Fundamental Studies of transient, atmospheric-pressure, small-scale plasmas

Andras Kuthi
UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES
UNIVERSITY GARDENS STE 203
LOS ANGELES, CA 90089-0001

01/23/2017
Final Report
Title: Fundamental Studies of transient, atmospheric-pressure, small-scale plasmas

Abstract

Fundamental studies of nanosecond pulsed atmospheric pressure plasmas including a millimeter He-O2 plasma jet, generated with a concentric tubular electrode configuration, and micrometer He plasma jet, generated with a single electrode, were conducted. These studies include 1) temporally and spatially resolved measurements of atomic oxygen ground state (O3P) in the 2-cm long, 1-mm He-O2 plasma jets using Two-Photon Absorption Laser Induced Fluorescence (TALIF); 2) plasma dynamics and emission spectroscopic comparisons of single-electrode helium microplasma jets that was excited with 5 ns or 164 ns, 8 kV pulses at 500 Hz. Applications of the atmospheric pressure plasma jets and jet arrays (e.g. plasma brush) were explored for surface decontamination against pathogenic bacteria and biofilms, as well as for treatment of cervical cancer, in vitro. Other studies involving portable nanosecond pulsed power generation based gas switches or photoconductive solid state switches, non-equilibrium surface plasma chemistry and applications were also conducted.
INSTRUCTIONS FOR COMPLETING SF 298

1. REPORT DATE. Full publication date, including day, month, if available. Must cite at least the year and be Year 2000 compliant, e.g. 30-06-1998; xx-06-1998; xx-xx-1998.

2. REPORT TYPE. State the type of report, such as final, technical, interim, memorandum, master's thesis, progress, quarterly, research, special, group study, etc.

3. DATES COVERED. Indicate the time during which the work was performed and the report was written, e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996; May - Nov 1998; Nov 1998.

4. TITLE. Enter title and subtitle with volume number and part number, if applicable. On classified documents, enter the title classification in parentheses.

5a. CONTRACT NUMBER. Enter all contract numbers as they appear in the report, e.g. F33615-86-C-5169.

5b. GRANT NUMBER. Enter all grant numbers as they appear in the report, e.g. AFOSR-82-1234.

5c. PROGRAM ELEMENT NUMBER. Enter all program element numbers as they appear in the report, e.g. 61101A.

5d. PROJECT NUMBER. Enter all project numbers as they appear in the report, e.g. 1F665702D1257; ILIR.

5e. TASK NUMBER. Enter all task numbers as they appear in the report, e.g. 05; RF0330201; T4112.

5f. WORK UNIT NUMBER. Enter all work unit numbers as they appear in the report, e.g. 001; AFAPL30480105.

6. AUTHOR(S). Enter name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. The form of entry is the last name, first name, middle initial, and additional qualifiers separated by commas, e.g. Smith, Richard, J, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES). Self-explanatory.

8. PERFORMING ORGANIZATION REPORT NUMBER. Enter all unique alphanumeric report numbers assigned by the performing organization, e.g. BRL-1234; AFWL-TR-85-4017-Vol-21-PT-2.

9. SPONSOR/MONITOR'S ACRONYM(S). Enter, if available, e.g. BRL, ARDEC, NADC.

10. SPONSOR/MONITOR'S REPORT NUMBER(S). Enter report number as assigned by the sponsoring/monitoring agency, if available, e.g. BRL-TR-829; -215.

11. SPONSOR/MONITOR'S ACRONYM(S). Enter, if available, e.g. BRL, ARDEC, NADC.

12. DISTRIBUTION/AVAILABILITY STATEMENT. Use agency-mandated availability statements to indicate the public availability or distribution limitations of the report. If additional limitations/ restrictions or special markings are indicated, follow agency authorization procedures, e.g. RD/FRD, PROPIN, ITAR, etc. Include copyright information.

