PROCEEDINGS of the FIFTH BERKELEY SYMPOSIUM ON MATHEMATICAL STATISTICS AND PROBABILITY

Held at the Statistical Laboratory
University of California
June 21–July 18, 1965
and
December 27, 1965–January 7, 1966

with the support of
University of California
National Science Foundation
National Institutes of Health
Air Force Office of Scientific Research
Army Research Office
Office of Naval Research

VOLUME I

STATISTICS

EDITED BY LUCIEN M. LE CAM
AND JERZY NEYMAN

UNIVERSITY OF CALIFORNIA PRESS
BERKELEY AND LOS ANGELES
1967
A CLASS OF OPTIMAL STOPPING PROBLEMS

Y. S. CHOW and H. ROBBINS
Purdue University and Columbia University

1. Introduction and summary

Let \(x_1, x_2, \ldots \), be independent random variables uniformly distributed on the interval \([0, 1]\). We observe them sequentially, and must stop with some \(x_i \), \(1 \leq i < \infty \); the decision whether to stop with any \(x_i \) must be a function of the values \(x_1, \ldots, x_i \) only. (For a general discussion of optimal stopping problems we refer to [1], [3].) If we stop with \(x_i \) we lose the amount \(\alpha x_i \), where \(\alpha \geq 0 \) is a given constant. What is the minimal expected loss we can achieve by the proper choice of a stopping rule?

Let \(C \) denote the class of all possible stopping rules \(t \); then we wish to evaluate the function

\[
v(\alpha) = \inf_{t \in C} E(t^* x_i).
\]

If there exists a \(t \) in \(C \) such that \(E(t^* x_i) = v(\alpha) \), we say that \(t \) is optimal for that value of \(\alpha \). Let \(C^N \) for \(N \geq 1 \) denote the class of all \(t \) in \(C \) such that \(P[t \leq N] = 1 \); then \(C^1 \subset C^2 \subset \cdots \subset C \), and hence, defining

\[
v^N(\alpha) = \inf_{t \in C^N} E(t^* x_i),
\]

we have

\[
\frac{1}{2} = v^1(\alpha) \geq v^2(\alpha) \geq \cdots \geq v(\alpha) \geq 0.
\]

We shall show that as \(N \to \infty \),

\[
v^N(\alpha) \approx \begin{cases}
2(1 - \alpha)/N^{1-\alpha} & \text{for } 0 \leq \alpha < 1, \\
2/\log N & \text{for } \alpha = 1,
\end{cases}
\]

from which it follows that

\[
v(\alpha) = 0, \quad \text{for } 0 \leq \alpha \leq 1.
\]

(For \(\alpha = 0 \), J. P. Gilbert and F. Mosteller [4] give the expression \(v^N(0) \approx 2/(N + \log (N + 1) + 1.767) \); this case is closely related to a problem of optimal selection considered in [2]. It can be shown that \(Nv^N(0) \uparrow 2 \) as \(N \to \infty \).)

Research supported by the Office of Naval Research under Contract Numbers Nonr-1100(26) and Nonr-266(50). Reproduction in whole or part is permitted for any purpose of the United States Government.
We shall show, moreover, that
\begin{equation}
0 < v(\alpha) < \frac{1}{2}, \quad \text{for } 1 < \alpha \leq 1.4,
\end{equation}
and that the relation
\begin{equation}
\lim_{N \to \infty} v_N(\alpha) = v(\alpha)
\end{equation}
holds for all \(\alpha \geq 0 \). No optimal rule exists for \(0 < \alpha \leq 1 \) by (5), since \(E(t^n x_i) > 0 \) for every \(t \) in \(C \). We shall show that an optimal rule does exist for every \(\alpha > 1 \); when \(v(\alpha) = \frac{1}{2} \) the optimal rule is \(t = 1 \), but for any \(\alpha \) such that \(0 < v(\alpha) < \frac{1}{2} \) the optimal rule \(t \) is such that \(Et = \infty \). The function \(v(\alpha) \) is continuous for all \(\alpha \geq 0 \).

