466.6 3343
500 2,500 2.787 3.367 4.115 4995 5991 7.097 8307 90617 11.03 1412 17.59 2141 2558 30.09 4280 1352 4503 3223
6,00 2500 2.760 3.209 3.999 4.824 5.459 6797 7.933 9,162 1048 13.39 16.64 2022 24.12 2835 4024 1266 4210 3007
7.00 2500 2.738 3.240 3.897 4.675 S5.558 6.537 7.608 8768 1001 1275 15.82 1919 22.87 26.84 38,04 1192 395.7 2822
800 2500 2.718 3.180 3.810 4.547 5383 6312 7.328 8427 9.608 12.21 1511 1830 21.78 25.55 36.14 1120 374.0 2663
9.00 2,500 2,702 3.145 3.734 4.435 5232 6,117 7.085 8132 9257 11.73 1449 17.53 20.85 74.42 3450 107.5 355.3 2527
10.00 2.500 2,688 3.107 3.668 4.338 5.100 5947 6.872 7.874 8950 11.32 13.96 1686 20,03 2345 33.07 1027 3391 2408
12.50 2,500 2.661 3.031 3.536 4.143 4.834 35603 6.444 7355 8332 1048 1288 1551 1833 21.48 3021 93.19 306.7 2171
15.00 2,500 2.642 2.975 3.435 3.080 4.623 5320 6101 6.936 7.833 9.80¢ 12.00 1442 17.05 19.90 27.89 8554 280.7 1983
17.50 2,500 2.629 2934 3.361 3.880 4.476 S5.130 $.866 6.652 7.496 9.350 11.42 13.69 16.17 .18.84 26.3¢ 8043 263.3 1856
2000 2.500 2.619 2.900 3.300 3.788 4.340 4,974 S5.660 6,402 7,199 8949 10.90 13,05 1538 {7.00 24.98 7593 248.0 1746
22,50 2.500 2.611 2.874 3.250 3.712 4.245 4.839 5.491 6198 6956 8.621 10.48 12,52 14.74 17.13 23.86 72.28 2357 1657
25.00 2,500 2.605 2.852 3.208 3.647 4.155 4723 5346 6,021 6745 8337 1041 1206 14.18 1647 2290 69.12 225.0 1580
30.00 2500 2,597 2.819 3.142 3.545 4.012 4.536 S5.012 5736 7.878 9520 11.32 1329 1540 2135 64.05 207.9 1457
3500 2.500 2.591 2.795 3.092 3465 3.00 4.389 4927 5511 6138 7.517 9.054 1074 12.58 14.56 2012 60.39 194.5 1361
1000 2.500 2587 2777 3053 3401 3809 4260 4776 5327 5918 7220 8671 1027 1200 [387 1912 5680 183.6 1283
4500 2500 2,584 2.763 3.021 3.348 3.733 4.167 4.646 5.167 5728 6960 8336 9.847 11.49 1326 1824 5394 1740 1214
5000 2,500 2.582 2.752 2,995 3.303 3.667 4.078 4.533 5028 5560 6.732 8.039 0477 1104 1273 1746 5140 1655 1154
60.00 2.500 2.579 2736 2.955 3.232 3.560 3.933 4.345 4794 5278 6.344  7.535 8.845 1027 1181 16.12 47.04 151.0 1050

TFrom Eq. (7) it can be seen that R(p)=—R(1/p).
This transformation from prolate to oblate does not
affect the summations in Egs. (13) to (15) since these
a-coefficients have nonzero values only for even powers

of j. However, the b-coefficient in Eq. (16) has nonzero
values only for odd powers of 5. Therefore, the contribu-
tion of this term to v in Eq. (9) is of opposite sign for
prolate and oblate ellipsoids (as far as the effect of R?

TasLE II. Oblate ellipsoids; » as a function of « for various axial ratios, p.

