The Evolution of Random Number Generation in MUVES

by Joseph C Collins
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.
The Evolution of
Random Number Generation
in MUVES

by Joseph C Collins
Survivability/Lethality Analysis Directorate, ARL

Approved for public release; distribution is unlimited.
The Evolution of Random Number Generation in MUVES

Joseph C Collins

ARL-TR-7928

Approved for public release; distribution is unlimited.

Author’s Email: <joseph.c.collins38.civ@mail.mil>

The evolution of random number generation in MUVES proceeds from a short-period low-resolution single-threaded legacy implementation with questionable numerical and statistical properties. The development of the modern system is traced through software change requests, resulting in a random number generator that overcomes all shortcomings of the legacy system. This report traces the history of random number generation in MUVES, including the mathematical basis and statistical justification for algorithms used in the code. The working code provided produces results identical to the current implementation. These theoretical and practical details enable the reader to understand the algorithms and ensure that future enhancements to the production code preserve the integrity of the system.

MUVES, random number generator, parallel processing, thread safe, statistical independence

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
<th>19b. TELEPHONE NUMBER (Include area code)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>Unclassified</td>
<td>UU</td>
<td></td>
<td>410-278-6832</td>
</tr>
</tbody>
</table>
Contents

List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
</table>

1. Introduction

2. Legacy

2.1 Integers
2.2 Linear Congruential Generator
2.3 Independent RNG Streams
2.4 Jumping Ahead for LCGs
2.5 Legacy Issues

3. Linear Feedback Shift Register

3.1 Definition
3.2 Matrix Representation
3.3 Recurrence Relations
3.4 QuickTaus Trinomial LFSR
3.5 Characteristic Polynomial
3.6 State Details
3.7 Jump
3.8 Jump Example

4. T258

4.1 Implementation
4.2 The Uniform(0,1) Distribution
4.3 Initialization
4.4 Seeding
4.5 Parallel Processing
4.6 Run Time

5. SCR 1049–1050

6. SCR 1908
6.1 Consequences
 6.1.1 Jump Computation Failure
 6.1.2 Stream independence Failure

7. SCR 2138
 7.1 Identity
 7.2 Implementation
 7.3 Jump Verification

8. SCR 2142

9. Demonstration and Verification
 9.1 T258 Class Code
 9.2 Driver Code

10. Conclusions and Recommendations

11. References

List of Symbols, Abbreviations, and Acronyms

Distribution List
List of Figures

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>b series, no offset, same scale</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>b series, no offset, detail</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>b series, arbitrary offset, same scale</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>b series, arbitrary offset, detail</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>b, m, v CDFs, no offset</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>b, m, v CDFs, arbitrary offset</td>
<td>26</td>
</tr>
</tbody>
</table>
INTENTIONALLY LEFT BLANK.
1. Introduction

A random number generator (RNG) is an algorithm with output that is in some sense statistically indistinguishable from a random sample. This is an essential component of any stochastic simulation (such as MUVES), which relies on the availability of independent random quantities for statistical validity. Parallel (distributed) processing adds another layer to this requirement. The sets of random quantities in distinct threads must also be independent of each other. Otherwise, no sets of quantities within or among threads can be claimed to be a random sample.

The evolution of random number generation in MUVES over the past 25 years, from 1990 to 2015, proceeds from a short-period low-resolution single-threaded implementation with questionable numerical and statistical properties. This legacy system is documented in Section 2.

The modern concept presented in Sections 3 and 4 overcomes all the shortcomings of the legacy system and provides independent sets of random numbers for thread-safe parallel processing. Details of the MUVES implementation development through software change requests are seen in Sections 5, 6, 7, and 8. Working algorithm code and a procedure for verification of the statistical independence properties are in Section 9.

This report traces the history of random number generation in MUVES, including the mathematical basis and statistical justification for algorithms used in the code. The working code provided produces results identical to the current implementation. These theoretical and practical details enable the reader to understand the algorithms and ensure that future enhancements to the production code preserve the integrity of the system.

2. Legacy

Parallel processing was not a design consideration when MUVES development began. So the legacy RNG was inherently single-threaded. The main concern was portability, but the legacy RNG is deficient in several other respects. Nonetheless, it is instructive to consider its construction and operation. Sections 2.1–2.5 describe the mathematics behind the legacy RNG implementation, and point out undesirable features and areas that need improvement.
2.1 Integers

Integer addition, subtraction, and multiplication are intrinsic, but division is characterized by the division algorithm: one can divide any \(a \) by any nonzero \(m \) to get a unique quotient \(q \) and the remainder \(r \). To be specific,

\[
\forall a \forall m > 0 \exists! q \exists! r : a = qm + r, \ 0 \leq r < m.
\]

(The quotient and remainder are made unique by the bounds on \(r \).) The remainder or “mod” operator “\(\% \)” expresses this relationship, and we say that “\(a \) mod \(m \) equals \(r \)”, denoted \(a \% m = r \). When the remainder is 0, we say that “\(m \) divides \(a \)”, denoted \(m \mid a \).

Some useful properties of the remainder are

\[
(a \pm b) \% m = (a \% m \pm b \% m) \% m
\]

which follows from \(a \pm b = (q_a \pm q_b)m + (r_a \pm r_b) \),

\[
(ab) \% m = (a \% m \cdot b \% m) \% m
\]

which follows from \(ab = (q_am + r_a)(q_bm + r_b) = qm + r_ar_b \), and

\[
b \mid a \implies \frac{a}{b} \% m = \frac{a \% (bm)}{b}
\]

which follows from \(a/b = qm + r \), \(a = q(bm) + br \), and \(a \% (bm) = br \).

2.2 Linear Congruential Generator

The Linear Congruential Generator (LCG) is a basic RNG is defined by a linear recurrence modulo \(m \)

\[
x_{i+1} = T(x_i) = (ax_i + c) \% m
\]

with integer and real output functions \(z(x_i) \) and \(u(z_i) \). The RNG state \(x \) is not necessarily the same thing as the integer output \(z(x) \).
An LCG has full period m, obtaining all values in $0, \ldots, m - 1$, if and only if
\[
m \text{ and } c \text{ are relatively prime} \\
\forall \text{ prime } q : q \mid m \implies q \mid (a - 1) \\
4 \mid m \implies 4 \mid (a - 1).
\] (6)

The MUVES legacy RNG is a full-period LCG with
\[
m = 2^{32} \\
a - 1 = 1103515244 = 2^2 \cdot 13^2 \cdot 613 \cdot 2663 \\
c = 12345 = 3 \cdot 5 \cdot 823.
\] (7)

The integer output function is
\[
z = (x/65536) \% 32678 = (x \gg 16) \& 0x7ff,
\] (8)
giving a 15-bit integer, $0 \leq z \leq 2^{15} - 1 = 32767$. “Right shift” is “$\gg$” and “bitwise and” is “$\&$.”

The real output function is
\[
u = z/32768 = z/2^{15},
\] (9)
approximating $U(0, 1)$ with 4 fully significant digits and resolution $\varepsilon \approx 3 \times 10^{-5}$.

The integer output z is the same as rand(), the C library standard RNG in Kernighan and Ritchie. The “rand” man page offers a warning about this function.

The versions of rand() and srand() in the Linux C Library use the same random number generator as random(3) and srandom(3), so the lower-order bits should be as random as the higher-order bits. However, on older rand() implementations, and on current implementations on different systems, the lower-order bits are much less random than the higher-order bits. Do not use this function in applications intended to be portable when good randomness is needed. (Use random(3) instead.)

See Collins for randomness test results, including the failure of this function.
2.3 Independent RNG Streams

Any RNG cycle can be used to create statistically independent RNGs by 2 fundamental methods. The partition method is to divide the cycle into non-overlapping streams of consecutive elements, considered to be mutually independent. This is accomplished by advancing (jumping) the RNG in fixed increments (jumps) to obtain the stream starting points. To get \(n \) streams from a RNG with period \(m \), use the jump \(m/n \). The other method is leapfrog, where the \(n \) stream starting points are consecutive states \(s_1, \ldots, s_n \) from the RNG cycle. Then the RNG is used with a jump of \(n \) in each stream to obtain non-intersecting interleaved streams, considered to be mutually independent. In either case the effective useful stream length or period is \(m/n \), which is exhausted when one stream collides with another.

MUVES uses the partition method and 8 streams, 4 denoted “Shot Pattern”, “Cluster”, “Shot Assessment”, “BAD”, and 4 unused. First, seed the RNG with a 32-bit integer \(s_1 \), this is stream 1. Then the other 7 streams are obtained by jumping ahead \(k = 2^{29} = 2^{32}/8 = 536870912 \) in the cycle, starting at \(s_i = T^k(s_{i-1}) \) for \(i = 2, \ldots, 8 \). To use the streams, apply the single-step (jump 1) transition \(T(x) \) in each stream.

To implement the leapfrog method, seed the RNG with a 32-bit integer \(s_1 \) for stream 1. Then the single-step (jump 1) transition starts the other 7 streams at \(s_i = T(s_{i-1}) \) for \(i = 2, \ldots, 8 \). To use the streams, apply the jump 8 transition \(T^8(x) \) in each stream. MUVES does not use leapfrog, but the concept appears later in another context.