2. Proof of (4)

For any fixed \(\alpha \geq 0 \) and \(N \geq 1 \), set \(v_{N+1}^N = \infty \) and define
\begin{equation}
v_i^N = E\{\min (i^n x_i, v_{i+1}^N)\} = \int_0^1 \min (i^n x, v_{i+1}^N) \, dx \quad (i = N, \cdots, 1).
\end{equation}
The constants \(v_i^N \) can be computed recursively from (8), and by a familiar argument it follows that
\begin{equation}
v_N^N(\alpha) = v_N^N = E(t^n x_i),
\end{equation}
where
\begin{equation}
t = \text{first } i \geq 1 \text{ such that } i^n x_i \leq v_{i+1}^N.
\end{equation}

For the remainder of this section we shall regard \(N \) as a fixed positive integer and \(\alpha \) as a fixed constant such that \(0 \leq \alpha \leq 1 \); for brevity we shall write \(v_i \) for \(v_i^N \). Then from (8),
\begin{equation}
v_i \leq E(i^n x_i) = i^n/2, \quad (i = 1, \cdots, N),
\end{equation}
so that
\begin{equation}
v_{i+1} i^{-\alpha} \leq \frac{1}{2} \left(\frac{i+1}{i} \right)^\alpha \leq \frac{1}{2} \cdot 2^\alpha \leq 1, \quad (i = 1, \cdots, N - 1).
\end{equation}
Hence from (8),
\begin{equation}
v_i = \int_0^{v_i i^{-\alpha}} i^n x \, dx + (1 - v_i i^{-\alpha})v_{i+1}
= v_{i+1} \left(1 - \frac{v_{i+1}}{2i^\alpha} \right), \quad (i = 1, \cdots, N - 1).
\end{equation}

Noting that \(v_i > 0 \) for \(i = 1, \cdots, N \), we can rewrite (13) as
\begin{equation}
\frac{1}{v_i} = \frac{1}{v_{i+1}} + \frac{1}{2 i^\alpha - v_{i+1}} = \frac{1}{v_{i+1}} + \frac{1}{2 i^\alpha} + \frac{v_{i+1}}{2 i^\alpha (2 i^\alpha - v_{i+1})},
\end{equation}
\((i = 1, \cdots, N - 1) \).

Summing (14) for \(i = 1, \cdots, N - 1 \) and noting that from (8)
we obtain the formula

$$v_N = \frac{N^\alpha}{2},$$

(15)

We shall show at the end of this section that, setting

$$I_N = \frac{1}{2} \sum_{i=1}^{N-1} \frac{1}{i^\alpha}, \quad J_N = \frac{1}{2} \sum_{i=1}^{N-1} \frac{v_{i+1}}{i^\alpha(2i^\alpha - v_{i+1})},$$

(16)

we have as $N \to \infty$

$$J_N = o(I_N), \quad I_N \sim \frac{N^{1-\alpha}/2(1 - \alpha)}{\log N/2}, \quad \alpha < 1.$$ \hspace{1em} \text{(18)}

Relations (4) follow from (9), (16), and (18).

Proof of (18). The second part of (18) follows from the relation

$$I_N \sim \frac{1}{2} \int_1^N \frac{dt}{t^\alpha},$$

(19)

The first part of (18) follows from two lemmas.

Lemma 1. The following inequality holds:

$$v_i \leq \frac{2N^\alpha}{N - i + 1}, \quad (i = 1, \ldots, N).$$

(20)

Proof. Equation (20) holds for $i = N$ by (15). Suppose it holds for some $i + 1 = 2, \ldots, N$; we shall show that it holds for i also.

(a). If $2N^\alpha/(N - i) > \bar{i}^\alpha$, then by (11),

$$v_i \leq \frac{\bar{i}^\alpha}{2} \leq \frac{N^\alpha}{N - i} \leq \frac{2N^\alpha}{N - i + 1}$$

(21)

(b). If $2N^\alpha/(N - i) \leq i^\alpha$, then setting

$$f(x) = x \left(1 - \frac{x}{2\bar{i}^\alpha}\right), \quad f'(x) = 1 - \frac{x}{\bar{i}^\alpha} \geq 0, \quad \text{for} \quad x \leq \bar{i}^\alpha,$$

so by (13)

$$v_i = f(v_{i+1}) \leq f\left(\frac{2N^\alpha}{N - i}\right) = \frac{2N^\alpha}{N - i} \left(1 - \frac{N^\alpha}{i^\alpha(N - i)}\right) \leq \frac{2N^\alpha}{N - i + 1},$$

(22)

which completes the proof.

From (12) and (20) we have

$$J_N = \frac{1}{2} \sum_{i=1}^{N-1} \frac{v_{i+1}}{i^\alpha(2i^\alpha - v_{i+1})} \leq \frac{N^\alpha}{N - i} \sum_{i=1}^{N-1} \frac{1}{i^\alpha(2i^\alpha - v_{i+1})}.$$

(24)

To prove the first part of (18), in view of the second part, it will suffice to show the following.

