The primary focus of this nine-month effort was to develop electronic sensors for hazardous chemicals. The first step was to identify material(s) that have interaction potential with chemicals of interest. In particular, specific reaction chemistry allows for resulting materials to exhibit specificity. Based on the most favorable materials, which included metal-oxides and metal-organic frameworks, impedance measurements and devices were pursued as the plasmonic resonance of these materials were far too weak to make sensible measurements or device architectures. Our results show that there are materials electronically sensitive enough to enable impedimetric sensing.
Final Report: Dielectric Sensing of Toxic and Explosive Chemicals via Impedance Spectroscopy and Plasmonic Resonance (research area 11: STIR)

ABSTRACT
The primary focus of this nine-month effort was to develop electronic sensors for hazardous chemicals. The first step was to identify material(s) that have interaction potential with chemicals of interest. In particular, specific reaction chemistry allows for resulting materials to exhibit specificity. Based on the most favorable materials, which included metal-oxides and metal-organic frameworks, impedance measurements and devices were pursued as the plasmonic resonance of these materials were far too weak to make sensible measurements or device architectures. Our results show that there are materials electronically sensitive enough to enable impedimetric devices that use the frequency-dependence “fingerprint” of AC impedance to improve selectivity.

Enter List of papers submitted or published that acknowledge ARO support from the start of the project to the date of this printing. List the papers, including journal references, in the following categories:

(a) Papers published in peer-reviewed journals (N/A for none)

Received Paper

TOTAL:

Number of Papers published in peer-reviewed journals:

(b) Papers published in non-peer-reviewed journals (N/A for none)

Received Paper

TOTAL:

Number of Papers published in non peer-reviewed journals:

(c) Presentations

Number of Presentations: 0.00

Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

<table>
<thead>
<tr>
<th>Received</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL:

Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

<table>
<thead>
<tr>
<th>Received</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL:

Number of Peer-Reviewed Conference Proceeding publications (other than abstracts):

<table>
<thead>
<tr>
<th>Received</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL:

Number of Peer-Reviewed Conference Proceeding publications (other than abstracts):

<table>
<thead>
<tr>
<th>(d) Manuscripts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Received Paper</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

TOTAL:

Number of Manuscripts:

<table>
<thead>
<tr>
<th>Books</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

TOTAL:

Number of Books:

<table>
<thead>
<tr>
<th>Received</th>
<th>Book</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL:
Patents Submitted

Patents Awarded

Awards

TOTAL:

<table>
<thead>
<tr>
<th>Name</th>
<th>PERCENT_SUPPORTED</th>
<th>Discipline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coleman Harris</td>
<td>0.10</td>
<td>Computer Science</td>
</tr>
<tr>
<td>Joshua Phillips</td>
<td>0.10</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Andrew Klevitch</td>
<td>0.10</td>
<td>Physics</td>
</tr>
<tr>
<td>FTE Equivalent:</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>Total Number:</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Graduate Students

| Name | PERCENT_SUPPORTED | FTE Equivalent: | Total Number: |

Names of Post Doctorates

| Name | PERCENT_SUPPORTED | FTE Equivalent: | Total Number: |

Names of Faculty Supported

| Name | PERCENT_SUPPORTED | FTE Equivalent: | Total Number: |

Names of Under Graduate students supported

<table>
<thead>
<tr>
<th>Name</th>
<th>PERCENT_SUPPORTED</th>
<th>Discipline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coleman Harris</td>
<td>0.10</td>
<td>Computer Science</td>
</tr>
<tr>
<td>Joshua Phillips</td>
<td>0.10</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Andrew Klevitch</td>
<td>0.10</td>
<td>Physics</td>
</tr>
<tr>
<td>FTE Equivalent:</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>Total Number:</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Student Metrics
This section only applies to graduating undergraduates supported by this agreement in this reporting period.

- The number of undergraduates funded by this agreement who graduated during this period: 0.00
- The number of undergraduates funded by this agreement who graduated during this period with a degree in science, mathematics, engineering, or technology fields: 0.00
- The number of undergraduates funded by your agreement who graduated during this period and will continue to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields: 0.00
- Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale): 0.00
- Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for Education, Research and Engineering: 0.00
- The number of undergraduates funded by your agreement who graduated during this period and intend to work for the Department of Defense: 0.00
- The number of undergraduates funded by your agreement who graduated during this period and will receive scholarships or fellowships for further studies in science, mathematics, engineering or technology fields: 0.00

Names of Personnel receiving masters degrees

<table>
<thead>
<tr>
<th>NAME</th>
<th>Total Number:</th>
</tr>
</thead>
</table>