2.4 Jumping Ahead for LCGs

Either method is useful (and easy to implement) for an LCG, because repeated application of the LCG transition \(T(x) = (ax + c) \mod m \) of Eq. 5 is another LCG

\[
T^k(x) = (a_kx + c_k) \mod m.
\] (10)

To compute the coefficients of the jump LCG, note that modulo \(m \),

\[
x_1 = T(x_0) = ax_0 + c
\]

\[
x_2 = T^2(x_0) = ax_1 + c = a(ax_0 + c) + c = a^2x_0 + ac + c
\]

\[
x_3 = T^3(x_0) = a^3x_0 + a^2c + ac + c = a^3x_0 + (a^2 + a + 1)c
\] (11)
so in general (mod \(m \)),

\[
x_k = T^k(x_0) = a_k x_0 + c_k = a^k x_0 + \sum_{i=0}^{k-1} a^i \cdot c = \frac{a^k - 1}{a-1} \cdot c.
\] (12)

Apply the properties of Section 2.1 to see that

\[
a_k = (a^k) \% m \quad \text{and} \quad c_k = \left(\frac{(a^k-1) \% (a-1) \% m}{a-1} \right) \cdot c \% m. \] (13)

High powers of any \(w \) can be computed with “exponentiation by squaring.” One can obtain \(w^{2^p} \) by starting with \(w \) and recursively squaring \(p \) times, each doubling the exponent. The sequence so obtained is \(w, w^2, w^4, w^8, \ldots, w^{2^p} \) since \(w = w^1 = w^{2^0} \) and

\[
(w^{2^p})^2 = w^{2 \cdot 2^p} = w^{2^{p+1}}. \] (14)

In other words, square \(w \) recursively \(p \) times to get \(w^{2^p} \).

The following C code computes LCG coefficients for \(T^k = a_k x + c_k \) where \(k = 2^p \) and \(p = 0, \ldots, 32 \) based on \(T(x) = ax + c \) with MUVES LCG parameters.

```c
#include <stdio.h>
#include <stdint.h>

int main() {
    long unsigned a=1103515245, c=12345, m=1L<<32, ak[33], ck[33], p;
    __uint128_t b;
    for(b=ak[0]=a, ck[0]=c, p=1; p<=32; p++) {
        ak[p] = ( ak[p-1] * ak[p-1] ) % m;
        b = ( b * b ) % ((a-1)*m);
        ck[p] = ( (b-1) % ((a-1)*m) / (a-1) * c ) % m;
    }
    for(p=0; p<=32; p++)
        printf("k = 2^%-2d = %1/zero.alt2lu : ak = %1/zero.alt2u ck = %1/zero.alt2u\n", p, 1UL<<p, ak[p], ck[p]);
}
```

Note \((a^{2^p-1})^2 = a^{2^p}\) in the computation of \((a^{2^p}) \% m\), and \(b = (a^{2^p}) \% [(a-1)m] \). The latter needs 128-bit integers.

The output is

\[k = 2^0 = 1 : ak = 1103515245 \quad ck = 12345 \]
\(k = 2^1 = 2 : a_k = 3265436265 \) \(c_k = 3554416254 \)

\(k = 2^2 = 4 : a_k = 3993403153 \) \(c_k = 3596950572 \)

\(k = 2^3 = 8 : a_k = 3487424289 \) \(c_k = 3441282840 \)

\(k = 2^4 = 16 : a_k = 1601471041 \) \(c_k = 1695770928 \)

\(k = 2^5 = 32 : a_k = 2335052929 \) \(c_k = 1680572000 \)

\(k = 2^6 = 64 : a_k = 1979738369 \) \(c_k = 422948032 \)

\(k = 2^7 = 128 : a_k = 387043841 \) \(c_k = 3058047360 \)

\(k = 2^8 = 256 : a_k = 3194463233 \) \(c_k = 519516928 \)

\(k = 2^9 = 512 : a_k = 512 : a_k = 3722397609 \) \(c_k = 530212352 \)

\(k = 2^{10} = 1024 \) \(a_k = 1073647617 \) \(c_k = 2246364160 \)

\(k = 2^{11} = 2048 \) \(a_k = 2432507905 \) \(c_k = 646551552 \)

\(k = 2^{12} = 4096 \) \(a_k = 1710899201 \) \(c_k = 3088265216 \)

\(k = 2^{13} = 8192 \) \(a_k = 3690233857 \) \(c_k = 472276992 \)

\(k = 2^{14} = 16384 \) \(a_k = 4159242241 \) \(c_k = 3897344000 \)

\(k = 2^{15} = 32768 \) \(a_k = 4023517185 \) \(c_k = 2425978880 \)

\(k = 2^{16} = 65536 \) \(a_k = 3752067073 \) \(c_k = 55690464 \)

\(k = 2^{17} = 131072 \) \(a_k = 3209168494 \) \(c_k = 1113980928 \)

\(k = 2^{18} = 262144 \) \(a_k = 2123366401 \) \(c_k = 2227961856 \)

\(k = 2^{19} = 524288 \) \(a_k = 4246732801 \) \(c_k = 160956416 \)

\(k = 2^{20} = 1048576 \) \(a_k = 4198498305 \) \(c_k = 321912832 \)

\(k = 2^{21} = 2097152 \) \(a_k = 4102029313 \) \(c_k = 643825664 \)

\(k = 2^{22} = 4194304 \) \(a_k = 3909091329 \) \(c_k = 1287651328 \)

\(k = 2^{23} = 8388608 \) \(a_k = 3523215361 \) \(c_k = 2575302656 \)

\(k = 2^{24} = 16777216 \) \(a_k = 2751463425 \) \(c_k = 855638016 \)

\(k = 2^{25} = 33554432 \) \(a_k = 1207959553 \) \(c_k = 1711276032 \)

\(k = 2^{26} = 67108864 \) \(a_k = 2415919105 \) \(c_k = 3422552064 \)

\(k = 2^{27} = 134217728 \) \(a_k = 536870913 \) \(c_k = 2550136832 \)

\(k = 2^{28} = 268435456 \) \(a_k = 1073741825 \) \(c_k = 805306368 \)

\(k = 2^{29} = 536870912 \) \(a_k = 2147483649 \) \(c_k = 1610612736 \)

\(k = 2^{30} = 1073741824 \) \(a_k = \) 1 \(c_k = 3221225472 \)

\(k = 2^{31} = 2147483648 \) \(a_k = \) 1 \(c_k = 2147483648 \)

\(k = 2^{32} = 4294967296 \) \(a_k = \) 1 \(c_k = 0 \)

See the MUVES source code Rn/RnLegacy.cpp, where \(a_k \) and \(c_k \) for \(k = 2^{29} \) are documented as “magic beans”.

2.5 Legacy Issues

The legacy RNG fails most common tests of randomness. This alone is a reason to reject the legacy RNG outright.

The period of \(2^{29} \approx 5 \times 10^8 \) is too short. At a rate of 9 million random number draws per second this is exhausted in 60 seconds. In terms of how many random
quantities MUVES uses, consider an analysis with 1000 cells in a view and 1000 BAD fragments per shot using 8 threats and 8 velocities. With 9 iterations, the number of fragments has already exceeded the stream length.

The resolution of 4 digits (15 bits) does not adequately cover the range of double-precision uniform values on the unit interval. Full IEEE double resolution requires 15 digits (53 bits).

Every random quantity needs its own stream for true independence. The 8 streams available in the legacy implementation place an unreasonably low limit on the possible number of independent stochastic quantities.

The legacy implementation provides a single set of random quantities, and as such is not thread-safe or suitable for parallel processing. Independent shotlines need independent sets of independent quantities.

We need a high-quality fast 64-bit RNG with a huge period that can easily be partitioned (into streams) for independent parallel processing and the streams partitioned (into substreams) for independent quantities.

Such a system is the topic of the next section.
3. Linear Feedback Shift Register

Collins documents the details of T258, the RNG currently implemented in MUVES, based on the linear feedback shift register (LFSR). For clarity some information is repeated in the following along with subsequent developments. Following the definition, the (equivalent) matrix and recurrence relation representations give concrete examples of general LFSR implementation, but MUVES uses neither. Instead, an efficient algorithm (QT) can be used for the particular class of LSFRs in T258.