Lemma 2. As $N \to \infty$,

$$N^\alpha \sum_{i=1}^{N-1} \frac{1}{(N - i)^{2\alpha}} = \begin{cases} o(N^{1-\alpha}), & (0 \leq \alpha < 1), \\ 0(1), & (\alpha = 1). \end{cases}$$

(25)
Proof. (a). Assume $0 < \alpha < 1$. For any $0 < \delta < 1$, the left side of (25) can be written as

\[N^\alpha \left(\sum_{1}^{[N]} + \sum_{[N]+1}^{N-1} \right) \frac{1}{(N-i)\delta^{2\alpha}} \leq N^\alpha \left(\frac{1}{N(1-\delta)} \sum_{i=1}^{N-1} \frac{1}{i^\alpha} + N(1-\delta)(\delta N)^{-2\alpha} \right) \]

\[\sim N^\alpha \left(\frac{1}{N(1-\delta)} \frac{1}{1-\alpha} + N(1-\delta)(\delta N)^{-2\alpha} \right) \sim \frac{(1-\delta)N^{1-\alpha}}{\delta^{2\alpha}}. \]

Hence,

\[\lim_{N \to \infty} \frac{J_N}{N^{1-\alpha}} \leq \frac{1-\delta}{\delta^{2\alpha}}. \]

Since δ can be arbitrarily near 1, the left-hand side of (27) must be 0.

(b). Assume $\alpha = 1$. We have for the left-hand side of (25), setting $M = \lfloor N/2 \rfloor$,

\[N \sum_{1}^{N-1} \frac{1}{(N-i)\delta^{2\alpha}} = N \left(\sum_{1}^{M} + \sum_{M+1}^{N-1} \right) \frac{1}{(N-i)\delta^{2\alpha}} \leq 2 \sum_{i=1}^{M} \frac{i^{-2}}{\delta^{2\alpha}} + N \sum_{M+1}^{N-1} i^{-2} \]

\[\leq 2 \int_{1/2}^{\infty} \frac{dt}{t^{2\alpha}} + N \left(\frac{N}{2} \right)^{2} = 0(1). \]

3. An optimal rule exists for $\alpha > 1$ and $v(\alpha) > 0$

Define $z_n = \inf_{i \geq n} (i^\alpha x_i)$. Then for any constant $0 \leq A \leq n^\alpha$, we have

\[P[z_n \geq A] = P[i^\alpha x_i \geq A ; i \geq n] = \prod_{i=n}^{\infty} \left(1 - \frac{A}{i^\alpha} \right). \]

Hence,

\[P \left[z_1 \geq \frac{1}{2} \right] = \prod_{i=1}^{\infty} \left(1 - \frac{1}{2^\alpha} \right) > 0, \]

and therefore,

\[v(\alpha) \geq E z_1 > 0. \]

Next, for any $A > 0$,

\[\sum_{1}^{\infty} P[n^\alpha x_n \leq A] \leq \sum_{1}^{\infty} \frac{A}{n^\alpha} < \infty. \]

Hence, by the Borel-Cantelli lemma,

\[P[\lim_{n \to \infty} n^\alpha x_n = \infty] = 1. \]

The existence of an optimal t for $\alpha > 1$ now follows from lemma 4 of [1].

4. For $\alpha \geq \frac{3}{2}, v(\alpha) = \frac{1}{2}$

We define for $i = 1, 2, \cdots$, and any fixed $\alpha \geq 0$,

\[v_i = \inf_{t \in C_i} E(t^\alpha x_i), \]

\[P \left[z_1 \geq \frac{1}{2} \right] = \prod_{i=1}^{\infty} \left(1 - \frac{1}{2^\alpha} \right) > 0, \]

and therefore,

\[v(\alpha) \geq E z_1 > 0. \]

Next, for any $A > 0$,

\[\sum_{1}^{\infty} P[n^\alpha x_n \leq A] \leq \sum_{1}^{\infty} \frac{A}{n^\alpha} < \infty. \]

Hence, by the Borel-Cantelli lemma,

\[P[\lim_{n \to \infty} n^\alpha x_n = \infty] = 1. \]

The existence of an optimal t for $\alpha > 1$ now follows from lemma 4 of [1].

