SPACE PARTICLE HAZARD MEASUREMENT AND MODELING

Adrian Wheelock

01 September 2016

Final Report

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.
Using Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not in any way obligate the U.S. Government. The fact that the Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the PRS OPSEC Office and is available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RV-PS-TR-2016-0129 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

//SIGNED// //SIGNED//

______________________________ ________________________________
Adrian Wheelock Dr. Thomas R. Caudill, Acting Chief
Program Manager, AFRL/RVBXR AFRL Battlespace Environment Division

This report is published in the interest of scientific and technical information exchange, and its publication does not constitute the Government’s approval or disapproval of its ideas or findings.

Approved for public release; distribution is unlimited.
The Space Particle Hazard Measurement and Modeling effort within the Space Particles program at AFRL/RV BX performed substantial research and development in the areas of the AE9/AP9/SPM standard radiation belt model, energetic space particle modeling, spacecraft charging, hypervelocity impacts, and sensors/anomaly attribution. This report provides a summary of the work and a directory to the technical details of the research products.
Table of Contents

List of Figures.. ii

1. Introduction.. 1

2. AE9/AP9/SPM Standard Radiation Belt Model.. 1

3. Energetic Space Particle Modeling... 3

4. Spacecraft Charging... 6

5. Hypervelocity Impacts.. 9

6. Sensors/Anomaly Attribution .. 11

References.. 13
List of Figures

Figure 1: Hypervelocity impact X band emissions .. 10
Figure 2: Hypervelocity impact K band emissions .. 10
Figure 3: Hypervelocity impact Ka band emissions .. 11
Figure 4: Anomaly event versus driver climatology.. 12
Space Particle Hazard Measurement and Modeling: Final Report

1. Introduction
The Space Particle Hazard Measurement and Modeling work unit consisted of the 6.2 work performed within the Space Particle Hazard Specification and Forecast (Space Particles) program. The Space Particles program focused on measuring, specifying, and predicting the natural energetic particle populations, typically in the Earth’s magnetosphere, and the impacts of those particles on spacecraft. In 2014 the Space Particles Program was subsumed into the Space System Survivability program (S3) with elements of other AFRL/RVFX space environment programs. The work unit continued until completion as part of the S3 program.

This report covers activities from 1 October 2007 (the beginning of Federal Fiscal Year 2008) through 30 September 2015. During this time, the program went through many changes. At the beginning of the period, the program was located at Hanscom AFB, MA, but due to the 2005 BRAC round the activity was relocated to Kirtland AFB, NM throughout the course of this work unit, with the transition happening primarily in 2010 and 2011. Additionally, with those disruptions, the program took the opportunity to reassess its approach and developed a much more integrated, focused effort on spacecraft anomalies and spacecraft design. While the technical efforts largely remained the same, the research products became much more focused. Finally, during the course of this work unit, the program has had three program managers. Mr. James Metcalf initiated the work unit at Hanscom AFB. Upon Mr. Metcalf’s retirement, Lt Col Gail Weaver took over the program at the beginning of FY12 as the program finished the transition to Kirtland AFB. At Lt Col Weaver’s retirement in early FY13, Mr. Adrian Wheelock became Space Particles and later Space System Survivability PM. This reflects the work performed throughout the duration of the work unit.

For the purposes of this report, the activities are broken down into five categories: AE9/AP9/SPM standard radiation belt model, Energetic Space Particle Modeling, Spacecraft Charging, Hypervelocity Impacts, and Sensors and Anomaly Attribution. Each activity is individually summarized year-by-year with one or more key publications from that year listed in that section and a complete list of references as citations.

2. AE9/AP9/SPM Standard Radiation Belt Model
The AE9/AP9/SPM Standard Radiation Belt Model was kicked off in 2007 to update the standard model for the natural trapped radiation environment in satellite design. The previous standards (AP8 and AE8) had not been updated since the 1970s and many new datasets covering a broader sampling of solar cycle climatology were now available. In addition, advanced features supporting statistical confidence intervals were developed to meet the design needs of the national security space community.

2007 – Performed an inversion of proton telescope and dosimeter channel count rates into energy spectra and began applying algorithms to TSX-5, HEO-1 & HEO-3 satellites [1]. Cross-calibrated proton instruments on these satellites with NOAA GOES and NASA SAMPEX satellites as standard
instruments, using simultaneous observations of solar proton events. This provided the baseline spectra to be incorporated into the AP-9 standard trapped radiation model.