3.1 Definition

\(\mathbb{F}_2 \) is the finite field with 2 elements \{0, 1\} which are equivalent to bits. In \(\mathbb{F}_2 \) addition is subtraction as 1 + 1 = 0 and 1 = −1. Let \(x_0, x_1, x_2, \ldots \) be a sequence from \(\mathbb{F}_2 \). An LFSR sequence obeys some recurrence with \(c_i \in \mathbb{F}_2 \)

\[
x_{n+k} = \sum_{i=0}^{k-1} c_i x_{n+i} = c_{k-1} x_{n+k-1} + \ldots + c_1 x_{n+1} + c_0 x_n
\]

(15)

so any bit is determined by the previous \(k \) bits. Blocks of \(L \) bits can yield \(L \)-bit integers \(z \) with \(0 \leq z < 2^L \) via the appropriate output function

\[
z = \sum_{i=0}^{L-1} 2^{L-1-i} x_{n+i} = 2^{L-1} x_n + \ldots + 2^0 x_{n+L-1}
\]

(16)

or real numbers \(u \) with \(0 \leq u < 1 \) via the output function \(u = z/2^L \)

\[
u = \sum_{i=0}^{L-1} 2^{-i-1} x_{n+i} = 2^{-1} x_n + \ldots + 2^{-L} x_{n+L-1}.
\]

(17)

3.2 Matrix Representation

The matrix representation uses a \(k \)-bit nonzero state vector \(X_n = (x_{n0}, \ldots, x_{nk-1}) \) and a \(k \times k \) transition matrix \(A \), both with components in \(\mathbb{F}_2 \). The transition recurrence is \(X_{n+1} = AX_n \). The shift is \(x_{n+1,i} = x_{ni+1} \) for \(i = 0, \ldots, k - 2 \), and the last component \(x_{n+1,k-1} \) of \(X_{n+1} \) is determined by the recurrence of Eq. 15. Note that in general \(X_{n+k} = A^k X_n \). Here, \(A \) implements \(x_{k+4} = x_{k+2} + x_k \) starting with \(X_0 \).
where
\[A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} \quad \text{and} \quad X_0 = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix}. \] (18)

Then \(X_1, \ldots, X_5 \) are seen to be
\[\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_2 + x_0 \end{bmatrix}, \begin{bmatrix} x_2 \\ x_3 \\ x_2 + x_0 \\ x_3 + x_1 \end{bmatrix}, \begin{bmatrix} x_3 \\ x_3 + x_1 \\ x_2 + x_0 \\ x_0 \end{bmatrix}, \begin{bmatrix} x_2 + x_0 \\ x_3 + x_1 \\ x_0 \end{bmatrix}, \begin{bmatrix} x_3 + x_1 \\ x_3 \\ x_2 + x_0 \\ x_1 \end{bmatrix}. \] (19)

The matrix \(A \) has characteristic polynomial \(P(z) = \det(zI - A) = z^4 - z^2 - 1. \) Since \(P(A) = 0, \) we have \(A^4 = A^2 + I \) and in general \(A^{k+4} = A^{k+2} + A^k. \) Note that \(X_4 = X_2 + X_0 \) and \(X_5 = X_3 + X_1 \) and in general \(X_{k+4} = X_{k+2} + X_k. \) So \(x_n \) and \(X_n \) and \(A^n \) follow the same recurrence.

We never use the matrix implementation.

3.3 Recurrence Relations

Any matrix \(A \) has characteristic polynomial (CP)
\[C(z) = \det(zI - A) = z^k - c_{k-1}z^{k-1} - \cdots - c_1 z - c_0. \] (20)

The Cayley-Hamilton theorem assures that \(C(A) = 0, \) therefore
\[A^k = c_{k-1}A^{k-1} + \cdots + c_1 A + c_0 I. \] (21)

\(C(z) \) is also the CP of the recurrence \(X_{n+1} = AX_n, \) consider \(X_{n+k} = A^kX_n, \) so
\[X_{n+k} = c_{k-1}X_{n+k-1} + \cdots + c_1 X_{n+1} + c_0 X_n. \] (22)

The recurrence gives the sequence of vectors \(X_n, \) where each \(c_i \in \mathbb{F}_2, \) and applies to each coordinate (bit) of \(X_n. \)

We never use the recurrence to implement the RNG.
3.4 QuickTaus Trinomial LFSR

L’Ecuyer’s QuickTaus (QT) algorithm\(^3\) uses a trinomial recurrence \(P(z) = z^k - z^q - 1 \) to generate a (horizontal) bit stream in blocks of \(s \) bits according to \(b_{n+k} = b_{n+q} + b_n \). Word size is \(L \) bits. \(A, B, \) and \(C \) are words. \(A \) is the LFSR state. \(C \) is a mask of \(k \) ones, then \(L - k \) zeros.

The QT algorithm updates \(A \).

\[
\begin{align*}
B &= A \ll q; \quad \text{// q-bit left-shift of } A \\
B &= A \oplus B; \quad \text{// } A \text{ xor } B, \text{ bitwise} \\
B &= B \gg (k-s); \quad \text{// (k-s)-bit right-shift of } B \\
A &= A \& C; \quad \text{// } A \text{ and } C, \text{ bitwise} \\
A &= A \ll s; \quad \text{// s-bit left-shift of } A \\
A &= A \oplus B; \quad \text{// } A \text{ xor } B, \text{ bitwise}
\end{align*}
\]

The C/C++ implementation of QT is succinct.

\[
\begin{align*}
C &= \text{-}0x1 \ll (L-k); \\
A &= ((A \& C) \ll s) \oplus ((A \ll q) \& A) \gg (k - s) ;
\end{align*}
\]

Note the use of the “twos complement” negative integer representation. A negative integer is stored as the twos complement of its absolute value, which is the sum of its ones complement (all bits reversed) and \(0x1 \). So \(\text{-}0x1 = \text{0xffff...fff} \).

An example illustrates the action of QT. Consider \(P(z) = z^{28} - z^3 - 1 \), so \(k = 28 \) and \(q = 3 \). The bit recurrence is \(b_{n+28} = b_{n+3} + b_n \). The block size is \(s = 17 \), the word size is \(L = 32 \). The mask is \(C = \text{-}0x10 = \text{0xfffffff0} \), which has \(k = 28 \) ones followed by \(L - k = 4 \) trailing zeros. So the C/C++ implementation is

\[
x = ((x \& \text{-}0x10) \ll 17) \oplus ((x \ll 3) \& x) \gg 11 ;
\]

In detail, step by step:

\[
\begin{align*}
x &= ((x0..x28 , x29..x31) z^0 = 1, \text{ initial state satisfies } P(z) \\
y &= x \ll 3 ; \quad \text{// (x3..x31 , 3 \& 0) } z^3, \text{ step forward 3} \\
y &= y \oplus x ; \quad \text{// (x28..x56 , x29..x31) by the construction, } z^3 + z^0 = z^{28} \\
y &= y \gg 11; \quad \text{// (11 \& 0 , x28..x48) tail=new block of } s \text{ bits, 32 to 48} \\
x &= x \& C ; \quad \text{// (x0..x27 , 4 \& 0) make room for new block in } x \\
x &= x \ll 17; \quad \text{// (x17..x27 , 21 \& 0) pop } s \text{ bits} \\
x &= x \oplus y ; \quad \text{// (x17..x27 , x28..x48) combine bitwise: } x+y \mod 2 \\
\end{align*}
\]

This generates bits “horizontally” in blocks of 17, and successive words are

\[
x = (x0 \ldots x14 , x15 \ldots x31) \\
A(x) = (x17 \ldots x31 , x32 \ldots x48)
\]
3.5 Characteristic Polynomial

Note that columns are “vertically” leapfrog (by 17) sequences from $P(z)$ Using any bit position $x[b]$ vertically from the sequence $x=A(x)$, the characteristic polynomial can be computed as detailed in Collins.\(^2\)

\[
C(z) = \sum_{i=0}^{28} c_i z^i = z^{28} + z^{19} + z^{17} + z^{15} + z^{10} + z^6 + z^3 + z^2 + 1 . \quad (23)
\]

$C(z)$ is also the characteristic polynomial, hence the recurrence, of the words themselves. Only 2^k bits are required for this operation, making the LFSR cryptographically useless. From the 2^k bits x_0, \ldots, x_{2k-1}, construct the $k+1$ vectors $X_i = (x_i, \ldots, x_{i+k-1})$ each of length k for $i = 0, \ldots, k$. Since X_k is a linear combination of the previous k vectors X_0, \ldots, X_{k-1}, the solution of the linear system

\[
\begin{bmatrix}
 x_k \\
 x_{k+1} \\
 x_{k+2} \\
 \vdots \\
 x_{2k-1}
\end{bmatrix}
= \begin{bmatrix}
 x_{k-1} & \cdots & x_2 & x_1 & x_0 \\
 x_k & \cdots & x_3 & x_2 & x_1 \\
 x_{k+1} & \cdots & x_4 & x_3 & x_2 \\
 \vdots & \ddots & \vdots & \vdots & \vdots \\
 x_{2k-2} & \cdots & x_{k+1} & x_k & x_{k-1}
\end{bmatrix}
\begin{bmatrix}
 c_{k-1} \\
 c_{k-2} \\
 c_{k-3} \\
 \vdots \\
 c_0
\end{bmatrix}
\quad (24)
\]

provides the coefficients of $C(z)$, along with $c_k = 1$ as $c_k X_k = \sum_{i=0}^{k-1} c_i X_i$. The Berlekamp-Massey algorithm is an efficient algorithm for solving this system of equations. Also, in each row ($j = 0, \ldots, k - 1$) we see

\[
x_{k+j} = \sum_{i=0}^{k-1} c_i x_{i+j} . \quad (25)
\]

3.6 State Details

$P(z)$ generates horizontal bit stream computed in 17-bit blocks:

1010000001111001001101000011010001110111000100101 \ldots
10100000011110001 0011010000110100 11101111000100101 \ldots

Shift to fill words, new block on the right, (partial) old block shifted left:

010010110000100 1010000001111001
10000011110001 0011010000110100
11010000110100 11101111000100101
\ldots

Approved for public release; distribution is unlimited.
$C(z)$ generates each vertical bitstream and also the words:

\[
\begin{align*}
01001011000010100000011110001 &= 0x4b0940f1 \\
0000001111000110100001110000 &= 0x81e26868 \\
110100001101000111111101001 &= 0xd0d1de25
\end{align*}
\]

\[
\ldots
\]

3.7 Jump

The division algorithm for polynomials is analogous to the integer division algorithm: Divide z^d by $C(z)$ to get the quotient $Q_d(z)$ and remainder $J_d(z)$, which satisfy $z^d = Q_d(z)C(z) + J_d(z)$ where $J_d = 0$ or $0 \leq \deg J_d < \deg C = k$. The remainder is the jump polynomial with coefficients in $\mathbb{F}_2 = \{0, 1\}$: $J_d(z) = z^d \mod C(z) = \sum_{i=0}^{k-1} j_i z^i$. We know $C(A) = 0$, therefore $A^d = J_d(A)$, and

\[
x_{n+d} = A^d x_n = J_d(A) x_n = \sum_{i=0}^{k-1} j_i x_{n+i}.
\]

Thus, a future (jump) state is some linear combination of only k successive states. To compute J_{2^p}, start with $m = 0$ and apply p iterations of squaring mod $C(z)$

\[
z^{2^{m+1}} \mod C(z) = \left(z^{2^m} \right)^2 \mod C(z).
\]

Each step is an application of the division algorithm via synthetic division in \mathbb{F}_2 using Knuth’s algorithm referenced in Collins.²

3.8 Jump Example

The state transition is $x = A(x)$ where

```c
unsigned A ( unsigned x ) {
    return ( (x & -0x10) << 17 ) ^ ( (x << 3) ^ x ) >> 11 ;
}
```

For $p = 64$, the 2^p jump polynomial for our example is

\[
J(z) = z^{27} + z^{26} + z^{25} + z^{24} + z^{22} + z^{19} + z^{18} + z^{15} + z^{11} + z^9 + z^8 + z^6 + z^5 + z^2 + 1
\]

$J = 0x0f4c8b65 = 0000 1111 0100 1100 1000 1011 0110 0101_2$

To apply to state x, construct the \mathbb{F}_2-linear combination of successive states:

```c
unsigned j, t=x, y=0;
for(j=J; j; j>>=1, t=A(t)) if(j & 1) y ^= t;
```

Then $y = A^{2^p} x = A^{2^{64}} x = A^{18446744073709551616} x$.

Approved for public release; distribution is unlimited.
State vectors and polynomials coefficients (0 or 1) are packed into integers.

XOR (\(^\oplus\)) is \(\mathbb{F}_2\) vector space addition.

4. **T258**

In practice, a single LFSR is not good enough. MUVES implements the RNG algorithm T258,\(^2\) an extension of L’Ecuyer’s LFSR258\(^4\) providing probabilistically independent sets of random vectors and suitable for parallel processing (thread-safe).

T258 uses a set of five 64-bit LFSRs, each implementing a recurrence defined by a primitive polynomial of the form \(P(z) = z^k - z^q - 1\) in bit blocks of size \(s\) by means of the QT algorithm.

Each LFSR is implemented with QT transition

\[
x = ((x \& C) \ll s) \oplus (((x \ll q) \wedge x) \gg (k - s))
\]

The QT parameters for the 5 components of T258 are

<table>
<thead>
<tr>
<th>#</th>
<th>L</th>
<th>k</th>
<th>q</th>
<th>s</th>
<th>k-s</th>
<th>L-k</th>
<th>M = -C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>64</td>
<td>63</td>
<td>1</td>
<td>10</td>
<td>53</td>
<td>1</td>
<td>0x000002</td>
</tr>
<tr>
<td>1</td>
<td>64</td>
<td>55</td>
<td>24</td>
<td>5</td>
<td>50</td>
<td>9</td>
<td>0x000200</td>
</tr>
<tr>
<td>2</td>
<td>64</td>
<td>52</td>
<td>3</td>
<td>29</td>
<td>23</td>
<td>12</td>
<td>0x001000</td>
</tr>
<tr>
<td>3</td>
<td>64</td>
<td>47</td>
<td>5</td>
<td>23</td>
<td>24</td>
<td>17</td>
<td>0x020000</td>
</tr>
<tr>
<td>4</td>
<td>64</td>
<td>41</td>
<td>3</td>
<td>8</td>
<td>33</td>
<td>23</td>
<td>0x800000</td>
</tr>
</tbody>
</table>

The LFSR periods are \(P_i = 2^{k_i} - 1\) for \(k \in \{63, 55, 52, 47, 41\}\),

The \(P_i\) are pairwise relatively prime, so the period of T258 is \(P = \prod_{i=1}^{5} P_i \approx 2^{258}\).

4.1 **Implementation**

For consistent presentation hereafter, we use a C++ class to implement T258. Complete current code is in Section 9. This is not production MUVES code, but the algorithms are identical.

```cpp
typedef uint64_t uz;
class rng { // T258
  public: // ...
    rng(uz seed); // constructor
    rng& init(); // (re)initialize
    rng& t(); // state transition
  }
```

Approved for public release; distribution is unlimited.
rng& jump(uz p); // jump 2^p
rng& jumpk(uz k, uz p); // jump $k2^p$
uz gen(); // integer generator
double u01(); // u(0,1) generator
static const int JS = 86; // log_2 (small jump)
static const int JL = 172; // log_2 (large jump)
bool operator!=(const rng& w); // state comparison
bool operator==(const rng& w); // state comparison

private:
uz s[5]; // LFSR state array
uz seed; // this.seed
void seedx(void); // set seed
static const int CPd[5]; // CP degrees
static const uz JP[63][5]; // jump polynomials

};

Representation of the T258 state transition is
rng& rng::t() { // T258: C s q k-s
s[0] = ((s[0] & -0x00000002) << 10) ^ ((s[0] << 1) ^ s[0] >> 53);
return *this;
}

The 64-bit unsigned integer function gen() returns values in $0,\ldots,2^{64} - 1$.
uz rng::gen() { // 64-bit integer
t(); // transition
}

The function u01() is a discrete version of the continuous $U(0,1)$ distribution.
double rng::u01() { // U(0,1)
uz z;
const static double d = 1.0/(1UL<<53); // 1/2^53
do z = gen() >> 11; while(!z);
return d * z;
}
4.2 The Uniform(0,1) Distribution

The real function `u01()` uses 53 bits of the full 64-bit integer to compute a discrete version of the continuous $U(0, 1)$ distribution with evenly-spaced equiprobable output $i/2^{53}$ for $i = 1, 2, 3, \ldots, 2^{53} - 1$. These are the expected values of $U(0, 1)$ order statistics for a sample of size $2^{53} - 1$ and yield the correct discrete approximation. Note the symmetry in the sense that `u01()` and `1-u01()` have the same distribution. In fact, 53 is the largest number with properties, as the internal IEEE representation of `double` uses 53 bits implicitly.

It may be tempting to obtain more “accuracy” by using all 64 bits and dividing by 2^{64}, but this is an error. The resulting distribution will not have equiprobable evenly-spaced values and will not be symmetric. Eventually, some such $x > 0$ will be so small that $1 - x = 1$. The program will crash on something like $\log(1 - x)$ expecting that both $0 < x < 1$ and $0 < 1 - x < 1$.

4.3 Initialization

L’Ecuyer3 states a condition required for QT, that the initial state must be a valid recurrence element:

“For this algorithm to work properly, A must be initialized correctly with a valid initial S_0; that is, which agrees with the recurrence.

[General initialization algorithm omitted.]

If the additional condition $L - k \leq r - s$ is satisfied, then it can be easily verified that after the first pass through the six steps of QuickTaus, A will necessarily contain a valid state, even if the initial state S_0 was not valid. In that case, the above initialization procedure is not necessary for running the generator; just skip the first value.”

For T258, the additional condition is satisfied since $r = k - q$, the general initialization algorithm is not required, and correct operation is obtained by “skipping the first value”, implemented in the initialization code as a single call to QT with its return value discarded.

Without this initialization feature, computation of the $C(z)$ fails. The results are random depending on the (incorrect) initial state. Consequently, computation of the $J(z)$ also fails, since these depend on the $C(z)$. In the current implementation the
$C(z)$ are not used, and the $J(z)$ are pre-computed and stored in tables, so this is not an issue. However, jump computation fails even with correct $J(z)$.

Moreover, if the implementation is ever changed to compute new $J(z)$ for different jump sizes, include dynamic computation of $C(z)$ and $J(z)$, replace the RNG, or perform diagnostic tests or verification and validation, etc., the condition is necessary or else the computations will fail.

4.4 Seeding

L’Ecuyer\(^4\) presents conditions for correct seeding of LFSR RNGs.