Names of personnel receiving PHDs

<table>
<thead>
<tr>
<th>NAME</th>
<th>Total Number:</th>
</tr>
</thead>
</table>

Names of other research staff

<table>
<thead>
<tr>
<th>NAME</th>
<th>PERCENT_SUPPORTED</th>
<th>FTE Equivalent:</th>
<th>Total Number:</th>
</tr>
</thead>
</table>

Sub Contractors (DD882)

Inventions (DD882)

Scientific Progress

Technology Transfer
STATEMENT OF THE PROBLEM STUDIED

Current deployable explosives and toxic chemical sensing methods utilize ion mobility mass spectrometry, gas chromatograph mass spectrometry, X-ray imaging, Raman spectroscopy, and other such techniques. While these techniques are highly selective, each method has its own shortcomings, such as low resolution, competing ion or molecule side reactions, response variation from different compositions of analytes, limited response range, and time-consumption.\(^1\) In addition, most of these techniques are bulky and require significant training for proper utilization. For example, as of 2011, the state-of-the-art for organophosphates was the Department of Defense HAPSITE (Hazardous Air Pollutants on Site) system, a 70-pound “portable” gas chromatograph mass spectrometer that costs well over $100,000 per unit, not including the costs of weekly maintenance and a field team of specially trained personnel\(^2\).

Worse yet, although the most rapid detection method at the time, HAPSITE fails the requirements for rapid detection in emergency situations, with a 30 minute exposure required for detection of levels in which a 10-minute exposure will have debilitating effects in a significant fraction of the population. Although fine for a military advance team, this sensor is not adequate for defense applications, and certainly not cheap or sensitive enough for civilian applications such as prevention of OP exposure at home or in the workplace due to pesticides or other aforementioned sources. A potential approach to sense explosives and other toxic chemicals while circumventing the aforementioned shortcomings is to target materials that exhibit changes in the dielectric constant upon chemical exposure. Because the dielectric constant of a material can be tuned to specific interactions, this approach offers potential specificity. Integrating dielectrics into chemical sensors is desirable as they can offer portability, tunability, simplicity, low costs, and rapid response times.

The primary focus of this nine-month effort was to develop electronic sensors for hazardous chemicals. The first step was to identify material(s) that have interaction potential with chemicals of interest. In particular, specific reaction chemistry allows for resulting materials to exhibit specificity. Based on the most favorable materials, which included metal-oxides and metal-organic frameworks, impedance measurements and devices were pursued as the plasmonic resonance of these materials were far too weak to make sensible measurements or device architectures. Our results show that there are materials electronically sensitive enough to enable impedimetric devices that use the frequency-dependence “fingerprint” of AC impedance to improve selectivity.
SUMMARY OF THE MOST IMPORTANT RESULTS

Fe$_2$O$_3$ nanoparticles. Iron-based compounds have been shown to rapidly degrade CWA structural analogs on contact$^{3-5}$. Iron-based oxides are considered favorable not only for rapid reaction time, but are both cheap and environmentally friendly. In collaboration with Dr. Jennifer Soliz at Edgewood Chemical Biological Center, we identified Fe$_2$O$_3$ as a promising candidate for OP detection, using CWA structural analogs such as dimethyl methylphosphonate (DMMP) and dimethyl chlorophosphate (DMCP)5. As compared to the adsorption pathway of many oxides, Fe$_2$O$_3$ has been shown to undergo a strong binding to OP compounds6-10. The stoichiometric reaction mechanism, an irreversible process, is shown in Figure 1 for CWA structural analogs (a) dimethyl methylphosphonate (DMMP) and (b) dimethyl chlorophosphate (DMCP). The analogs are shown to initially bond through the phosphoryl (P=O) oxygen atom on the Fe-sites, creating a bridging phosphoryl species. Through this reaction, Fe$^{3+}$ undergoes reduction in cation valency to Fe$^{2+}$; thereby causing a valence change on the nanoparticle surface and molecular dissociation of the OP compounds.