Key Presentation:

Key Publication:

2010 – Released beta version of Ax9. Continued processing of proton data sets, including spectral inversions. Continued work on electron data: completed processing and cross calibration of CRRES/MEA, CRRES/HEEF, LANL GEO/SOPA data. During electron data set development, identified relationship of electron energy spectral shapes to spatial location relative to plasmapause [3], with these results applied to spectral inversions of some electron data sets. Worked on developing plasma data sets. Identified and addressed artifacts in beta version flux maps.

Key Presentation:

2011 – Co-developed and tested principal component inversion algorithm for inverting large sets of dosimeter-type sensor data for inclusion in climatology models. Continued cross-calibrations of energetic particle data from multiple space platforms to devise correction algorithms and contamination removal techniques needed to exploit existing data sets. Processed and intercalibrated electron data from GPS/BDD II, TSX-5, HEO-1, HEO-3, and ICO spacecraft. Processed SCATHA/SC3 electron data, used results to calculate electron decay timescales [4]. Developed method to salvage SAMPEX/PET and POLAR/HISTe data where statistics were impacted by background/saturation. Released reprocessed and cross-calibrated version of CRRES/MEA+HEEF electron data sets on the Virtual Radiation Belt Observatory website [5]. Completed release candidates of flux maps.

Key Publication:

2012 – Developed advanced inversion algorithms to extend low-energy proton measurement range of CEASE instrument on TacSat-4; identified transient elevation of low-energy protons in slot region.
and consequent displacement damage impacts [6,7,8]. Completed validation/comparison of model to independent data sets. Released AE9/AP9/SPM v1.00.

Key Presentations:

2013 – Moved primary software development portion of project to 6.3 with release of v1.05 [9].

Key Publication:

2014 – First intercalibration tech reports addressing data set development methods and results [10,11,12]

Key Publications

3. Energetic Space Particle Modeling
Modeling the highly variable energetic particle environment has long been the core of the 6.2 program. These efforts to understand the interactions of the physical processes driving, then specify and ultimately predict the state of the energetic particle populations within the magnetosphere are key to understanding sensor information and translating measurements from the measurement location to a different location of interest. The energetic space particle modeling efforts garnered substantial AFOSR and NASA support over the course of the program, augmenting the core 6.2
investment. Many efforts also supported evaluation of models utilized by the Space Weather Analysis and Forecast System (SWAFS) program that currently resides within SMC/RSS.

2008 – A description of quasi-linear diffusion by broad-band waves in terms of single-wave interactions was used to develop efficient approximations of the full diffusion coefficients [13]. Study of mechanism for loss of transient energetic proton populations important for understanding and modeling the long term stability of these hazards after injection [14].

Key Publication:

2009 – Studied nonlinear interaction of relativistic electrons with EMIC waves. First 3-D simulation of electron diffusion during a magnetic storm, driven by and validated against satellite measurements [15]. The effects of cross diffusion, in addition to pitch angle and energy diffusion, were described [16]. A useful approximation of the resulting precipitation lifetime was developed [17] and exact lifetimes were calculated for realistic wave models [18].

Key Publication:

2010 – The single-wave interaction model of quasi-linear diffusion developed in 2008 was shown to be formally exact [19]. Established detailed relationship between diffusion by broadband wave turbulence and diffusion by coherent small amplitude waves. Examined the role of off-equatorial effects in EMIC wave generation [20].

Key Publication:

2011 – Evaluated wave propagation from transmitters in space. Improved computation of wave-particle resonances for narrowband whistler mode waves [21]. Explored nonlinear interaction effects due to large amplitude waves. Developed graphical sensitivity analysis technique for understanding broadband waves in the plasmasphere. Performed inverse analysis of wave scattering power based on satellite observations of loss-cone energetic electrons [22]. Studied Shabansky effects for VLF Chorus wave generation [23].

Key Publication:
2012 – Continued to refine transport models of nonlinear wave-particle interactions in radiation belts. Single-wave interaction model for broad-band waves causing quasi-linear diffusion was used to characterize effects on particles over a wide range of parameter space [24]. Found that observed high intensity levels of quasi-trapped, low-altitude electrons are caused by non-diffusive, wide-angle scattering of radiation belt electrons in the upper atmosphere. Showed that inward diffusion of trapped electrons can replenish scattering losses [25]. Validated electron flux models and rules-of-thumb regarding spacecraft charging for AFWA [26,27,28].