“Before calling lfsr113 for the first time, the variables z_1, z_2, z_3, and z_4 must be initialized to any (random) integers larger than 1, 7, 15, and 127, respectively. In other words, the k_j most significant bits of z_j must be nonzero, for each j.

Ideally, the vector of initial seeds (z_1, \ldots, z_j) would be drawn from a uniform distribution over the set of admissible values.”

Minimum values for T258 seed states are denoted as $M = -C$ in the parameter table on page 13. If $x < M$ then $QT(x) = 0$, and the LFSR is stuck at 0. This is known as the sink condition. Thus, only seed values x with $x \geq M$ are admissible, and ideal seed values x are uniform random with $x \geq M$. Note that $C = -M$ is the QT mask value.

4.5 Parallel Processing

Partition RNG with period $P \approx 2^G$ into 2^S independent streams of length 2^{G-S} for parallel processing or shotlines. Partition each stream into 2^B independent sub-streams of length 2^{G-S-B}, the effective “period” of any scalar RNG for independent variables.

T258 has $G = 258$, and MUVES uses $S = B = 86$, so $G - S = 172$ and $G - S - B = 86$. The global RNG is seeded once to set base state. Then 2^{86} streams are separated by long jumps of 2^{172} from the base. In each stream, 2^{86} substreams are separated by short jumps of 2^{86}, the effective substream “period.”
Suppose numbers are generated at a rate of 1 billion, or about 2^{30}, per second.

The legacy LCG with a single stream of length 2^{32} has 8 substreams of length 2^{29}. Each will run for 0.5 seconds, and the full cycle runs for 4 seconds.

One year $\approx 60^2 \cdot 24 \cdot 365 \approx 2^{24.91} \approx 2^{25}$ seconds.

For T258: a substream of length 2^{86} will run for $\sim 2^{86-30-25} = 2^{31} \approx 2$ billion years, a stream of length 2^{172} will run for $\sim 2^{172-30-25} = 2^{117} \approx 10^{26}$ billion years, and a full cycle of length 2^{258} will run for $\sim 2^{258-30-25} = 2^{203} \approx 10^{52}$ billion years.

Brute force verification is impractical. The numbers are large:

$$2^{258} = 463168356949264781694283940034751631413079938662562256157830336031652518559744 \approx 5 \times 10^{77}$$
$$P = 46316835694905075035207618426891809034376927944462529355293134289296410279935 \approx 5 \times 10^{77}$$
$$2^{258} - P = 214031342207755765833541069373010718099972680253201742356108279809 \approx 2 \times 10^{66}$$
$$2^{172} = 598631070650737835296229307480589524851069069029696 \approx 6 \times 10^{51}$$
$$2^{86} = 7737125254536267181195264 \approx 8 \times 10^{24}$$

$P < 2^{258}$ so the number of full streams is not 2^{86} but $floor(P/2^{172}) = 77371252545300513717551104 \approx 8 \times 10^{23}$

A useful approach to verification follows from SCR 2138, Section 7.

This following is equivalent to the initial 2008 implementation of T258 in MUVES as presented in SCR 1049 “Replace existing Uniform random number generator” and SCR 1050 “Provide independent RNG streams for DMUVES”.

The constructor saves the seed and initializes the system.

```cpp
rng::rng(uz seed) {
    this->seed = seed;
    init();
}
```

The initializer seeds the LFSRs and invokes a single transition.

```cpp
rng& rng::init() {
    seedx();
    t();
    return *this;
}
```
The original seeding routine used a single seed integer and an auxiliary LCG of the form \(x_{i+1} = c \cdot x_i \) to obtain 5 uniformly-distributed seed values.

```cpp
void rng::seedx() {
    uz c = 69069;
    s[0] = c*seed; if(s[0] < 2) s[0] += 2u;
    s[1] = c*s[0]; if(s[1] < 512) s[1] += 512u;
}
```

The system uses an array of 65 polynomials “const uz rng::JP[65][5]” for jumps of \(2^p \) where \(p = (86, 172, 173, 174, \ldots, 233, 234, 235 = 172 + 63) \). MUVES uses 4 independent substreams (for variables, separated by \(2^{86} \)) in each thread stream (separated by \(2^{172} \)).

Generators for stream \(k \) with \(0 < k < 2^{64} \) are obtained by applying \(k \) large jumps of size \(2^{172} \) using the binary decomposition of \(k \) followed by small \(2^{86} \) jumps for substreams. Note that if the \(n^{\text{th}} \) bit \(b_n \) of \(k = \sum_{n=0}^{63} b_n 2^n \) is nonzero, then \(JP[n+1] \) can be used to advance each LFSR by \(2^{171+n} = 2^n \cdot 2^{172} \) for total offset of \(k \cdot 2^{172} \). This is efficient even for large \(k \), unlike iterating the \(2^{172} \) jump \(k \) times. Then each substream \(i \) is advanced by \(i \cdot 2^{86} \) to obtain offsets of \(k \cdot 2^{172} + i \cdot 2^{86} \) for \(i = 0, 1, 2, 3 \).

6. SCR 1908

In 2014, SCR 1908 “Changes to Tausworthe T258 Random Number Generator” realized these modifications:

Description: The seeding routine in T258 is more restrictive than necessary and it makes a call to the generator itself before returning. This prevents setting the five states to the same seed and making a call to the generator introduces confusion when comparing to the standalone behind-armor debris model.

and the document `scr.pdf` referenced in the SCR contains:

- Seeding routine is more restrictive than necessary, in two respects:
 - Seed is multiplied by 69069 each time an internal state is set.
 - Makes a call to the RNG itself before the seeding procedure returns.

The current seeding routine (see Figure 1 [omitted]) multiplies the seed by 69069.
The initialization method implemented by SCR 1908 is equivalent to:

```cpp
ing & rng::init() {
    seedx();
    return *this;
}
```

The seeding method implemented by SCR 1908 is equivalent to:

```cpp
void rng::seedx() {
    s[0] = seed; if(s[0] < 2) s[0] += 2u;
    s[1] = seed; if(s[1] < 512) s[1] += 512u;
}
```

6.1 Consequences

6.1.1 Jump Computation Failure

Omission of the valid initial state criterion of Section 4.3 (by removing the initialization call to the RNG) introduces the problems presented in that section. This includes the failure of jump computation even for correct jump polynomials.

The requirement for statistically independent random substreams across all streams is essential for the validity of the simulation. This is obtained by partitioning the overall cycle into non-overlapping segments, guaranteed by correct jump computations. When the jump computations fail, the resulting possible overlap makes the claim of independence invalid.

6.1.2 Stream independence Failure

Use of the same single seed for all 5 LFSRs (instead of uniform random seeds derived from a single value) introduces another problem.

Put simply, if you run a simulation with seed \(x \) one day, and seed \(x + 1 \) the next day, the results will not be independent (as is required for a random sample). Sequentially seeded cycles are not independent. If the seeds themselves are generated by some random process (clock time, process id, /dev/random, /dev/urandom, radiation, etc) this is likely not an issue. But if a human needs 3 seeds for a random
sample of runs, she/he just might pick something like 666, 667, and 668. Then the following problem manifests.

A number is Borel normal in base r if every sequence of k symbols in the letters $0, 1, \ldots, r-1$ occurs in the base-r expansion of the given number with the expected frequency r^{-k}. Uniform random numbers are Borel normal.

Let x be a 64-bit ($r = 2$) uniform random integer and $b(x) =$ the number of 1s in x. Then $b(x) \sim B(64, 1/2)$, where $B(n,p)$ is the binomial distribution and $q = 1 - p$. Here, $n = 64$ and $p = q = 1/2$. Then $E b(x) = np = 32$ and $\text{Var} b(x) = npq = 16$.

If $(x_i)_{i=1}^\infty$, is a sequence of such x, then the $b(x_i)$ are iid $B(n,p)$, asymptotically normal

$$b(x_i) \sim N(np, npq) \quad (28)$$

If $(x_{ji})_{i=1}^\infty$ for $j = 1, \ldots, k$ are k such sequences, then the $S_i = \{x_{ji} : j = 1, \ldots, k\}$ are iid random samples of size k from $B(n,p)$. Then the sample means $m_i = \text{mean}(S_i) = \frac{1}{k} \sum_{j=1}^k b(x_{ji})$ are iid asymptotically normal

$$m_i \sim N(np, \frac{npq}{k}) \quad (29)$$

and the sample variances $v_i = \text{var}(S_i) = \frac{1}{k} \sum_{j=1}^k \left(b(x_{ji}) - m_i \right)^2$ are iid asymptotically normal

$$v_i \sim N(npq, (npq) \left(\frac{2}{k-1} + \frac{\kappa}{k} \right)) \quad (30)$$

where κ is the excess kurtosis

$$\kappa = \frac{1 - 6pq}{npq}. \quad (31)$$

Graphs follow for $i = 1, \ldots, 500$ and $k = 1000$, where k sequential seeds were chosen. First we see the series results for seeds 0 through 999, offset 0, to the same scale in Fig. 1 and with the correct Q method magnified to show detail in Fig. 2. Then in Figs. 3 and 4 we see the same presentation for an arbitrary offset s_o, for seeds s_o through $s_o + 999$. Then, without regard to the series, we see the cumulative distribution functions (CDFs) for offset 0 in Fig. 5 and offset s_o in Fig. 6.
Fig. 1 \(b\) series, no offset, same scale
Fig. 2 \(b \) series, no offset, detail
\[M: \text{b, } s = 0 + s_0 \]
\[s_0 = 0x682c58d6ace0605b \]
\[j = 2^{0x140c69de09b07d42} \]

\[Q: \text{b, } s = 0 + s_0 \]

\[M: \text{m, } s = 0 : 999 + s_0 \]

\[Q: \text{m, } s = 0 : 999 + s_0 \]

\[M: \text{v, } s = 0 : 999 + s_0 \]

\[Q: \text{v, } s = 0 : 999 + s_0 \]