4. For $\alpha \geq \frac{3}{2}, v(\alpha) = \frac{1}{2}$

We define for $i = 1, 2, \cdots$, and any fixed $\alpha \geq 0$,
where \(C_i \) denotes the class of all \(t \in C \) such that \(P[t \geq i] = 1 \). Then \(v(\alpha) = v_1 \leq v_2 \leq \cdots \). It can be shown [3], although it is not trivial to prove, that in analogy with (8),

\[
v_i = E(\min (i^\alpha x, v_{i+1})) = \int_0^1 \min (i^\alpha x, v_{i+1}) \, dx, \quad (i \geq 1).
\]

It follows that

\[
v_i \leq \frac{i^\alpha}{2^i} \quad (i \geq 1).
\]

From now on in this section we shall assume that \(1 < \alpha \leq \frac{3}{2} \). Then

\[
v_{i+1}i^{-\alpha} \leq \frac{1}{2} \left(\frac{i + 1}{i} \right)^\alpha \leq \frac{1}{2} \left(\frac{3}{2} \right)^\alpha \leq 1, \quad (i \geq 2).
\]

Hence, as in (13),

\[
v_i = v_{i+1} \left(1 - \frac{v_{i+1}}{2i^\alpha} \right), \quad (i \geq 2),
\]

and since \(v_i = v(\alpha) > 0 \) for \(\alpha > 1 \) by (31), we have as in (14),

\[
\frac{1}{v_i} = \frac{1}{v_{i+1}} + \frac{1}{2i^\alpha - v_{i+1}}, \quad (i \geq 2).
\]

Summing (39) for \(i = n, \cdots, m - 1 \), we obtain

\[
\frac{1}{v_n} = \frac{1}{v_m} + \sum_{n}^{m-1} \frac{1}{2i^\alpha - v_{i+1}}, \quad (2 \leq n \leq m).
\]

From (29), for any \(A > 0 \), we have as \(m \to \infty \),

\[
P[\varepsilon_m \geq A] = \prod_{m} \left(1 - \frac{A}{v^\alpha} \right) \to 1,
\]

thus \(E\varepsilon_m \to \infty \), and since \(v_m \geq E\varepsilon_m \), it follows that \(v_m \to \infty \). Hence from (40),

\[
\frac{1}{v_n} = \sum_{n}^{m} \frac{1}{2i^\alpha - v_{i+1}}, \quad (n \geq 2).
\]

From (42) and (37) we have for \(n \geq 1 \),

\[
\frac{1}{(\alpha - 1)n^{\alpha - 1}} \geq \sum_{n+1}^{\infty} \frac{1}{i^\alpha} \geq \frac{1}{v_{n+1}} \geq \frac{1}{2} \sum_{n+1}^{\infty} \frac{1}{i^\alpha} \geq \frac{1}{2} \int_{n+1}^{\infty} \frac{dt}{t^\alpha} = \frac{1}{2(\alpha - 1)(n + 1)^{\alpha - 1}}
\]

and hence,

\[
\frac{\alpha - 1}{n} \leq \frac{v_{n+1}}{n^\alpha} \leq \frac{2(\alpha - 1)}{n + 1} \left(\frac{n + 1}{n} \right)^\alpha, \quad (n \geq 1).
\]

We shall now show that \(v_1 > 1 \) for \(\alpha = \frac{3}{2} \). It will follow from (35) that \(v_1 = \frac{1}{2} \) and that \(t = 1 \) is optimal for \(\frac{3}{2} \); the same is true a fortiori for any \(\alpha \geq \frac{3}{2} \).

From (38) we obtain

\[
v_{i+1} = i^\alpha - \sqrt{i^{2\alpha} - 2i^\alpha v_i}, \quad (i \geq 2);
\]
the + sign being excluded because of (37). Suppose now that \(v_2 \leq 1 \) for \(\alpha = \frac{3}{4} \).