Key Publications:

2013 – Found that the observed rate of increase in radiation belt proton intensity following a storm-time depletion is consistent with the source strength expected from cosmic ray albedo neutron decay, providing direct evidence that this process is a principal source of radiation belt protons [29]. Validated Geomagnetic Index models for AFWA [30,31,32]. Provided Kp Predictor model output to NOAA/NASA for Geospace model validation and transition [33].

Key Publication:

2014 – Continued development of nonlinear wave-particle interactions in the radiation belts. Effects specific to highly oblique waves were investigated with numerous collaborators [34]. Additional single-wave interaction simulations were used to further characterize the effects on particles, extending the parameter space explored [35]. Described a new method of radiation belt proton data analysis that provides strong background rejection. The method was applied to data obtained by the Relativistic Electron-Proton Telescopes (REPT) on the Van Allen Probes satellites, providing new high-resolution energy spectra and pitch angle distributions [36].

Key Publication:

2015 – Continued development of nonlinear wave-particle interaction models in the radiation belts. Evaluated impact of coulomb collisions on inner belt dynamics through a Monte Carlo model. Computed theoretical electron energy spectra that should result from albedo neutron decay. Showed by Lorentz transformation from the neutron rest frame that the high-energy component has a nearly power-law spectral shape, but with predicted intensity levels below the capabilities of current instrumentation [37]. Van Allen Probe data continued to be evaluated to remove contamination and compared to models. Evaluated the entire 1992-2009 database of electron measurements from the Proton-Electron Telescope on the SAMPEX satellite for the presence of inner radiation belt electrons with kinetic energy above 1 MeV. Found that previous reports had misinterpreted signatures of lower energy electrons, but that a data subset restricted to less-stable regions indicate the presence of trapped electrons up to 1.6 MeV [38]. Evaluated geomagnetic cutoff models for solar proton impacts to energetic particle populations within the magnetosphere for potential transition to decision aids [39,40,41]. Developed algorithm to specify energetic particle flux from multiple spacecraft [42].

Approved for public release; distribution is unlimited.
Started project to evaluate outer zone electron models to determine what advances need to be made in the current state-of-the-art to support operational space environment specification and forecast for anomaly attribution.

Key Publication:

4. Spacecraft Charging

A complex field requiring deep understanding of plasmas, materials, and detailed knowledge of satellite component design, spacecraft charging has been a challenging source of spacecraft anomalies for decades. While most charging concerns have been successfully mitigated through development of design standards over the past few years, as new technologies, materials, and missions are flown, new charging hazards can appear unexpectedly. The Space Particles program maintained a robust laboratory and theoretical research effort comprising both 6.2 (described below) and 6.3 elements. As a founding sponsor of the Spacecraft Charging Technology Conference, the program supports strong participation in these conference events approximately every two years with many program members supporting conference organization. In 2010, the program was the lead technical organization supporting the conference when it was held in Albuquerque, NM.

2008 – Evaluated impacts of secondary and backscattered electrons as well as photoelectrons on critical temperature theory of charging [43].

Key Publication:

2009 – Evaluated relationship of electron temperature and flux with respect to charging onset [44]. Performed initial tests of braided wire passive discharge technologies [45].

Key Publication:

2010 – Tested basic concepts for automatic passive discharge technologies for mitigating spacecraft charging with mixed results, both chip-based and braided wire and fiberglass [46]. Modeled effects of coverglass and solar cell geometry on solar array and spacecraft charging [47]. Investigated impacts of surface conditions on charging [48]. Performed analysis of rapid charging events on the International Space Station [49,50]. Supported international efforts to develop an international charging test standard [51].

Key Publication:
- [51] Teppei Okumura, Mengu Cho, Virginie Inguimbert, Denis Payan, Boris Vayner, and Dale C. Ferguson. "International Round-Robin Tests on Solar Cell Degradation Due to

2011 – Analyzed effects of terrestrial weather on rapid charging events on LEO space platforms when emerging from eclipse to support an international collaborative experiment [52]. Modeled effects of coverglass secondary electron emission on solar array and spacecraft charging [53]. Released with collaborators from Japan and France through the International Standards Organization ISO Standard 11221 with standard solar array charging test criteria [54]. Performed modeling of the Galaxy 15 spacecraft to evaluate potential charging causes for the anomaly causing it to become the “zombie sat” [55]. Shipped and installed >$5M in laboratory facilities from Hanscom AFB, MA to Kirtland AFB, NM as part of the BRAC. Installed the Mumbo calibration chamber and developed next generation calibration control system. Conducted tests of a plasma probe in collaboration with New Mexico Institute of Mining & Technology for a spacecraft launch in 2012.