Fig. 3 \(b \) series, arbitrary offset, same scale
Fig. 4 b series, arbitrary offset, detail
Fig. 5 b, m, v CDFs, no offset
Fig. 6 b, m, v CDFs, arbitrary offset
7. SCR 2138

In 2015, SCR 2138 “MUVES Random Number Generator initialization correction” remediated the effects of SCR 1908. The initialization generator call was reinstated to assure correct jump computations and statistical independence of everything.

```cpp
rng& rng::init() {
    seedx();
    t();
    return *this;
}
```

An improved seeding scheme uses a better LCG that SCR 1049, available in L’Ecuyer. This reestablishes the independence of sequentially-seeded streams lost in SCR 1908.

```cpp
void rng::seedx() { // set seed
    uz c = 0x27bb2ee687b0f0fd, d = 0x891087b8e3b70cb1;
    do s[0] = c*seed+d; while(s[0] < 0x000002);
    do s[1] = c*s[0]+d; while(s[1] < 0x000200);
    do s[2] = c*s[1]+d; while(s[2] < 0x001000);
    do s[3] = c*s[2]+d; while(s[3] < 0x020000);
    do s[4] = c*s[3]+d; while(s[4] < 0x800000);
}
```

The final element of SCR 2138 implements an improved algorithm for jump computation based on the identity of Section 7.1. Previous computations are a “special case” of the new algorithm, in that the results are identical. The old algorithm could compute jumps of size 2^{86} and $k2^{172}$ for $k = 0,\ldots,2^{64} - 1$. The new algorithm is more transparent but capable of jumps $k2^p$ for both p and k in $\{0,\ldots,2^{64} - 1\}$.

In either case, suppose that $t()$ is a single-step state transition and that $j(p)$ advances the RNG state by 2^p steps. With the old algorithm, one would check that either 2^{86} applications of $t()$ or one application of $j(86)$ to some initial state results in the same final state. At a rate of 1 billion per second this would take 2 billion years. For $j(172)$, this would take 10^{35} years. A major benefit of the new formulation is that the computations can be verified more efficiently due to the availability of arbitrary $j(p)$. One need only check that $t()$ and $j(0)$ give the same state and for $p = 1,2,3,\ldots,p_{\text{max}}$ that 2 applications of $j(p - 1)$ give the same state as 1 application of $j(p)$, since $2 \cdot 2^{p-1} = 2^p$. For $p_{\text{max}} = 236$ it takes about 5 milliseconds to check that any such $j(p)$ is correct.

Approved for public release; distribution is unlimited.
7.1 Identity

The LFSRs in T258 generated by polynomials of the form \(P(z) = z^k + z^q + 1 \) in blocks of size \(s \) have periods \(m = 2^k - 1 \). By the division algorithm a jump size of \(2^p \) can be written as \(2^p = Qm + 2^p \% m \) for integer \(Q \), thus \(2^p \) and \(2^p \% m \) are the same jump.

In fact, \(2^p \% m = 2^p \% k \), so only the jumps \(2^p \) for \(p = 0, 1, 2, 3, \ldots, k - 1 \) for each LFSR are required to compute a T258 jump of \(2^p \) for any \(p \geq 0 \).

Formally, we assert that

\[
2^p \%(2^k - 1) = 2^p \% k \quad \text{for } k \geq 2 \text{ and } p \geq 0. \tag{32}
\]

Proof:

If \(p < k \) then \(2^p < m \) and \(2^p \% m = 2^p = 2^p \% k \).

If \(p = k \) then \(2^p = m + 1 \) and \(2^p \% m = 1 = 2^p \% k \).

Suppose the claim holds for some \(p \geq k \) and all \(p' < p \), and consider \(p + 1 \):

\[
2^{p+1} \% m = (2 \cdot 2^p) \% m = ((2^m) \cdot (2^p \% m)) \% m
\]

by induction, as it holds for \(p \)

\[
= (2 \cdot 2^p \% k) \% m,
\]

by induction, as \(p \% k + 1 \leq k \leq p \)

\[
= 2^{(p+1) \% k} = 2^{(p+1) \% k}.
\]

QED

If \(k = 1 \), then \(m = 2^k - 1 = 1 \) and \(2^p \% 1 = 0 \neq 2^0 \% 1 = 2^0 = 1 \). So \(k \geq 2 \) is required.

Note that various steps in the proof also rely on \(k > 1 \).

7.2 Implementation

T258 characteristic polynomial degrees are

```cpp
const int rng::CPd[5] = { 63, 55, 52, 47, 41 };
```

Only the polynomials for \(2^0 \) through \(2^{62}, 2^{54}, 2^{51}, 2^{46}, \) and \(2^{40} \), are required for the 5 LFSRs, respectively. Then any jump \(2^p \) for \(p = 0, \ldots, 2^{64} - 1 \) can be computed by

```cpp
rng& rng::jump(uz p) { // jump 2^p
    uz i, j, a[5] = { 0 };
    for(i=1; i<5; i++)
        for(j=0; j<i; j++)
            if(JP[p % CPd[j]][j] & i) a[j] ^= s[j];
    memcpy(s, a, 5*sizeof(uz));
    return *this;
}
```

Approved for public release; distribution is unlimited.
Any jump of size $k2^p$ can be computed by

```cpp
rng& rng::jumpk(uz k, uz p) { // jump $k*2^p$
    for(; k; k>>=1, p++) if(k & 1) jump(p);
    return *this;
}
```

which uses the binary representations $k = \sum_{i=0}^{m} b_i 2^i = b_m 2^m + \cdots + b_0 2^0$ and $k2^p = \sum_{i=0}^{m} b_i 2^{i+p} = b_m 2^{m+p} + \cdots + b_0 2^p$.

Increments for small (variable) and large (stream) jumps are

- static const int JS = 86; // log_2 (small jump)
- static const int JL = 172; // log_2 (large jump)

Stream k can be set up by

```cpp
rng *z[4];
for(int i=0; i<4; i++) {
    z[i] = new rng(seed);
    z[i]->jump(k, rng::JL).jump(i, rng::JS);
}
```

7.3 Jump Verification

These operators compare T258 state arrays.

```cpp
bool rng::operator!=(const rng &w) { // state inequality
    uz e = 0;
    for(int i=0; i<5; i++) e |= s[i] ^ w.s[i];
    return e;
}

bool rng::operator==(const rng &w) { // state equality
    return ! ( *this != w );
}
```

Then success of the following code verifies jump computations for the given seed for all jumps 2^p with $p = 0, 1, 2, 3, \ldots, p_{\text{max}}$.

```cpp
void Vjump(uz seed, uz pmax) { // inductive jump verification
    rng z0(seed), z1(seed); // T258 objects, same state
    cout << "Vjump(" << Px(seed) <<", " << dec << pmax << ": ");
```
if(z0.jump(0) != z1.t()) { // base
 cerr << "fail base check" << endl;
 exit(1);
}

for(uz p=1; p<=pmax; p++) // induction
 if(z0.init().jump(p) != z1.init().jump(p-1).jump(p-1)) {
 cerr << "fail induction check, p=" << dec << p << endl;
 exit(1);
 }
 cout << "for all p = /zero.alt2:" << pmax << " jump(p) == t^(2^p)" << endl;

This checks that jump(0) is a single transition t() and inductively that jump(p) is equivalent to 2 applications of jump(p-1), as $2^p = 2 \cdot 2^{p-1}$. Upon success, this establishes that jump(p) implements a jump of 2^p for $p = 0, 1, 2, 3, \ldots, p_{\text{max}}$.

8. SCR 2142

Released in 2015, SCR 2142 “Modernize Rn package to C++ and STL use” reimplements the RNG system in C++ and provides code cleanup.

The redundant old jump code (available as an option in SCR 2138) was removed, leaving only the new SCR 2138 code. From the SCR text:

For SCR2138, new jumping code was added, but the old jumping code was left in place because it was not understood that the new jumping code is able to provide the same functionality. The old jump code will be removed as part of this SCR as the Rn code is cleaned up.

SCR 2142 also suggests exploiting the Standard Template Library (STL):

Note that the C++ STL contains classes for random number generation and it is possible to adapt the T258 RNG (as a random number engine) for this use. The C++ STL contains a complete set of random distributions and it is highly desirable to use these instead of reimplementing all the distributions in MUVES when standard versions already exist. Therefore, use of the STL should be investigated as part of this SCR (both SCR2061 and SCR2105 will require C++11 and the C++11 STL).