13. SUPPLEMENTARY NOTES. Enter information not included elsewhere such as: prepared in cooperation with; translation of; report supersedes; old edition number, etc.

14. ABSTRACT. A brief (approximately 200 words) factual summary of the most significant information.

15. SUBJECT TERMS. Key words or phrases identifying major concepts in the report.

16. SECURITY CLASSIFICATION. Enter security classification in accordance with security classification regulations, e.g. U, C, S, etc. If this form contains classified information, stamp classification level on the top and bottom of this page.

17. LIMITATION OF ABSTRACT. This block must be completed to assign a distribution limitation to the abstract. Enter UU (Unclassified Unlimited) or SAR (Same as Report). An entry in this block is necessary if the abstract is to be limited.
Abstract:
Fundamental studies of nanosecond pulsed atmospheric pressure plasmas including a millimeter He-O₂ plasma jet, generated with a concentric tubular electrode configuration, and micrometer He plasma jet, generated with a single electrode, were conducted. 1) Temporal development and spatial distribution of atomic oxygen ground state (O³P) in the 2-cm long, 1-mm He-O₂ plasma jets were measured using Two-Photon Absorption Laser Induced Fluorescence (TALIF) in collaboration with Dr. Campbell Carter at Wright-Patterson AFRL. Oxygen number density on the order of 10¹³ cm⁻³ in a 150-ns, 6-kV plasma jet was obtained for an axial distance up to 5 mm above the device nozzle. Electrostatic modeling and energy-dependent studies showed that the direct and indirect electron-induced processes in the pulsed plasma jet are responsible for the O production. 2) A single-electrode helium microplasma jet was generated in ambient atmosphere when the electrode was excited with 5 ns or 164 ns, 8-kV pulses at 500 Hz. Spatially-resolved optical emission spectroscopy showed that the production of excited atomic oxygen increased by a factor of 2 for the 5 ns pulsed plasma jet when compared with that for a 164 ns pulsed plasma jet operating at the same voltage amplitude, pulse frequency, and flow conditions. This signifies an enhanced efficiency of atomic oxygen production by highly non-equilibrium plasmas excited with high voltage pulses with fast rising time and relatively short durations. Analysis of the rovibrionic emission from N₂(C-B) indicated a rotational and vibrational temperature of 300 K ± 50 K and 3000 ± 200 K, respectively, for both the 5 ns and 164 ns pulsed plasma jets. 3) Applications of the atmospheric pressure plasma jets and jet arrays (e.g. plasma brush) were explored for surface decontamination against pathogenic bacteria and biofilms, as well as for treatment of cervical cancer, in vitro. 4) Other studies involving portable nanosecond pulsed power generation based gas switches or photoconductive solid-state switches, non-equilibrium surface plasma chemistry and applications were also conducted.

Archival publications during reporting period:

Changes in research objectives, if any: None

Change in AFOSR program manager, if any:

Changed from Dr. John Luginsland to Dr. Jason Marshall

Extensions granted or milestones slipped, if any:

No cost extension was granted from the ending date of July 14, 2016 to the ending date of January 14, 2017

Include any new discoveries, inventions, or patent disclosures during this reporting period (if none, report none): None
1. Report Type
 Final Report

Primary Contact Email
Contact email if there is a problem with the report.
 cjiang@odu.edu

Primary Contact Phone Number
Contact phone number if there is a problem with the report
 757-683-7061

Organization / Institution name
 University of Southern California/ Old Dominion University

Grant/Contract Title
The full title of the funded effort.
 Fundamental Studies of Transient, Atmospheric-Pressure, Small-Scale Plasmas

Grant/Contract Number
AFOSR assigned control number. It must begin with "FA9550" or "F49620" or "FA2386".
 FA9550-11-1-0190

Principal Investigator Name
The full name of the principal investigator on the grant or contract.
 Andras Kuthi/Chunqi Jiang

Program Officer
The AFOSR Program Officer currently assigned to the award
 Jason Marshall