Our collaboration has for the first time studied the effects of various compounds on the magnetic and electronic states of the system, with an eye toward adequate sensitivity and selectivity. By converting Fe$^{3+}$ to Fe$^{2+}$ upon contact, OPs convert the magnetic Fe$_2$O$_3$ to FeO and cause both a change in magnetic moment and some change in electrical resistivity. We see the drop in magnetic moment determined by both bulk magnetometry and x-ray magnetic

Figure 1. Schematic of the adsorption and molecular dissociation of (a) dimethyl methylphosphonate (DMMP) and (b) dimethyl chlorophosphonate (DMCP) with Fe$_2$O$_3$. (c) Fe-site magnetic moment in Fe$_2$O$_3$ by XMCD after 10% volume per gram saturated exposures of explosive (2-CEES) and G-agent (DIMP, DMPP, DMCP) analogs. (i) Total moment/Fe site by XMCD (solid red circles), as compared to macroscopic measurements by SQUID (orange triangles). (ii) Breakdown of the total moment (red circles) into both spin (blue diamonds) and orbital (green triangles) components.
circular dichroism measurements at beamline 4-ID-C at Argonne National Laboratory’s Advanced Photon Source in Figure 1 (c), wherein a 10% volume per gram saturated exposure of DMCP to a pressed pellet of 30% α-phase/70% γ-phase Fe₂O₃ yields nearly a 50% drop in moment. X-ray absorption spectroscopy analysis confirms our mechanism, as DMCP-exposed nanoparticles show large changes in both Fe and O spectra commensurate with the transition to Fe²⁺ states. It is worth noting that exposure to the lesser toxic sulfur mustard agent analog, 2-chloroethyl ethyl sulfide (2-CEES), resulted in a small decrease in magnetic moment. However, the comparatively large change in moment upon exposure to some (but not all) G-agent compounds, put together with the unique reaction Fe₂O₃ undergoes with OPs imply that Fe₂O₃ sensors may result in specificity to one or a small number of organophosphates.

However, magnetic sensors cannot be made as small, robust, and cheaply as electrical sensors designed around a change in impedance/resistance upon exposure. Figure 2 shows the percent change in (a) impedance Z and (b) resistance R (the real component of Z) as a function of frequency, for pressed pellet capacitor geometry when exposed to the two OP compounds (DMMP and DMCP) that showed magnetic evidence for chemical reaction. Our impedance work was done using pressed pellets of commercially available 23 nm diameter nanoparticles with maximum surface areas of 30-60 m²/g. This number is likely reduced practically due to the bulk-like state of the pellet. In practice, devices can be made using impedance or resistance. We observe large on/off ratios in impedance (150%) and resistivity (480%) in the 100 kHz – 1 MHz range, an easily attained frequency. Shifts are also large as one approaches the DC limit, indicating that DC device application is also a strong possibility.

It is exceedingly useful that even within the organophosphate subclass the two compounds shown show shifts in different directions. This would allow any device to distinguish between different species quickly, and speaks to another useful application of the proposed impedance devices; impedance fingerprinting, wherein the frequency profile (or simply several points therein) create a unique “shift fingerprint” with which high specificity can be determined in very short order. In addition, Fe₂O₃ nanoparticles have recently shown smaller (~17%) sensitivity to NO₂ gas, helping the case for Fe₂O₃’s OP selectivity.

We point out that a small barrier to future devices exists in that the same irreversible chemical process that makes Fe₂O₃ nanoparticles reactive with high change in impedance also makes restricts the number of uses one may use it for. For instance, while the material would make an excellent detector or dosimeter, a device would be a one-time use product if left with only measurement capability (although this is true of nearly every sensor). The low cost of the device mitigates the downside of such a trait, especially as we bring the device size down to that of a credit card, or for wearables, a small patch. Additionally, it is possible that purging of the adsorbate
and reversal of the Fe$_2$O$_3 \rightarrow$ FeO reaction could implemented by reaction with oxygen gas, perhaps ozone treatment or gentle heating in air. Further study, especially within the thermal and chemical constraints of other device components, will be necessary to determine the range of device utility and reusability.

Porous Zr(OH)$_4$ particles. Zirconium hydroxide is another cheap, commercially available material of interest due to high decontamination performance on an assortment of dangerous chemicals. Peterson (ECBC) and co-workers have found that the exceptional reactivity is due to the presence of both bridging and terminal hydroxyl groups, allowing both acids and bases to react with the material, while performing in both dry and humid conditions. Zr(OH)$_4$’s primary advantage over other metal oxides is its many built-in hydroxyl groups, as it does not require the previous adsorption of an –OH group to enable hydrolysis. Additionally, particles of zirconium hydroxide exhibit local regions of crystallinity amongst the amorphous matrix, resulting in a highly porous material and resultant high surface-volume area even when the particles are on the microscale: In the materials work we will show, we used 15 μm Zr(OH)$_4$ particles with surface area 406 m2/g and pore volume 0.81 cc/g. The surface area in this case, despite particles three orders of magnitude bigger than the aforementioned Fe$_2$O$_3$ nanoparticles, has a surface to volume ratio an order of magnitude higher.