The new C++11 standard library random number generation feature is exposed

Approved for public release; distribution is unlimited.
by including the `<random>` header. At this time, the MUVES development and distributions platforms do not provide C++11 compilers. So incorporation of the RNG system into the C++11 `<random>` library framework has been deferred.

9. Demonstration and Verification

The code t258.h in Section 9.1 is a complete C++ class implementation of T258 equivalent to the current SCR 2138 MUVES version with seeding, initialization, state transition t(), integer and real U(0,1) generators, and functions jump(p) and jumpk(k,p) for jumps of 2^p and $k2^p$, respectively, where p and k are 64-bit unsigned integers in the range $0, \ldots, 2^{64} - 1$.

The driver code in Section 9.2 implements the class in a working program. The driver uses a single seed, $0xd8940e83ec602c7b = 15606114568514841723$.

The function Vtab generates tables of integer and real output to demonstrate the stream and substream jumps used in MUVES. The resulting tables on pages 32 and 33 were provided to MUVES developers as a sanity check and were incorporated into MUVES unit testing.

The function Vjump verifies jump computation for $p = 0, \ldots, 236$. The largest jump possible in the current MUVES implementation has $k = 2^{64} - 1$ and $p = 172$, so $k2^p < 2^{64} \cdot 2^{172} = 2^{236}$. On success, one sees

$$V\text{jump}(0xd8940e83ec602c7b, 236): \text{for all } p = 0:236 \text{ jump}(p) = t^{(2^p)}$$

On failure, one sees either

$$V\text{jump}(0xd8940e83ec602c7b, 236): \text{fail base check}$$

if jump(0) is not the same as t(), or something like

$$V\text{jump}(0xd8940e83ec602c7b, 236): \text{fail induction check, } p=7$$

if jump(p).jump(p) is not the same as jump(p+1) for some p. The latter occurs if the transition call is removed from the initialization, as in SCR 1908.

Of course, success for a single seed is not proof. But similar code had no failure with billions of different random seeds, which is not proof either but provides reassurance that things are working.
Jump demonstration table, integer:

\[
V_{\text{tab}} (J) = J \cdot 2^{172} + K \cdot 2^{86}
\]

<table>
<thead>
<tr>
<th>n</th>
<th>J = 5</th>
<th>J = 6</th>
<th>J = 7</th>
<th>J = 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:
- Each column represents a value of \(K \)
- Each row represents a value of \(n \)
- \(J \) values are calculated using the formula \(J = 7 \cdot 2^{172} + K \cdot 2^{86} \)
- The table is based on the assumption that \(p \) and \(q \) are valid for the given context.
Jump demonstration table, real:

<table>
<thead>
<tr>
<th>n</th>
<th>K = 0</th>
<th>K = 1</th>
<th>K = 2</th>
<th>K = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2985214754497660</td>
<td>0.5533215435135878</td>
<td>0.3733650787109650</td>
<td>0.7271778518684470</td>
</tr>
<tr>
<td>2</td>
<td>0.4227658515581010</td>
<td>0.5914546861359178</td>
<td>0.5521108900443199</td>
<td>0.3091089448858068</td>
</tr>
<tr>
<td>3</td>
<td>0.5697420492610801</td>
<td>0.7262694453279232</td>
<td>0.6309739084623511</td>
<td>0.3335292243149025</td>
</tr>
<tr>
<td>4</td>
<td>0.63976457568682527</td>
<td>0.8190130511171645</td>
<td>0.7260793043524311</td>
<td>0.3808333898922151</td>
</tr>
<tr>
<td>5</td>
<td>0.5193009492610801</td>
<td>0.6327295681785611</td>
<td>0.5632729568178561</td>
<td>0.208373751943116</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>K = 0</th>
<th>K = 1</th>
<th>K = 2</th>
<th>K = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5057592851265190</td>
<td>0.6147738265027652</td>
<td>0.5496024460342430</td>
<td>0.7086213705105448</td>
</tr>
<tr>
<td>2</td>
<td>0.8514670054428086</td>
<td>0.8056706747037416</td>
<td>0.7493998487953588</td>
<td>0.34631150548538</td>
</tr>
<tr>
<td>3</td>
<td>0.9066455851530885</td>
<td>0.8968028693715689</td>
<td>0.8401856953873755</td>
<td>0.4626120757175254</td>
</tr>
<tr>
<td>4</td>
<td>0.8011939121880528</td>
<td>0.8055797581705878</td>
<td>0.3365798017919254</td>
<td>0.691450529662046</td>
</tr>
<tr>
<td>5</td>
<td>0.32214916856587590</td>
<td>0.7343208133320340</td>
<td>0.3059111728404138</td>
<td>0.6182168114554359</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>K = 0</th>
<th>K = 1</th>
<th>K = 2</th>
<th>K = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0471899299471719</td>
<td>0.3986013540425300</td>
<td>0.6850691847459924</td>
<td>0.4953327913844295</td>
</tr>
<tr>
<td>2</td>
<td>0.5267263474988869</td>
<td>0.5785796015786239</td>
<td>0.3748360663579823</td>
<td>0.7802136705105448</td>
</tr>
<tr>
<td>3</td>
<td>0.3837128053522065</td>
<td>0.6877440717806484</td>
<td>0.8076001346086169</td>
<td>0.349554773298113</td>
</tr>
<tr>
<td>4</td>
<td>0.886765393978253</td>
<td>0.1585036274255533</td>
<td>0.1430469305342050</td>
<td>0.69742682284373</td>
</tr>
<tr>
<td>5</td>
<td>0.9085370114369585</td>
<td>0.2894573868520388</td>
<td>0.6155230210928202</td>
<td>0.4459162491806613</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>K = 0</th>
<th>K = 1</th>
<th>K = 2</th>
<th>K = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.6777254902909791</td>
<td>0.6501971176463415</td>
<td>0.9175734446451357</td>
<td>0.08833539976063</td>
</tr>
<tr>
<td>2</td>
<td>0.4426719045451246</td>
<td>0.7473840882779794</td>
<td>0.7043913710419934</td>
<td>0.476920954309674</td>
</tr>
<tr>
<td>3</td>
<td>0.7855826197940068</td>
<td>0.6757825799800550</td>
<td>0.9905042955958310</td>
<td>0.511514324208419</td>
</tr>
<tr>
<td>4</td>
<td>0.3059981322727549</td>
<td>0.3127235609434382</td>
<td>0.4321647727528529</td>
<td>0.355942866202432</td>
</tr>
<tr>
<td>5</td>
<td>0.0326120199480846</td>
<td>0.8919283513749614</td>
<td>0.5718934782007183</td>
<td>0.7160423702180720</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>K = 0</th>
<th>K = 1</th>
<th>K = 2</th>
<th>K = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.983416152038755</td>
<td>0.8918538052248174</td>
<td>0.935216637990679</td>
<td>0.753257026729011</td>
</tr>
<tr>
<td>2</td>
<td>0.4281479838744526</td>
<td>0.7293909059592890</td>
<td>0.2221815672907007</td>
<td>0.5651877439869093</td>
</tr>
<tr>
<td>3</td>
<td>0.3869695454364364</td>
<td>0.4593529694445435</td>
<td>0.4571047161808656</td>
<td>0.9279065926914000</td>
</tr>
<tr>
<td>4</td>
<td>0.9972041589918688</td>
<td>0.4266355180268030</td>
<td>0.5680244838352208</td>
<td>0.582331281275650</td>
</tr>
<tr>
<td>5</td>
<td>0.43119435969865</td>
<td>0.5740132792779360</td>
<td>0.3088625144797826</td>
<td>0.78295930785487</td>
</tr>
</tbody>
</table>

Approved for public release; distribution is unlimited.
9.1 T258 Class Code

typedef uint64_t uz; // 64-bit unsigned integer

class rng { // T258
 public:
 rng(uz seed); // constructor
 rng& init(); // (re)initialize
 rng& t(); // state transition
 rng& jump(uz p); // jump 2^p
 rng& jumpk(uz k, uz p); // jump k*2^p
 uz gen(); // integer generator
 double u01(); // U(0,1) generator

 private:
 uz s[5]; // LFSR state array
 uz seed; // this.seed
 void seedx(void); // set seed
 static const int CPd[5]; // CP degrees
 static const uz JP[63][5]; // jump polynomials

