Report Date
29 November 2016

Report Type
Briefing Charts

Dates Covered
02 November 2016 – 30 November 2016

Title and Subtitle
A Hybrid Model for Multiscale Laser Plasma Simulations with Detailed Collisional Physics

Author(s)
David Bilyeu, Carl Lederman, Richard Abrantes, Hai Le

Performing Organization Name(s) and Address(es)
Air Force Research Laboratory (AFMC)
AFRL/RQRS
1 Ara Drive
Edwards AFB, CA 93524-7013

Abstract
Viewgraph/Briefing Charts

Subject Terms
N/A

Security Classification of:
- a. Report: Unclassified
- b. Abstract: Unclassified
- c. This Page: Unclassified

Limitation of Abstract
SAR

Number of Pages
23

Name of Responsible Person
D. Bilyeu

Telephone No (include area code)
N/A

For presentation at AFOSR Plasma and Electroenergetics Review Meeting; Arlington, VA (29 November 2016)
PA Case Number: #16531; Clearance Date: 07 November 2016
Prepared in collaboration with ERC

Approved for Public Release; Distribution Unlimited. The U.S. Government is joint author of the work and has the right to use, modify, reproduce, release, perform, display, or disclose the work.
A Hybrid Model for Multiscale Laser Plasma Simulations with Detailed Collisional Physics

AFOSR Plasma and Electroenergetics Review Meeting
29-30 November 2016

Collaborators:
• R. Caflisch (UCLA)
• A. Karagozian (UCLA)

Richard Abrantes1,2, Hai Le1,2, Carl Lederman2, PI: David Bilyeu3

1UCLA
2ERC Inc.
3AFRL/RQRS
Outline

• Goals
• Review of Past Work
• Argon Collisional-Radiative Complexity Reduction Validation
• Non-Maxwellian CR
• Phase-accurate Multiscale Particle Push
Goals

• Utilize hybridization techniques to produce accurate and efficient plasma simulations that spans many orders of magnitude in both space and time.
• Capture complex physics: excitation/ionization, transport, radiation, etc.
• Consistent collision operator across different levels of fidelity.

Current Focus:
• Generalization of collisional-radiative kinetics with level grouping
• General Hybridization techniques
• Focus on each solver before hybridization
• Special attention to low density low energy conditions
RQRS M&S Group

• **Government**
 - Dr. David Bilyeu (LPI, in-space Chem)
 - Dr. Justin Koo (Flight Support, Group Lead)
 - Dr. Rob Martin (FRC)

• **Onsite Contractors (ERC inc.)**
 - Richard Abrantes (Grad Student, LPI)
 - Dr. Jun Araki (Flight Support, PIC)
 - Dr. Carl Lederman (LPI)
 - Dr. Michelle Scharfe (Flight Support)
 - Dr. Eder Sousa (FRC)
 - Jonathan Tran (Grad Student, Implicit PIC)

• **Summer Students**
 - Astrid Raisanen
 - PhD UofM; Vlasov HET
 - Daniel Crews
 - M.S. Washington; Collisionless Shock for V&V
 - Kari Kawashima
 - B.S. UCLA; SM/MURF beta tester

• **Previous**
 - Dr. Hai Le (LPI; now at Livermore)
 - Dr. Artan Qerushi (FRC now at Lockheed)
Summary of Past Work

Maxwellian Inelastic Collisions
- Detailed CR model for multiple ionization stages
- Validation against experimental data
- Nonequilibrium radiation transport: coupling with a collisional-radiative model
- Inelastic collisions in a MF plasma: enhanced thermochemical kinetics.

Multiscale Hybridization
- A time-parallel/multiscale method with energy preservation

Analytical BGK
- Conservative even for large mass ratios
- Conservation are independent of collisional frequencies

Argon CR Modeling Multiple Ionization Levels

- Threshold Peak Intensity (W/cm²)
- Pressure (Torr)

Graph shows comparison between Analytical and Experimental data for 532 nm and 1064 nm.
Collisional Radiative (CR) Overview

Updates

- Expanded complexity reduction to include multiple ionization levels
- Adaptive integration technique -> fixes rate calculation for higher electron temperature
- Investigate grouping sensitivity
- Linked with LANL database for Argon cross sections and atomic level information
- Algorithms not hard coded for Argon.