The choice of Zr(OH)$_4$ for organophosphate detection is made straightforward by the work of Bandosz et al, who thoroughly characterized the rapid decontamination of chemical warfare agents VX, soman (GD) and distilled mustard gas (HD). The work shows that Zr(OH)$_4$ has an incredibly fast detoxification timescale for VX (1 min), while GD (8.7 min) and HD (2.3 hr) detoxify more slowly.

We note that the shift fingerprint was seen in the Fe$_2$O$_3$ impedance data earlier (Figure 2), despite any clear difference in reaction pathways. In Zr(OH)$_4$, even more distinctive features occur.

During this funding term, Zr(OH)$_4$ impedance reactivity to NO$_2$ has been measured. Pervious work by Singh et al has shown by photoluminescence and electron microscopy that the observed reactivity stems from replacement of hydroxyl groups with chemisorbed NO$_3$.17 In our work, 13 mm diameter pressed pellets were exposed to a range of NO$_2$ dosages from 0 to 1000 ppm·hr, and characterized by AC Impedance Analysis with a constant voltage of 0.1 V. The magnitude |Z| and phase angle θ of the impedance measured as a function of frequency is shown in Figures 3a and 3b, respectively, for NO$_2$ exposures of 0, 50, 200, and 1,000 ppm·hr. An applied voltage of 0.1V was used for all data points. We observe changes in |Z| over many orders of magnitude, indicating a strong

![Figure 3](image-url)
sensitivity to NO₂. We also observe a general trend in phase angle from -90° towards 0°, suggesting a trend from capacitive to resistive behavior, likely a reflection of chemical changes creating conductive pathways in the pellet. By a dosage level of 1,000 ppm·hr the phase angle is approaching zero at nearly all frequencies, and a series of three “bumps” can be seen above the DC limit; a pair centered around 10 and 100 Hz, and a higher frequency feature near 100 kHz that can be seen for even low exposure levels. While these features are broad and not easily analyzed, they inform the equivalent circuit to be used later in the paper for fitting and analysis.

If one imagines our pellet/electrode setup as a simple resistive NO₂ detection device in line with a 0.1 V AC source, the easiest signal extraction method would be measurement of the resultant current magnitude. This is dictated by the resistance R, defined as the real component of the impedance, $Z_{Re} = |Z| \cos \theta$. We plot Z_{Re} as a function of frequency in Figure 3c. Note that as dosage is increased, we see less and less difference between Z_{Re} and $|Z|$ as the system approaches pure resistive transport. We display the changes in Z_{Re} upon exposure as compared to the initial, unexposed state in Figure 3d. One sees large drops in resistance below 10 kHz even down to the lowest dosage level of 50 ppm·hr. We again see features at approximately 100 Hz and 100 kHz, reflecting the contribution of the phase angle to Z_{Re}.

![Figure 3c](image.png)
Figure 3c. Note that as dosage is increased, we see less and less difference between Z_{Re} and $|Z|$ as the system approaches pure resistive transport.

The percent change in signal current due to NO₂ exposure is shown in log scale in Figure 4, up to 10 kHz. The peak values for signal change all occur below 1 Hz, near the DC limit. For 50, 200, and 1,000 ppm·hr dosages, we see signal changes of 272%, 2,374%, and 1,011,425%, respectively. These values are proof of high sensitivity and wide dosage range, indicating that Zr(OH)$_4$, if found to be selective, may be an excellent choice for future use in NO₂ detectors or dosimeters. Although the Zr(OH)$_4$ grains are very porous, we note that the pellet was exposed after pressing, suggesting that further sensitivity gains may be possible by optimizing the surface-to-volume ratio of the material upon exposure.

The results of Figure 4 show zirconium hydroxide to have high sensitivity across a large dosage range that extends through the lethal concentration 50 dosage of 360 ppm·hr. The range suggests zirconium hydroxide as an excellent dosimeter for its large cumulative range, and also as a static point detector/monitor, wherein the change in current can be cross-checked with a frequency-dependent calibration curve to obtain the real-time NO₂ concentration. Additionally, the significant impedance shift seen even at 50 ppm·hr strongly suggests sensitivity can be achieved down to the point where pulmonary function begins to be affected (2-3 ppm). This functionality is especially likely considering that a pressed pellet was exposed as opposed to loose powder or the thin film structure proposed herein.