};

rng::rng(uz seed) { // constructor
 this->seed = seed;
 init();
}

rng& rng::init() { // initialize
 seedx();
 t();
 return *this;
}

void rng::seedx() { // set LFSR seeds
 uz c = 0x27b026687b0b0fd, d = 0x8910e7b0e7b0eb;
 do s[0] = c*seed+d; while(s[0] < 0x8000002);
 do s[1] = c*s[0]+d; while(s[1] < 0x800000);
 do s[2] = c*s[1]+d; while(s[2] < 0x800000);
 do s[3] = c*s[2]+d; while(s[3] < 0x800000);
 do s[4] = c*s[3]+d; while(s[4] < 0x800000);
}

rng& rng::t() { // T258: C \(s^q\) k-s // k
 s[0] = ((s[0] & -0x8000002) << 10) ^ ((s[0] & -0x8000002) >> 53) ^ (s[0] & -0x8000002) >> 23; // 52
 return *this;
}

rng& rng::jump(uz p) { // jump 2^p
 uz i, j, a[5] = { 0 }, k;
 for(i=1; i<=5; i++)
 for(j=0; j<i; j++)
 if(JP[p % CPd[i]][j] & 1) a[j] ^= s[j];
 memcpy(s, a, 5*sizeof(uz));
 return *this;
}

rng& rng::jumpk(uz k, uz p) { // jump k*2^p
 for(k; k++; if(k & 1) jump(p);
 return *this;
}

uz rng::gen() { // 64-bit integer
 t();
}

double rng::u01() { // U(0,1)
 uz z;
 const static double d = 1.0/(1UL<<53);
 do z = gen() >> 11; while(!z);
 return d * z;
}
bool rng::operator!=(const rng &w) { // state inequality
 for(int i=0; i<5; i++) e[i] = s[i] * w.s[i];
 return e;
}

bool rng::operator==(const rng &w) { // state equality
 return !(*this == w);
}

const int rng::CPd[5] = { 63, 53, 52, 47, 41 }; // CP degrees

const int rng::JP[63][5] = { // JP[p][i] = 2^p jump polynomial for LFSR[i]
 {0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000},
 {0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000}
};

return e;
#include <fstream>
#include <sstream>
#include <cstdlib>
#include <cstring>
#include <unistd.h>
#include <stdint.h>
#include "t258.h"

using namespace std;

#define Px(x) "0x" << setw(16) << setfill('0') << hex << (x)
#define Pu(x) setw(18) << setprecision(16) << setfill('0') << fixed << dec << (x)

void Vtab(uz seed, bool qz) {
 int NL = 8, NS = 4, n = 5; // # large, small, sample
 rng *z[NL][NS]; // stream and substream rngs
 for(int i=0; i<NL; i++) // large jumps
 for(int j=0; j<NS; j++) { // small jumps
 z[i][j] = new rng(seed);
 z[i][j]->init().jumpk(i, rng::JL).jumpk(j, rng::JS);
 }
 cout << "Vtab(" << Px(seed) << ", " << (qz ? "uz": "u") << "); " << "jump = J*2^" << dec << rng::JL << " + K*2^" << rng::JS
 << endl;
 for(int i=0; i<NL; i++) { // large jumps
 cout << setw(22) << setfill('0') << "J = " << setw(3) << i << endl;
 for(int j=0; j<NS; j++)
 cout << Px(z[i][j]->gen()); // integer
 }
 cout << "for all i = 0:5, j=0:4:" << endl;
}

void Vjump(uz seed, uz pmax) { // inductive jump verification
 rng z0(seed), z1(seed); // T258 objects, same state
 cout << "Vjump(" << Px(seed) << ", " << dec << pmax << "); " << endl;
 if(z0.jump() != z1.t()) { // base
 cerr << "fail base check" << endl;
 exit(1);
 }
 for(uz p=1; p<=pmax; p++) // induction
 if(z0.init().jump(p) != z1.init().jump(p-1).jump(p-1))
 cerr << "fail induction check, p=" << dec << p << endl;
 cout << "for all p = 0:" << pmax << " jump(p) == t\(^{(2^p)})" << endl;
}

int main (int argc , char* argv[]) {
 uz seed = 0xd894e83ec02c7b; // rng seed default
 uz pmax = 172 + 64;
 Vtab(seed, true);
 Vtab(seed, false);
 Vjump(seed, pmax);
}

36
10. Conclusions and Recommendations

The T258 RNG passes tests for randomness and provides high-resolution 53-bit random real numbers.

T258 class RNG objects are intrinsically thread-safe in the sense that instances do not interact and are thus computationally independent. But this is not sufficient for statistical independence.

The enumeration of threads and initialization of thread RNG streams at offsets of 2^{172} ensures that the 2^{86} available threads are statistically independent and that computation are easily reproducible. Within threads, increments of 2^{86} provide statistical independence of 2^{86} stochastic quantities with stream length 2^{86}. Verification of the jump computations guarantees these independence properties.

When C++11 compilers become widely available, a T258 engine can be incorporated into the C++11 `<random>` library framework. Care must be taken to preserve the independence properties. Otherwise, as noted in Section 1, no sets of quantities within or among threads can be claimed to be independent random samples.
11. References

1. Kernigan BW, Ritchie DM. The C programming language. 2nd ed. Upper Sad-
dle River (NJ): Prentice Hall; 1988. 3

2. Collins JC. Testing, selection, and implementation of random number gener-
tors. Aberdeen Proving Ground (MD): Army Research Laboratory (US); 2008
Jul. Report No.: ARL-TR-4498. 3, 8, 11, 12, 13

3. L’Ecuyer P. Maximally equidistributed combined Tausworthe generators.

4. L’Ecuyer P. Tables of maximally equidistributed combined LFSR generators.

5. L’Ecuyer P. Tables of linear congruential generators of different sizes and good
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDF</td>
<td>cumulative distribution function</td>
</tr>
<tr>
<td>CP</td>
<td>characteristic polynomial</td>
</tr>
<tr>
<td>LCG</td>
<td>linear congruential generator</td>
</tr>
<tr>
<td>LFSR</td>
<td>linear feedback shift register</td>
</tr>
<tr>
<td>QT</td>
<td>QuickTaus</td>
</tr>
<tr>
<td>RNG</td>
<td>random number generator</td>
</tr>
<tr>
<td>STL</td>
<td>Standard Template Library</td>
</tr>
<tr>
<td>1</td>
<td>DEFENSE TECHNICAL INFORMATION CTR</td>
</tr>
<tr>
<td></td>
<td>DTIC OCA</td>
</tr>
<tr>
<td>2</td>
<td>DIRECTOR US ARMY RESEARCH LAB</td>
</tr>
<tr>
<td></td>
<td>RDRL CIO L</td>
</tr>
<tr>
<td></td>
<td>IMAL HRA MAIL & RECORDS MGMT</td>
</tr>
<tr>
<td>1</td>
<td>GOVT PRINTG OFC</td>
</tr>
<tr>
<td></td>
<td>A MALHOTRA</td>
</tr>
<tr>
<td>1</td>
<td>DIR US ARMY EVALUATION CTR</td>
</tr>
<tr>
<td></td>
<td>HQ</td>
</tr>
<tr>
<td></td>
<td>TEAE SV</td>
</tr>
<tr>
<td></td>
<td>P A THOMPSON</td>
</tr>
<tr>
<td>1</td>
<td>DIR USARL</td>
</tr>
<tr>
<td></td>
<td>RDRL SL</td>
</tr>
<tr>
<td></td>
<td>P BAKER</td>
</tr>
<tr>
<td>21</td>
<td>DIR USARL</td>
</tr>
<tr>
<td></td>
<td>RDRL DPW</td>
</tr>
<tr>
<td></td>
<td>T HOLDREN</td>
</tr>
<tr>
<td></td>
<td>RDRL SL</td>
</tr>
<tr>
<td></td>
<td>D BAYLOR</td>
</tr>
<tr>
<td></td>
<td>P DISALVO</td>
</tr>
<tr>
<td></td>
<td>T STADTERMAN</td>
</tr>
<tr>
<td></td>
<td>RDRL SLB</td>
</tr>
<tr>
<td></td>
<td>R BOWEN</td>
</tr>
<tr>
<td></td>
<td>G MANNIX</td>
</tr>
<tr>
<td></td>
<td>RDRL SLB D</td>
</tr>
<tr>
<td></td>
<td>J COLLINS</td>
</tr>
<tr>
<td></td>
<td>J EDWARDS</td>
</tr>
<tr>
<td></td>
<td>R GROTE</td>
</tr>
<tr>
<td></td>
<td>L MOSS</td>
</tr>
<tr>
<td></td>
<td>E SNYDER</td>
</tr>
<tr>
<td></td>
<td>RDRL SLB E</td>
</tr>
<tr>
<td></td>
<td>M MAHAFFEY</td>
</tr>
<tr>
<td></td>
<td>RDRL SLB G</td>
</tr>
<tr>
<td></td>
<td>N ELDREDGE</td>
</tr>
<tr>
<td></td>
<td>RDRL SLB S</td>
</tr>
<tr>
<td></td>
<td>R DIBELKA</td>
</tr>
<tr>
<td></td>
<td>C KENNEDY</td>
</tr>
<tr>
<td></td>
<td>D LYNCH</td>
</tr>
<tr>
<td></td>
<td>M PERRY</td>
</tr>
<tr>
<td></td>
<td>R SAUCIER</td>
</tr>
<tr>
<td></td>
<td>G SAUERBORN</td>
</tr>
<tr>
<td></td>
<td>RDRL SLB W</td>
</tr>
<tr>
<td></td>
<td>S SNEAD</td>
</tr>
<tr>
<td></td>
<td>RDRL SLE</td>
</tr>
<tr>
<td></td>
<td>R FLORES</td>
</tr>
</tbody>
</table>