Levels of Complexity

- Full rates (LANL)
- Cutoff nearly ionized levels
- Grouping Strategies
 - Uniform
 - Boltzmann
 - QSS (Boltzmann and Planck equilibrium)
- Group Selection
 - Electron configuration (no splitting information)
 - Highly excited states
 - Analysis of full run
 - Numerical optimization
CR Governing Equations

\[
\left(\frac{df_e(\varepsilon,t)}{dt} \right)_{\text{coll,ex/dex}} = - \sum_{m>n} N_{n} \left(f_e(\varepsilon) \right) \left(\sqrt{\frac{2e_0}{m_e}} \right) \sigma_{(m|n)}^{e,\uparrow} (\varepsilon_0)
\]

\[
+ \sum_{m>n} N_{m} \left(f_e(\varepsilon_1) \right) \left(\sqrt{\frac{2e_1}{m_e}} \right) \sigma_{(n|m)}^{e,\downarrow} (\varepsilon_1)
\]

\[
+ \sum_{m<n} N_{m} \left(f_e(\varepsilon_1) \right) \left(\sqrt{\frac{2e_1}{m_e}} \right) \sigma_{(n|m)}^{e,\downarrow} (\varepsilon_1)
\]

\[
- \sum_{m>n} N_{n} \left(f_e(\varepsilon_0) \right) \left(\sqrt{\frac{2e_0}{m_e}} \right) \sigma_{(m|n)}^{e,\downarrow} (\varepsilon_0)
\]

\[
\left(\frac{dN_{n}(t)}{dt} \right)_{\text{coll,ex/dex}} = - \sum_{m>n} N_{n} \int_{\varepsilon_0}^{\varepsilon_1} \left(f_e(\varepsilon) \right) \left(\sqrt{\frac{2e_0}{m_e}} \right) \sigma_{(m|n)}^{e,\uparrow} (\varepsilon_0) d\varepsilon_0
\]

\[
+ \sum_{m>n} N_{m} \int_{\varepsilon_1}^{\varepsilon_0} \left(f_e(\varepsilon_1) \right) \left(\sqrt{\frac{2e_1}{m_e}} \right) \sigma_{(n|m)}^{e,\uparrow} (\varepsilon_1) d\varepsilon_0
\]

\[
+ \sum_{m<n} N_{m} \int_{\varepsilon_1}^{\varepsilon_0} \left(f_e(\varepsilon_1) \right) \left(\sqrt{\frac{2e_1}{m_e}} \right) \sigma_{(n|m)}^{e,\uparrow} (\varepsilon_1) d\varepsilon_0
\]

\[
- \sum_{m<n} N_{n} \int_{\varepsilon_0}^{\varepsilon_1} \left(f_e(\varepsilon_0) \right) \left(\sqrt{\frac{2e_0}{m_e}} \right) \sigma_{(m|n)}^{e,\downarrow} (\varepsilon_0) d\varepsilon_0
\]
CR Governing Equations cont.

\[\frac{dn_n^{+k}}{dt} = \]

\[= - \sum_{m>n} \alpha^{+k,e}_{(m|n)} N_e N_{k+n} + \sum_{m>n} \beta^{+k,e}_{(n|m)} N_e N_{k,m} + \sum_{m>n} A^{+k}_{(n|m)} N_{k,m} \]

\[+ \sum_{m<n} \alpha^{+k,e}_{(n|m)} N_e N_{k,m} - \sum_{m<n} \beta^{+k,e}_{(m|n)} N_e N_{k,n} - \sum_{m<n} A^{+k}_{(m|n)} N_{k,n} \]

\[- \sum_j \alpha^{+k,e}_{(+,j|n)} N_e N_{k+n,j} + \sum_j \beta^{+k,e}_{(n,+j)} N_{e+(k+1),j} N_e \]

\[\alpha^{e}_{(m|n)} = \int_{E_{nm}}^{\infty} \sigma_{nm}^{e}(\epsilon) v_e f(v_e) dv_e \]

\[\beta^{e}_{(n|m)} = \frac{n^2}{m^2} e^{+x_{nm}} \alpha(n|m) \]

\[A(n|m) = \left(\frac{8 \pi^2 e^2}{m_e c^3} \right) \frac{g_n}{g_m} f_{nm} \]