%
£
~
=

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 25 50 100 300
0.00 2.500 2.854 3.431 4.059 4.708 5367 6.032 6.700 7.371 8.043 9,391 10.74 12,10 1345 1480 1819 35.16 69.10 204.9
0.25 2.500 2.85%4 3.430 4.058 4.706 5.365 6.029 6.697 7.367 8.039 9.386 10.73 12,09 13.44 1479 1818 35.13 69.06 204.8
0.50 2.500 2,853 3.427 4.053 4.700 35.357 6.019 6.686 7.354¢ 8.025 9.369 10.72 12,07 13.42 14,77 1815 35.06 68.91 204.3
0.75 2.500 2.850 3.422 4.045 4.689 5344 6.004 6.668 7.334 8.002 9.341 10.68 12,03 13.37 14.72 18,09 34.95 68.68 203.6
1.00 2.500 2,847 3.415 4.034 4.675 5.326 5983 6.643 7.306 7971 9304 1064 11.98 13.32 1466 18,01 3479 6836 202.7
1.25 2.500 2.844 3.406 4.021 4.657 S5.304 5956 6.613 7.272 7933 9,257 10,59 11,92 13.25 14.58 1791 34.59 67.97 201.5
1.50 2.500 2,839 3.396 4.005 4.636 5.278 5926 6.577 7.231 7.887 9,203 10,52 11.84 13.16 1449 17.80 3436 67.51 200.1
1.75 2.500 2.834 3.384 3.988 4.613 5.249 5.891 6.537 7.186 7.837 9,141 1045 11,76 13.07 1438 17.67 34.10 6699 198.6
2,00 2,500 2.829 3.371 3.968 4.587 5.217 5.853 6.493 7.136 7.781 9.074 1037 11,67 1297 1427 17.52 33.82 66.42 196.9
2,25 2,500 2.823 3.358 3.948 4.560 5.183 5.813 6.447 7.083 7.722 9,003 1029 11,57 12,86 14,15 1737 33.51 65.82 195.0
2,50 2.500 2.817 3.344 3.926 4,531 5.147 5.770 6,398 7.028 1.6 8.928 1020 1147 12,75 1402 17.22 33.20 65.18 193.1
3.00 2.500 2,804 3.314 3.881 4.471 5,073 5682 6.296 6.912 7.531 8.772 10,02 11.26 12,51 13.76 16.89 32.54 63.87 189.2
3.50 2.500 2,790 3.283 3.83¢4 4410 4.997 5.592 6.192 6,795 7.399 8.613 9.830 11.05 1227 1349 16.55 31.87 62,53 185.2
4,00 2.500 2.777 3.253 3.788 4.349 4,922 5503 6.089 6.678 7.269 8456 9.647 10.84 12,03 1323 1622 31,21 61.20 181.2
4,50 2.500 2.764 3.224 3.744 4.290 4.850 5.417 5.990 6.566 7.144 8,304 9.469 10.64 11.80 1297 1590 30.57 $59.92 1774
5,00 2.500 2751 3.196 3.701 4,234 4.781 5.335 5.895 6.458 7.024 8.159 9.299 1044 {159 12.73 15.60 29.96 58.70 173.7
6.00 2.500 2,729 3.144 3.623 4.131 4.653 5.184 5.720 6.260 6.803 7.893 8,987 10,08 11,18 12,28 15,04 28.84 56.46 167.0
7.00 2.500 2.709 3.099 3.555 4.040 4.541 5.050 5.566 6.086 6.608 7.657 8.712 9,769 10.83 11.89 14.54 27.85 5448 161.0
8.00 2.500 2.692 3.060 3.494 3.960 4.442 4,933 5430 5.932 6436 7450 8469 9490 1051 11.54 1441 2697 52,73 155.8
9.00 2.500 2.678 3.026 3.442 3.890 4.354 4.829 5310 5.796 6.284 7.266 8.254 9.244 1024 11.23 13.72 2620 51,19 151.2
10.00 2,500 2.666 2.996 3.395 3.827 4.277 4.737 §.204 S5.675 6.149 7,103 8.062 9.025 9.990 10.96 13.38 2551 49,82 147.1
12,50 2.500 2.642 2.936 3.300 3.699 4.117 4,546 4,983 5424 5.868 6.764 7.665 8570 9477 10.39 12.66 2408 4696 138.5
1500 2.500 2.626 2.891 3,225 3.597 3.988 4.390 4.801 5.217 5.636 6482 7.334 8,190 9,049 9909 12,07 22.89 44.57 1313
17,50 2,500 2,614 2.856 3.169 3.520 3.892 4.276 4.669 5.066 5468 6.279 7.096 7918 8742 9.568 11.64 22,03 42.86 126.2
20,00 2.500 2.605 2.8290 3.123 3.455 3.809 4,176 4.552 4.933 5.319 6.097 6.883 7.674 8467 4262 11.26 2127 41.33 1216
22,50 2.500 2.598 2.807 3.084 3.400 3.739 4,091 4,433 4.820 5.192 5944 6.703 7467 8,234 002 1093 20.62 40,03 117.7
25.00 2.500 2.593 2.789 3.051 3.352 3.677 4.017 4,365 4,720 5079 5.806 6.541 7.281 8.023 768 10.64 20,03 38.86 114.2
30,00 2,500 2.585 2,760 2,998 3.275 3.577 3.8904 4,221 4.554 4.893 5.579 6.273 6973 7.676 838! 10.15 1906 3691 108.4
35.00 2,500 2.580 2.740 2957 3.215 3.497 3.795 4,104 4.420 4.741 5.393 6.054 6721 7391 8.064 9.753 1824 35.32 103.60
40,00 2.500 2.577 2.724 2925 3.165 3.431 3.712 4.005 4.306 4.612 S5.235 5.867 6.505 7.147 7792 9.411 1757 33.94 99.50
45,00 2.500 2.574 2.712 2.899 3,124 3.375 32,643 3.922 4.209 4.501 5.098 5705 6.318 6.935 7.555 9.114 1697 32.75 95.92
50,00 2.500 2,572 2,703 2,878 3,090 3.327 3.581 3.848 4.122 4,403 4975 5559 6.149 6,743 7341 8.844 1643 31.66 92.65
60,00 2.500 2.570 2.690 2.846 3.036 3.251 3.483 3.727 3.980 8391 1551 29.82 87.15