Then by (45),

\[
\begin{align*}
v_2 &\leq 2^{3/2} - \sqrt{8 - 2.2^{3/2}} = 1.3, \\
v_4 &\leq 3^{3/2} - \sqrt{27 - 2\sqrt{27}(1.3)} = 1.52, \\
v_6 &\leq 4^{3/2} - \sqrt{64 - 16(1.52)} = 1.7.
\end{align*}
\]

(46)

On the other hand, by (44) we have for \(\alpha = \frac{3}{4} \),

\[
\frac{v_{n+1}}{n^{3/2}} \leq \frac{1}{n+1} \left(\frac{n+1}{n} \right)^{3/2} \leq \frac{1}{6} \left(\frac{6}{5} \right)^{3/2} \leq \frac{11}{50}, \quad (n \geq 5).
\]

(47)

Hence, from (42) for \(\alpha = \frac{3}{4} \),

\[
\frac{1}{v_n} = \sum_{i=1}^{n} \frac{1}{2^{i^2} - v_{i+1}} \leq \sum_{i=5}^{n} \frac{1}{2^{i^2} \left(1 - \frac{v_{i+1}}{2^{i^2}} \right)} \leq \sum_{i=5}^{n} \frac{1}{2^{i^2} \left(1 - \frac{11}{100} \right)} \leq 50 \int_{0/2}^{\sqrt{2}} dt/\alpha \leq \frac{50}{89} \frac{1}{\alpha - 1} \frac{\sqrt{2}}{9} \frac{100}{89} \cdot \frac{\sqrt{2}}{3} < \frac{1}{1.7},
\]

contradicting (46). Hence \(v_2 > 1 \) for \(\alpha = \frac{3}{4} \).

5. If \(1 < \alpha \leq 1.4 \), then \(v(\alpha) < \frac{1}{2} \)

By (44) we have for \(\alpha = \frac{3}{4} \),

\[
v_2 \leq \frac{1}{4} \cdot 3^{3/2} < \frac{5}{8},
\]

and hence by (38), \(v_2 < \frac{5}{8}(1 - (5/4.2^{3/2})) < 1 \). Hence by (35), \(v_1 = v(\frac{3}{4}) < \frac{1}{2} \).

For \(\alpha > 1 \), an optimal \(t \) exists by section 3, and from ([3], theorem 2), a minimal optimal \(t \) is defined by

\[
t = \text{first } n \geq 1 \text{ such that } x_n \leq \frac{v_{n+1}}{n^\alpha}.
\]

(50)

Let \(\alpha \) be any constant \(> 1 \) such that \(v(\alpha) < \frac{1}{2} \). Then \(P[t > 1] > 0 \) by (50), and for \(\alpha < \frac{3}{4} \) we have from (44) that

\[
\frac{v_{n+1}}{n^\alpha} \leq \frac{1}{n + 1} \left(\frac{n+1}{n} \right)^2 < \frac{n+1}{n^\alpha} < 1, \quad \text{for } n \geq 2.
\]

(51)

Hence, \(P[t > N] > 0 \) for every \(N \geq 1 \), so \(t \) is not bounded. In fact, if \(1 < \alpha = (3 - \epsilon)/2 \) for some \(\epsilon > 0 \), then from (44)

\[
\frac{v_{n+1}}{n^\alpha} \leq (1 - \epsilon) \left(\frac{n+1}{n^2} \right) \leq \frac{1}{n} \quad \text{for } n \geq \frac{1 - \epsilon}{\epsilon}.
\]

(52)

Hence, if \(v(\alpha) < \frac{1}{2} \), so that \(P[t > N] > 0 \) for every \(N \geq 1 \), it follows that for \(n > N \geq \frac{1 - \epsilon}{\epsilon} \) and some \(K > 0 \),
(53) \[P[t > n] \geq K \left(1 - \frac{1}{N}\right) \left(1 - \frac{1}{N + 1}\right) \cdots \left(1 - \frac{1}{n}\right) = K \cdot \frac{N - 1}{n}, \]

so that \(Et = \sum_{i=0}^{\infty} P[t > n] = \infty. \)

We thus have for \(\alpha > 1 \): either \(0 < v(\alpha) < \frac{1}{2} \) and \(Et = \infty \), or \(v(\alpha) = \frac{1}{2} \) and \(t = 1 \), where \(t \) is optimal for that \(\alpha \). The least value \(\alpha^* \) such that \(v(\alpha^*) = \frac{1}{2} \) is not known to us, but by the results of this and the previous section, it lies between 1.4 and 1.5.