*Previous included

- **Current Assumptions**
 - Electron dominated collisions
 - \(\delta \) function for ion distribution
 - Maxwellian electrons

- **Current Model Includes**
 - Multiple ionization levels
 - Excitation/de-excitation
 - Ionization/recombination
 - Multi-photon ionization and inverse Bermsstrahlung
 - Radiation losses via, Bound-Bound and Bound-Free
CR Grouping Techniques

Uniform

- Solely conserves number density
- Weights each level according to level degeneracy within group

Conserved Variable:
\[\bar{N}_n = \sum_{i \in n} N_i \]

Effective rate:
\[\tilde{\alpha}(m|n) = \sum_{i \in n} g_i \sum_{j \in m} \alpha(j|i) \]

\[
\frac{dN_n}{dt} = N_e \left[\sum_{m>n} \alpha(m|n)N_n + \sum_{m<n} \beta(m|n)N_n \right] + \ldots
\]

Boltzmann

- Conserves number density
- Preserves energy in groups through group temperature description

Conserved Variable:
\[N_{n0} \& N'_n = \frac{N_{n0}}{g_{n0}} \sum_{i \in n} g_i e^{-\Delta E_i/T_n} \]

Effective rate:
\[\tilde{\alpha}(m'|n') = \sum_{i \in n} \frac{g_i e^{-\Delta E_i/T_n}}{Z'_{n}} \sum_{j \in m'} \alpha(j|i) \]
Complexity Reduction for Argon

Full Lines (LANL)
- Based on quantum calculations with corrections for low temperature

NIST Cutoff
- Starts with LANL and assumes higher excited states are ionized
- Cutoff experimentally determined
- 2-3x reduction

Electron Configuration
- Groups based on electron configuration
- Uses uniform grouping
- 10-15x reduction over NIST

Grouping
- Boltzmann or Uniform grouping
- Saves 20-30% over Electron Splitting
- Case by case basis
Simulation Setup

- Pressure: 4.22 Torr (5.55x10^{-3} atm)
- Ion Temperature: 0.035 eV
- Atomic Density: 10^{20} 1/m^3
- Ionization fraction: 10^{-13}
- Electron Temperature: 10 & 100 eV
- t = [0,10^6] seconds

Groupings

- NIST cutoff with electron grouping
- NIST cutoff with electron grouping and Boltzmann grouping
- NIST cutoff with electron grouping and Uniform grouping
Argon Level Grouping Isothermal Test
Electron Temperature 10 eV

Argon +1
12 electron configurations
9 Isolates states
1 group with 3 states

Uniform group propagates errors to isolated states
Argon Level Grouping Isothermal Test
Electron Temperature 100 eV

17 electron configurations
14 Isolates states
1 group with 3 states

Uniform groups propagates errors to isolated states
Argon Level Grouping Isothermal Test

Error

ODE Solver tolerance
Relative error 1^{-4}
Absolute error 1
~1200 Radau5 time steps
dt increases exponentially

Solution improves if either tolerance is decreased but at the expense of computational time. E.g. relative error 10^{-6} -> computational time triples
Non-Maxwellian Electrons CR - Ions
(Preliminary)

- **Current Assumptions**
 - Electron dominated collisions
 - Single ionization level
 - Isotropic EEDF
 - δ function for ion distribution

- **Current Model Includes**
 - Elastic electron collisions
 - Excitation/de-excitation
 - Ionization/recombination