![Figure 4](image.png)
Figure 4. Percent changes in current for a Zr(OH)$_4$ parallel capacitor device with applied voltage $V = 0.1$ V, for total NO₂ dosages of 50 (red), 200 (green) and 1000 (blue) ppm·hr. Percentages in parenthesis are the percent increase in device current at 0.1 Hz, close to the DC limit. Values at 10 kHz are displayed on the right edge.
Complex Impedance Analysis was done with the fitting program ZView (Scribner Associates, Inc)19. A variety of equivalent circuit models that have been used previously were attempted20-27. We find fitting to be achieved with an arrangement as shown in Figure 5a, utilizing three resistor-constant phase element (CPE28) pairs in series29-31. This arrangement is motivated by phase angle features in Figure 3b, as well as the tell-tale semicircular features in the Nyquist plot (discussed below) that are best modeled with R-CPE pairs. We did not find a similar quality fit across the entire range for any other equivalent circuit. Due to the high impedance of the materials, the series resistor in the circuit to simulate lead resistance has negligible value and the same element values and fit quality are extracted with or without its presence. Finally, we attempted to change the order and starting parameters of each fit to check for local minima or multiple solutions, but all good fits resulted in similar results.

Figure 5b shows a log-log plot of the imaginary ($Z'' = |Z|\sin\theta$) component of the impedance as a function of the real component Z', a so-called Nyquist Plot. Data points are displayed as scatter points, with our equivalent circuit fits shown as black lines behind the point. From the fits, we can extract resistance and capacitance values for each component in Figure 4a, and then determine the dielectric relaxation frequency $1/RC$, as plotted for our three as-yet unassigned elements in Figure 6a. Our fits find three general frequency ranges, one near 5-20 Hz, one near 50-250 Hz, and another in the 20-200 KHz range. Immediately, one sees an anomaly in frequency 1 of the 1,000 ppm-hr, several orders above the rest.

We approach assignment of frequencies by the typical approach of assigning the highest frequency (1) to the grain interior, the next-highest (2) to grain boundary effects, and the lowest (3) to ionic diffusion effects23,25,32. In the case of porous grains such as Zr(OH)\textsubscript{4}, we posit that the bulk-like grain interior component will remain fairly constant in resistance as ever greater portions are changed by chemical reaction, and the capacitance will also remain constant for a time. As the core becomes extremely small and/or disappears, the capacitance will collapse as it is shorted by defects or alternate pathways, resulting in unphysical results. As the chemically changed outer portion of each grain increases in size, each adsorption site will become increasingly interconnected with other grains and show marked decreases in resistivity as the changed “shell” increases in size within in grain. Meanwhile, the ionic buildup due to adsorption will create a measurable “double-layer capacitance” across grain

![Figure 5](image5.png)

Figure 5. (a) Equivalent circuit schematic used for AC impedance analysis. R_S: series/lead resistance. CPE: constant phase element. (b) Log-log Nyquist plot (symbols) and equivalent circuit fits (lines) for Zr(OH)\textsubscript{4} pellets subjected to NO\textsubscript{2} doses of 0 (grey solid circle), 50 (red open square), 200 (green solid triangle), and 1000 (blue open diamond) ppm-hr.

![Figure 6](image6.png)

Figure 6. (a) Dielectric relaxation frequencies (= $1/RC$) of each of the three resistor/constant phase element pairs, as fit to our data using the equivalent circuit in Figure 4a. (b) Resistivity and (c) capacitance fit values for the resistor and constant phase element (respectively) corresponding to each R-CPE pair.
boundaries that will increase as the ionically charged portion increases in thickness. We thus arrive at a physical picture wherein the grain boundary and ionic processes are both within the chemically altered regions and their impedance properties are strongly tied together.

SUMMARY

This STIR project has determined that frequency-dependent impedance devices are the most likely pathway to sensitive and selective devices for toxic and explosive chemicals. The identified materials of choice have negligible localized surface plasmonic resonance and show only marginal magnetic sensitivity to exposure with no clear pathway for selectivity. However, by using the frequency-dependent impedance/resistance shifts, we believe that a pathway to chemical fingerprinting exists and represents a major opportunity going forward in chemical sensing. Going forward, impedance devices with high-surface area to volume ratios must be pursued to determine if the impedimetric sensitivities seen in this project can be replicated and improved upon.

BIBLIOGRAPHY

Bibhutibhushan Show, Nillohit Mukherjee, and Anup Mondal, "Electrochemically synthesized microcrystalline tin sulphide thin films: high dielectric stability with lower relaxation time and efficient photochemical and photoelectrochemical properties" RSC Advances 4 (102), 58740 (2014).

30 Xiaoqing Zhang, Yihua Zhu, Xiaoling Yang, Siwen Wang, Jianhua Shen, Babao Lin, and Chunzhong Li,"Enhanced visible light photocatalytic activity of interlayer-isolated triplex Ag@SiO2@TiO2 core-shell nanoparticles." Nanoscale 5, 3359 (2013).