Key Publication:

2012 – Achieved initial laboratory capability at KAFB [56,57], initiated round-robin test with other national laboratories to investigate “flashover” effect on solar cell electrostatic discharge [58,59]. Began first measurements of charging properties of spacecraft materials with respect to temperature. Investigated the role of potential barriers in spacecraft charging [60]. Evaluated on-orbit arcing experiment in collaboration with international partners [61]. Performed simulations evaluating index conditions to support a spacecraft charging hazard [62] and surface material properties [63]. Enhanced laboratory vacuum facilities to include ions and photons enabling a more complete simulation of the space environment. Designed and executed an experiment to measure the radiation induced conductivity of a James Webb Space Telescope mirror material in collaboration with Utah State University and NASA [64].

Key Publication:

2013 – Modeled AEHF spacecraft charging, assisting resolving spacecraft anomalies. Initiated work to define an index for differential surface charging hazard. Performed initial assessment of charging effects on space debris orbital parameters (High Area to Mass Ratio (HAMR) objects) [65]. Examined the possibility of detecting arcs from spacecraft discharges from ground-based optical and radiofrequency sensors [66]. Installed thermal unit in test chamber for thermal testing of spacecraft components. Released ANSI/AIAA Standard S-115 for LEO charging design standard [67]. Published initial results in journals from U.S. Round-Robin plasma expansion tests [68,69] and surface material property experiment [70]. Built high plasma density, high magnetic field vacuum chamber for the investigation of plasma wave propagation. Performed simulation of positive probes in strongly magnetized plasma [71]. Completed charge testing on 3 solar panel cover glass replacement candidates developed by the Advanced Space Power program in AFRL/RVS.

Approved for public release; distribution is unlimited.
Completed a CRADA with Assurance Technology Corporation for use of the Mumbo calibration facility to support the MPS-LO sensor which would fly on the GOES-R satellite.

Key Publication:

2014 – Defined a candidate index based on particle flux for differential surface charging through extensive modeling and simulation [72,73]. Performed laboratory testing of solar array discharges to determine discharge speed and energy coupling into the arc [74,75]. Conducted spacecraft charging qualification tests on new solar array designs, heat shield materials, and meta materials for NASA, AFRL/RVS, and AFRL/RVE respectively [76]. Performed analysis of spacecraft charging effects of solar array coverglass degradation in severe charging environments [77,78]. Posited solar array contamination from arcing as cause of excess GPS power degradation [79], and the potential for remote observation to confirm this arcing [80]. Developed method for determining energy and charge deposition profiles from isotropically incident electrons for use in spacecraft charging transport codes. Established collaborations with the Satellite Assessment Center at AFRL/RD to transition simulated space-aged material properties into databases supporting operational observations. Completed calibration of an MPS-LO sensor in support of the CRADA with ATC. Negotiated Educational Partnership Agreement with Utah State University to coordinate activities in the areas of spacecraft charging and space environment effects on materials.

Key Publication:

2015 – Continued laboratory testing of solar array discharge voltage thresholds and evaluation of data. Evaluated Roll-Out Solar Array (ROSA) and other photovoltaic technologies in support of AFRL/RVS [81]. Aged polyimide films in simulated space radiation, tested charging properties, and provided to RVS for optical characterization. Developed and performed initial validation of algorithm for deposition of charged particles into dielectric slabs from isotropic sources [82]. Detected RF emission from arcing on GPS satellites using the Arecibo 305m radiotelescope and correlated with on-board sensors. Analyzed sustained arcing events of 1997-2002 and identified new eclipse-related arcing mechanism [83,84]. Transitioned two new materials into MATTER.DAT user database for optical characteristics. Acquired and developed vacuum chamber for long-term charge storage measurements. Evaluated trigger arc thresholds under LEO conditions [85]. Increased electron and ion capabilities in the Mumbo calibration chamber [86] supporting the calibration of a second MPS-LO sensor as part of the CRADA with ATC in addition to in-house sensor development. The MPS-LO sensor will be an operational space environment sensor on the GOES-R spacecraft. Results from prior years were published as peer-reviewed papers for charging index [87] and round-robin/plasma propagation [88,89] activities.