\[
\frac{dN_n(t)}{dt}_{\text{coll,ex/dex}} = - \sum_{m>n} N_n \int_{\varepsilon_0} f_e(\varepsilon_0) \left(\sqrt{\frac{2\varepsilon_0}{m_e}} \sigma_{(m|n)}^{e,\uparrow}(\varepsilon_0) \right) d\varepsilon_0 \\
+ \sum_{m>n} N_m \int_{\varepsilon_1} f_e(\varepsilon_1) \left(\sqrt{\frac{2\varepsilon_1}{m_e}} \sigma_{(n|m)}^{e,\downarrow}(\varepsilon_1) \right) d\varepsilon_1 \\
+ \sum_{m<n} N_m \int_{\varepsilon_1} f_e(\varepsilon_1) \left(\sqrt{\frac{2\varepsilon_1}{m_e}} \sigma_{(m|n)}^{e,\downarrow}(\varepsilon_1) \right) d\varepsilon_1 \\
- \sum_{m<n} N_n \int_{\varepsilon_0} f_e(\varepsilon_0) \left(\sqrt{\frac{2\varepsilon_0}{m_e}} \sigma_{(m|n)}^{e,\uparrow}(\varepsilon_0) \right) d\varepsilon_0
\]
Non-Maxwellian Electrons CR - Electrons
(Preliminary)

• Current Assumptions
 — Electron dominated collisions
 — Single ionization level
 — Isotropic EEDF
 — δ function for ion distribution

• Current Model Includes
 — Elastic electron collisions
 — Excitation/de-excitation
 — Ionization/recombination

\[
\left(\frac{df_e(\varepsilon,t)}{dt} \right)_{\text{coll,ex/dex}} = - \sum_{m>n} N_n(f_e(\varepsilon_0)) \left(\sqrt{\frac{2\varepsilon_0}{m_e}} \right) \sigma_{(m|n)}^{e,\uparrow}(\varepsilon_0) \\
+ \sum_{m>n} N_m(f_e(\varepsilon_1)) \left(\sqrt{\frac{2\varepsilon_1}{m_e}} \right) \sigma_{(n|m)}^{e,\downarrow}(\varepsilon_1) \\
+ \sum_{m<n} N_m(f_e(\varepsilon_1)) \left(\sqrt{\frac{2\varepsilon_1}{m_e}} \right) \sigma_{(n|m)}^{e,\uparrow}(\varepsilon_1) \\
- \sum_{m>n} N_n(f_e(\varepsilon_0)) \left(\sqrt{\frac{2\varepsilon_0}{m_e}} \right) \sigma_{(m|n)}^{e,\downarrow}(\varepsilon_0)
\]

\[
\left(\frac{df_e(\varepsilon,t)}{dt} \right)_{\text{coll,i/r}} =
\]

\[
-N_+ \int_{\varepsilon_1} \int_{\varepsilon_2} (f_e(\varepsilon_1)) (f_e(\varepsilon_2)) \left(\sqrt{\frac{2\varepsilon_1}{m_e}} \right) \left(\sqrt{\frac{2\varepsilon_2}{m_e}} \right) \left(\frac{\partial^2}{\partial \varepsilon_1 \partial \varepsilon_2} \sigma_{(n+)}^{e,\uparrow}(\varepsilon_1, \varepsilon_2; \varepsilon_0) \right) d\varepsilon_1 d\varepsilon_2
\]

\[
+N_+ (f_e(\varepsilon_2)) \left(\sqrt{\frac{2\varepsilon_2}{m_e}} \right) \int_{\varepsilon_0} \int_{\varepsilon_1} (f_e(\varepsilon_1)) \left(\sqrt{\frac{2\varepsilon_1}{m_e}} \right) \left(\frac{\partial^2}{\partial \varepsilon_1 \partial \varepsilon_2} \sigma_{(n+)}^{e,\uparrow}(\varepsilon_1, \varepsilon_2; \varepsilon_0) \right) d\varepsilon_1 d\varepsilon_0
\]

\[
+ \sum_n N_n \int_{\varepsilon_1} \int_{\varepsilon_0} (f_e(\varepsilon_0)) \left(\sqrt{\frac{2\varepsilon_0}{m_e}} \right) \left(\frac{\partial^2}{\partial \varepsilon_1 \partial \varepsilon_2} \sigma_{(n+)}^{e,\uparrow}(\varepsilon_2; \varepsilon_0, \varepsilon_1) \right) d\varepsilon_0 d\varepsilon_1
\]

\[
\left(\frac{df_e(\varepsilon,t)}{dt} \right)_{\text{elastic}} = \nu_{ee}(F_e - f_e) + \nu_{ei}(F_{ei} - f_e)
\]
Non-Maxwellian CR Numerical Challenges