4,240 4,772 5316 5867 6423 6982




15831
40
-
L
30
:\)ﬁmlou 20;
L
10f 22
:\J=5
~ p=i
0llllllLlllllll}lllL(lllltlJl_J.‘
o} 5 10 15 20 25

O~ %%

F16. 1. Dependence of v on « for prolate ellipsoids of
various axial ratios.

is concerned). However, the quantity N is positive for
prolate and negative for oblate ellipsoids so that this
term always increases the value of ». As a increases,
the last term of Eq. (9) (arising from the energy dissipa-
tion due to the Brownian motion, and neglected by
Peterlin) becomes negligible. The values of J, K, L, M,
N of Egs. (10) are different for prolate and oblate
ellipsoids. Therefore, the numerical values of » as a
function of « will differ for prolate and oblate ellipsoids.
The results of the computations of v as a function of «
for various axial ratios p are given in Table I for
prolate and in Table IT for oblate ellipsoids. Some of
these results are also shown in Figs. 1 and 2 which are
qualitatively similar to those of Kuhn and Kuhn® and
Saito.”

The special case where a=0 is of interest. Taking the
limiting forms of the summatione in Eqs. (13) to (16)
for =0, and substituting in Eq.  (9), the following
result is obtained

r
f

4 2 1
y=—(J+K—~L)+-L+-M-+—. (18)
15 3 3 15
This equation is identical with that obtained previously
by Simhat for the case of complete Brownian motion.
Computations of » as a function of p, for =0, have
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F16. 2. Dependence of » on « for oblate ellipsoids of
various axial ratios.

NON-NEWTONIAN VISCOSITY OF SOLUTIONS

40r-
30:-
v, "
(auo)aoE_
ok
! g oblate
ll’llllll'lllllllll
© 5 10 15 20

AXIAL RATIO (p or I/p)

F16. 3. Dependence of » at a=0 on axial ratio for
prolate and oblate ellipsoids.

been reported by Mehl, Oncley, and Simha.?? An
expanded form of their results was obtained during
the course of the present computations and is reported
in Table III and Fig. 3.

It has been pointed out by Zimm? that the frequency
dependence of v at a=0 provides an alternative method
to that of non-Newtonian viscosity for the determina-
tien of rotary diffusion constants. If one uses periodic
shear waves of frequency w [not the same w as used in
Eq. (6)], then the frequency dependence is expressible
by a modified form of Eq. (18) in terms of a complex

TaBrE III Dependence of viscosity factors », v, and vz on axial
ratio for prolate and oblate ellipsoids at &=0 and w=0.

Prolate Oblate
p=afb vA v v 1/p=blc wva vp v
1.0 2,500 0.000 2.500 1.0 2.500 0.000 2.500
1.2 2.504 0.021 2,528 1.2 2,505 0.019 2.524
1.4 2,516 0.072 2.588 1.4 2,520 0.063 2,583
1.6 2.533 0.144 2.677 1.6 2,542 0,119 2.661
1.8 2.555 0.229 2,784 1.8 2,573 0.180 2.753
2.0 2.583 0.325 2.908 2.0 2,610 0.244 2.854
2.25 2,623 0.455 3.078 2.28 2.664 0,325 2,989
2.50 2.671 0.595 3.266 2.50 2,727 0405 3.132
2.75 2,726 0.743 3.469 2.75 2,795 0485 3.280
3.0 2.786 0.899 3.685 3.0 2,868 0562  3.430
3.5 2,922 1,230 4.152 3.5 3.027 0.714 3.7414
4.0 3.077 1,586 4.663 4.0 3.198 0.861 4,059
4.5 3.248 1.967 5.215 4.5 3.378 1.004 4.382
5.0 3.434 2,372 5.806 5.0 3.563 1.145 4,708
6.0 3.844 3.254 7.098 6.0 3.947 1420  5.367
7 4,302 4,230 8.532 7 4342 1.690 6.032
8 4.804 5.299 10,103 8 4,744 1956 6.700
9 5.346 6.458 11.804 9 5181 2,220 7.371
10 5,928 7. 13.634 .10 5.562 2,481 8.043
12 7.203 10.466 17.669 12 6.390 3.001 9.391
14 8.622 13.567 22.19 14 7.224 3.519 10,74
16 10,179 17.002 27.18 16 8.061 4,034 12,10
18 11,868 20.762 32,63 18 8.901 4,548 13.45
20 13.688  24.842  38.53 20 0.743 5061 14.80
25 18,787 36.406 55.19 25 11,853 6.340 18.19
30 24.65 49.86 74,51 30 13,966 7.618 21.58
35 31,24 65,15 96.39 35 16.083 8.8904 24.98
40 38.53 82.23 120.76 40 18.200 10.170 28.37
50 55.20 121,61 176.81 50 22.438 12.720 35.16
60 74,54 167,74 242,28 60 26.678 15.268 41.95
70 96,45 220.46 316.9 70 3092 17.82 48,74
80 120.88 279.60 400.5 80 35.16 20.36 55.52
920 147,77 345,03 492.8 90 3940 2291 62.31
100 177.06 416.65 593.7 100 43,64 2546 69.10
150 35844 864,74 1223.2 150 64.86 38.19 103.05
2 595.6 1457.3 2052.9 200 - 86,08 5093 137.01
00 12269  3052.5 42794 300 204.91