Reporting Period Start Date
 07/15/2011

Reporting Period End Date
 01/14/2017

Abstract
Fundamental studies of nanosecond pulsed atmospheric pressure plasmas including a millimeter He-O2 plasma jet, generated with a concentric tubular electrode configuration, and micrometer He plasma jet, generated with a single electrode, were conducted. 1) Temporal development and spatial distribution of atomic oxygen ground state (O3P) in the 2-cm long, 1-mm He-O2 plasma jets were measured using Two-Photon Absorption Laser Induced Fluorescence (TALIF) in collaboration with Dr. Campbell Carter at Wright-Patterson AFRL. Oxygen number density on the order of 1013 cm-3 in a 150-ns, 6-kV plasma jet was obtained for an axial distance up to 5 mm above the device nozzle. Electrostatic modeling and energy-dependent studies showed that the direct and indirect electron-induced processes in the pulsed plasma jet are responsible for the O production. 2) A single-electrode helium microplasma jet was generated in ambient atmosphere when the electrode was excited with 5 ns or 164 ns, 8 kV pulses at 500 Hz. Spatially-resolved optical emission spectroscopy showed that the production of excited atomic oxygen increased by a factor of 2 for the 5 ns pulsed plasma jet when compared with that for a 164 ns pulsed plasma jet operating at the same voltage amplitude, pulse frequency, and flow conditions. This signifies an enhanced efficiency of atomic oxygen production by highly non-equilibrium plasmas excited with high voltage pulses.
with fast rising time and relatively short durations. Analysis of the rovibronic emission from N2 (C-B) indicated a rotational and vibrational temperature of 300 K ± 50 K and 3000 ± 200 K, respectively, for both the 5 ns and 164 ns pulsed plasma jets. 3) Applications of the atmospheric pressure plasma jets and jet arrays (e.g. plasma brush) were explored for surface decontamination against pathogenic bacteria and biofilms, as well as for treatment of cervical cancer, in vitro. 4) Other studies involving portable nanosecond pulsed power generation based gas switches or photoconductive solid-state switches, non-equilibrium surface plasma chemistry and applications were also conducted.

Distribution Statement
This is block 12 on the SF298 form.

Distribution A - Approved for Public Release

Explanation for Distribution Statement
If this is not approved for public release, please provide a short explanation. E.g., contains proprietary information.

SF298 Form
Please attach your SF298 form. A blank SF298 can be found here. Please do not password protect or secure the PDF
The maximum file size for an SF298 is 50MB.

sf0298_CJiang_2016Dec23.pdf

Upload the Report Document. File must be a PDF. Please do not password protect or secure the PDF. The maximum file size for the Report Document is 50MB.

FinalReport_SmallscalePlasma_20161223.pdf

Upload a Report Document, if any. The maximum file size for the Report Document is 50MB.

Archival Publications (published) during reporting period:

New discoveries, inventions, or patent disclosures:
Do you have any discoveries, inventions, or patent disclosures to report for this period?
No

Please describe and include any notable dates
Do you plan to pursue a claim for personal or organizational intellectual property?
Changes in research objectives (if any):
None

Change in AFOSR Program Officer, if any:
Changed from Dr. John Luginsland to Dr. Jason Marshall

Extensions granted or milestones slipped, if any:
No cost extension was granted from July 14, 2016 to January 14, 2017.

AFOSR LRIR Number

LRIR Title
Reporting Period
Laboratory Task Manager
Program Officer
Research Objectives
Technical Summary
Funding Summary by Cost Category (by FY, $K)

<table>
<thead>
<tr>
<th></th>
<th>Starting FY</th>
<th>FY+1</th>
<th>FY+2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment/Facilities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Report Document

Report Document - Text Analysis

Appendix Documents

2. Thank You

E-mail user
Dec 23, 2016 11:22:10 Success: Email Sent to: cjiang@odu.edu

DISTRIBUTION A: Distribution approved for public release.