6. The identification of optimal rules for \(1 < \alpha \)

For \(N = 1, 2, \ldots \), define \(t_N \) by (10). Then \(t_N \leq t_{N+1} \leq \cdots \). Let \(b_i = \lim_{N \to \infty} v_i^N \). Then from (8),

\[
(54) \quad b_i = \int_0^1 \min (i^{x_i}, b_{i+1}) \, dx, \quad (i = 1, 2, \ldots).
\]

Define

\[
(55) \quad s = \text{first } i \geq 1 \text{ such that } i^{x_i} \leq b_{i+1} \text{ if such an } i \text{ exists},
\]

\[= \infty \text{ otherwise.} \]

Then \([1] s = \lim_{N \to \infty} t_N. \) Since \(v_i^N \geq v_i \) for each \(N \), \(b_i \geq v_i \). Therefore \(s \leq t \), where \(t \) is an optimal rule defined by (50). We shall now show that \(s = t \) by showing that \(b_i = v_i \) for all \(i \geq 1 \).

From (54) we have

\[
(56) \quad b_i \leq i^{x/2}, \quad (i \geq 1),
\]

and hence as in (37) and (39), for some \(i_0 = i_0(d), \)

\[
(57) \quad b_{i+1} i^{x-i} \leq 1, \quad (i \geq i_0),
\]

\[
\frac{1}{b_i} = \frac{1}{b_{i+1}} + \frac{1}{2i^{x} - b_{i+1}}, \quad (i \geq i_0).
\]

Since \(b_i \geq v_i \to \infty \) as \(i \to \infty \), we have, as in (42),

\[
(58) \quad \frac{1}{b_n} = \sum_{i=1}^{N} \frac{1}{2i^{x} - b_{i+1}}, \quad (n \geq i_0).
\]

Assume that for some \(j \geq 1, \) \(b_j > v_j \). Then by (35) and (54) this inequality must hold for some \(i_1 \geq i_0 \) (since if \(j < i_0 \) and \(b_i \leq v_i \), then \(b_j \leq v_j \)), and hence for every \(i \geq i_1 \). Hence by (42) and (54),

\[
(59) \quad \frac{1}{v_i} = \sum_{i=i_1}^{\infty} \frac{1}{2i^{x} - v_{i+1}} < \sum_{i=i_1}^{\infty} \frac{1}{2i^{x} - b_{i+1}} = \frac{1}{b_i},
\]

a contradiction. Hence \(b_j = v_j \) for all \(j \geq 1 \).

It follows from the above that for \(1 < \alpha \),

\[
(60) \quad v(\alpha) = v_1 = b_1 = \lim_{N \to \infty} v_i^N = \lim_{N \to \infty} v_\alpha(N).
\]

That this relation holds also for \(0 \leq \alpha \leq 1 \) has been shown already.
7. Continuity of $v(\alpha)$

From (60), which holds for any $\alpha \geq 0$, given $\epsilon > 0$ we can find $N = N(\alpha, \epsilon)$ so large that

$$v(\alpha) + \frac{\epsilon}{2} \geq v^N(\alpha) = E(t^ax_i)$$

for some t in CN. Hence for $\alpha' > \alpha$,

$$v(\alpha) \leq v(\alpha') \leq E(t^{\alpha'}x_i) \leq N^{\alpha'-\alpha}E(t^ax_i) \leq N^{\alpha'-\alpha} \left(v(\alpha) + \frac{\epsilon}{2}\right) \leq v(\alpha) + \epsilon,$$

provided that $\alpha' - \alpha$ is sufficiently small. Hence $v(\alpha)$ is continuous on the right for each $\alpha \geq 0$.

Since $v(\alpha)$ is nondecreasing in α for each fixed $i \geq 1$, we have by the bounded or monotone convergence theorem for integrals from (35)

$$v_i(\alpha - 0) = \lim_{\epsilon \to 0} v_i(\alpha - \epsilon) = \lim_{\epsilon \to 0} \int_0^1 \min (t^{\alpha-\epsilon}, v_{i+1}(\alpha - \epsilon)) \, dx$$

$$= \int_0^1 \min (t^\alpha, v_{i+1}(\alpha - 0)) \, dx \quad (i \geq 1),$$

and by the remark preceding (42), $\lim_{n \to \infty} v_n(\alpha - 0) = \infty$ for $\alpha > 1$. Hence, as in the preceding section, (58) holds with b_n replaced by $v_n(\alpha - 0)$, and the argument shows that $v_n(\alpha - 0) = v_n(\alpha)$. In particular, $v_n(\alpha - 0) = v(\alpha)$, which shows that $v(\alpha)$ is continuous on the left for $\alpha > 1$. Since $v(\alpha) = 0$ for $0 \leq \alpha < 1$, it follows that $v(\alpha)$ is continuous on the left for each $\alpha \geq 0$.

REFERENCES