128.52

- 7639

22 Mehl, Oncley, and Simha, Science 92, 132 (1940').
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viscosity factor whose real part is given by®

2 (19)
y=p g
1+w?/3602
where
4 2 1
va=—(J+K—L)+-L+-M,
15 3 3
and

vp=RN/15,

For zero frequency Eq. (19) reduces to Bq. (18); at
high frequency » approaches »,. As indicated by
Cerf,® O is determinable from the slope of the curve
of » vs w at the inflection point. For this purpose values
of v4 and vp as a function of p are also included in
Table IT1.

Now that data are available for »4 and vp as a func-
tion of p at a=0, and for v as a function of « and p,
it will be very desirable to have extensive experimental
tests to check the validity of the theory. Some prelimin-
ary results on non-Newtonian viscosity have alrecady
been obtained.

APPENDIX

In connection with the convergence problem* it is
of interest to examine the values of the summations of
Egs. (13) to (16) for increasing j-values for the case
R=1. Such data are shown in Table IV for a=25, 40,
and 60, where each entry is the cumulative value of the
summation as j increases. It can be seen that enough
terms have been computed to obtain the limiting values

#R. Cerf, Compt. rend. 234, 1549 (1952).
% B, Wada, J. Sci. Rescarch Inst. (Tokyo) 47, 168 (1933);
J. Polymer Sci. 14, 305 (1954).
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Tasre IV, Values of summations as a function of 5 for
several values of .

« - Zane,i Ban,; Dane,i Zby,g

25 0.06449 0.01935 0.0005235 0.009029
0.09624 0.03951 0.0006101 0.015774
0.10956 0.05068 0.0005530 0.019813
0.11145 0.05478 0.0004914 0.021399
0.10023 0.05492 0.0004622 0.021545
0.10742 0.05390 0.0004568 0.021256
0.10670 0.05317 0.0004600 0.021017
0.10658 0.05292 0.0004636 0.020918
0.10669 0.05292 0.0004653 0,020908
0.10678 0.05297 0.0004657 0.020923
0.10681 0.05301 0.0004656 0.020934

0.020939

0.00062935 0.005837
0.0008667 0.010806
0.000924.1 0.014767
0.0009037 0.017518
0.0008639 0.019029
0.13857 0.08093 0.0008301 0.019628
0.13720 008075 0.0008093 0.019723
0.13603 0.07999 0.0007998 0.019616
0.13533 0.07934 0.0007971 0.019482
0.13496 0.07894 0.0007974 0.019383
0.13481 0.07874 0.0007984 0.019328
0.019303

0.0006731 0.003939
0.0009891 0.007460
0.001139%4 0.010583
0.0011965 0.013208
0.0012054 0.015137
0.0011934 0.016389
0.0011754 0.017107
0.0011590 0.017461
0.0011471 0.017597
0.0011397 0.017620
0.0011356 0.017595

0.017563

40 0.06671 0.02001
0.10338 0.04490
0.12504 0.06255
0.13611 0.07356
0.13917 0.07915

60 0.06753 0.02026
0.10599 0.04769
0.13104 0.06925
0.14748 0.08494
0.15578 0.09505
0.15917 0.10117
0.16021 0.10429
0.16023 0.10543
0.15983 0.10564
0.15933 0.10547
0.15889 0.10519

of the summations within the precision of the data
reported in Tables I and IL

P