- Long complex CR formulas
- Stiff equations
- Range of scales
- Boundary conditions
- Multi-dimensional integrations

- Hydrogen recombination example:
 - $e_0 + H_n \leftrightarrow e_1 + e_2 + H_+$
 - Energy equation in terms of the electron’s kinetic energies, ε, and ionization energy I_n.
 - $\varepsilon_0 = \varepsilon_1 + \varepsilon_2 + I_n$
 - Evaluating the effect of recombination on a single species of hydrogen requires the evaluation of a 2D integral.

\[\frac{d}{dt} \left(\frac{\partial^2 N_n}{\partial \varepsilon_0 \partial \Upsilon} \right) \]

\[\varepsilon_0 - \varepsilon_1 = \varepsilon_2 + I_n = \Upsilon \]
Hybridization Techniques

- Solve ODE/PDE with a coarse “C” solver and fine “F” solver
- Coarse propagates less information and is more computationally efficient
- Fine propagates more information and is more accurate
- User defined coarse error function $h(u), 0 \leq h \leq 1$
 - when $h=0$ coarse is accurate
- Q compression operator
- R reconstruction operator
- $h, \varepsilon, Q, & R$, are problem dependent

Simpler hybrid (H) method

$$H1_{[t+dt,t]} = \begin{cases}
C_{[t+dt,t]}(Q \text{ (if needed)}) & \text{if } h \leq \varepsilon \\
F_{[t+dt,t]}(R \text{ (if needed)}) & \text{if } h > \varepsilon
\end{cases}$$

More complex time parallel (TP) method

$$H2_{[jdt,0]}(u(0)) = \begin{cases}
C_{[jdt,0]}Q(u(0)) & \text{if } h \leq \varepsilon \\
C_{[jdt,0]}Q(u(0)) + \\
\sum_{j=0}^{j-1} RC_{[jdt,(j+1)dt]} QF_{(j+1)dt,jdt} RC_{[jdt,0]}Q(u(0)) & \text{if } \varepsilon < h \leq \gamma \\
\sum_{j=0}^{j-1} RC_{[jdt,(j+1)dt]} C_{(j+1)dt,jdt} C_{[jdt,0]}Q(u(0)) & \text{if } h > \gamma \\
F_{[jdt,0]}(u(0)) & \text{if } h > \gamma
\end{cases}$$
Hybridization Charged Particle in Magnetic Mirror

\[B_x = -\frac{2Cxz^3}{a^4} \]
\[B_y = -\frac{2Cyz^3}{a^4} \]
\[B_z = C \left(1 - \frac{z^4}{a^4}\right) \]

Gyrokinetic + Phase and Time Parallel method are the most efficient

Simple blending could be more accurate as the problem approaches stead state

*Submitted to Journal
Summary

• **Collisional Radiative**
 — Boltzmann grouping improves group representation over applied uniform distribution
 — Minimization of error, which is expected to accumulate quickly during highly-transient durations, and acceleration of method makes Boltzmann reduction a strong case for future coupled simulations
 — Adaptive integration allowed for faster simulations at larger electron temperatures
 — Sensitive to selected groups
 — Grouping reduces stiffness
 — Robust solver capable of handling, Te from 1 – 1,000 eV and 10^{16}-10^{24} particles
 — Initial work on non-Maxwellian CR has begun and early numerical issues have been addressed

• **Hybridization**
 — Shows that hybridization technique can be more computational efficient than the schemes that comprise it
Future Work

• Collisional Radiative Simulations
 — Further comparisons between reduced mechanisms with QSS
 — Line identification and width assignments in conjunction with experimental spectra
 — Apply Boltzmann grouping to new CR Argon rates and test with 1D MHD Argon shock by Kapper, et.al. Future plans to extend to 2 and 3D MF
 — Rerun previous LPI test case with level grouping; laser source term, heavy-electron elastic collisions, and multi-electron energy correction and heavy energy equation (Te, Th)

• Group selection through numerical analysis, optimization
• Hybridize Maxwellian CR with QSS
• Non-Maxwellian finite rate EEDF implementation
Questions?