Key Publication:
5. Hypervelocity Impacts

Energetic particles in the space environment are not limited to electrons, protons, and assorted heavier ions. There are micrometeorites and orbital debris as well, and their velocities and size make them significant hazards. Understanding the signatures of impacts could provide a mechanism for distinguishing natural causes from hostile acts. Current micrometeor impact detectors rely on measuring impacts to specific sensors, which by definition are not going to cause an anomaly to your spacecraft. Detection of impacts on the spacecraft generally would allow much stronger attribution of impacts. Micrometeorites are travelling with such velocity that the projectile vaporizes, creating a plasma. The charged particles within the plasma were theorized to emit a distinctive radiofrequency signature.

2010 – Completed a series of hypervelocity impacts to determine if a distinct RF signature could be discerned from micrometeorite impact. The addition of a low-grade vacuum chamber to the experiment resulted in complete suppression of previously-observed impact signatures in the HF and L bands. The conclusion was that these signals resulted from discharge of the projectile to the target in the moments preceding impact.

2011 – Continued developing processing techniques for detection of RF signature from hypervelocity impacts. Utilized improved testing apparatus extending diagnostics into the X, K and Ka bands (Figure 1 through Figure 3). No indications of RF emissions were observed. The project was therefore concluded. Figures below: impact at the red line. Spikes much later are from secondary debris impacts that are not part of the experiment [90].
Figure 1: Hypervelocity impact X band emissions

Figure 2: Hypervelocity impact K band emissions
6. Sensors/Anomaly Attribution

Throughout its history, the Space Particles program has supported anomaly analyses when requested by spacecraft operators. However, in 2012, the program became aware of research performed at The Aerospace Corporation on computing the relative hazard presented by the environment. In conjunction with the Space Weather Forecast Laboratory program (and later fully incorporated into the S3 program), a new effort to better characterize spacecraft environmental anomalies and produce a useful decision aid was launched. While many aspects of the project were and are 6.3, the 6.2 work involved understanding what requirements would be levied on sensors supporting an architecture supporting actionable environmental SSA, how the data would flow, what the architecture would look like, and perhaps most importantly, what information the users require from any decision aid.

2012 – Modeled C/NOFS and DMSP spacecraft charging, assisting in resolving spacecraft anomalies [63]. Used Nascap-2K to model the wake of the C/NOFS low altitude satellite showing that the wake was not the source of anomalous offsets in the electric field sensing experiment and attributed the anomalies to environment induced changes on Torlon insulators.

2013 – Procured broad-spectrum electron radiation source and built up experimental chamber and apparatus to test space particle detectors and perform material aging studies. Performed study to determine number of space environment sensors required to adequately predict space anomaly
hazards for GEO spacecraft. Investigated the possibility of detecting charging and arcing on-orbit by remote sensing [66].

2014 – Provided initial testing of energetic space particle detector concepts with radiation test source. Analyzed spacecraft anomaly data on systems where it has been made available, demonstrating actual environmental susceptibility and performing first attribution of one reported anomaly class. Performed analysis of space environment hazard algorithms utilizing multiple data sources; worked to resolve differences between sensor types and discrepancies in data handling. Leveraged multi-decade environmental data set to understand the applicability of remote observations to environmental anomaly attribution on spacecraft. Anomaly information from actual systems was used as an initial diagnostic. The results indicate reasonably good performance at GEO, producing images such as Figure 4, indicating that anomalies (red) are consistently associated with high levels of the natural environment (blue).

![Figure 4: Anomaly event versus driver climatology](image)

Described a new probabilistic analysis method for evaluating the performance of charged particle telescopes, often used in space applications, and for optimal estimation from real data of particle arrival directions and energies [91].

Key Publication:

2015 – Continued evaluation of additional spacecraft anomaly data. Supported evaluation of methods to use USNDS data to support SSA. Supported DSX science meeting to support integration of sensor data into operations plans.
References

Approved for public release; distribution is unlimited.
[57] Hoffmann, R., et al., The AFRL Spacecraft Charging and Instrument Calibration Laboratory, 12th Spacecraft Charging Technology Conference, Kitakyushu, Japan, 4-9 Apr 2012.

Approved for public release; distribution is unlimited.

Approved for public release; distribution is unlimited.

17
DISTRIBUTION LIST

DTIC/OCP
8725 John J. Kingman Rd, Suite 0944
Ft Belvoir, VA 22060-6218 1 cy

AFRL/RVIL
Kirtland AFB, NM 87117-5776 2 cys

Official Record Copy
AFRL/RVBXR/Adrian Wheelock 1 cy

Approved for public release; distribution is unlimited.