Metabolic and Epigenetic Interactions Regulate Vascular Phenotypic Change and Maintenance in Pulmonary Hypertension

Kurt Stenmark, MD
E-Mail:kurt.stenmark@ucdenver.edu

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Colorado Denver
12700 E 19th Ave B133
Aurora, CO 80045-2507

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited

14. ABSTRACT

Changes in metabolism have been suggested to contribute to the aberrant phenotype of vascular cells including fibroblasts in pulmonary hypertension (PH). We tested the hypothesis that metabolic reprogramming to aerobic glycolysis is a critical adaptation of fibroblasts in the hypertensive vessel wall that drives proliferative and pro-inflammatory activation through a mechanism involving increased activity of the NADH-sensitive transcriptional co-repressor C-terminal binding protein 1 (CtBP1).

Using fluorescence-lifetime imaging and mass spectrometry-based metabolomics we found adventitial fibroblasts from animals and humans with severe PH (termed PH-Fibs) displayed aerobic glycolysis and increased free NADH when cultured under normoxia. We documented increased expression of CtBP1 in vivo and in vitro in fibroblasts within or from the pulmonary adventitia of humans and animals with PH. Decreasing NADH pharmacologically with a novel inhibitor of CtBP1, 4-methylthio-2-oxybutyric acid (MTOB), or blocking CtBP1 using siRNA attenuated proliferation, corrected the glycolytic reprogramming phenotype of PH-Fibs, and augmented transcription of anti-proliferative, pro-apoptotic, and anti-inflammatory genes. Treatment of hypoxic mice with MTOB decreased glycolysis, attenuated proliferation, and inflammation and reduced remodeling in the distal pulmonary vasculature. CtBP1 is thus a critical factor linking changes in cell metabolism to cell phenotype in PH and a potential therapeutic target.

15. SUBJECT TERMS

Pulmonary hypertension, hypoxia, chronic obstructive pulmonary disease, metabolism, fibroblasts, epigenetic regulation, miR-124, polypyrimidine tract-binding protein 1, alternative splicing, pyruvate kinase, glycolysis, proliferation, inflammation, CtBP1, HDAC inhibitor.
Table of Contents

Page

1. Introduction... 4

2. Keywords.. 4

3. Accomplishments... 5

4. Impact.. 10

5. Changes/Problems.. 11

6. Products.. 11

7. Participants & Other Collaborating Organizations... 12

8. Special Reporting Requirements... 13

9. Appendices... 13
1. INTRODUCTION

Despite recent advances in diagnosis and treatment, pulmonary hypertension (PH) remains a devastating disease with high mortality affecting both adult and pediatric patients. While it can arise for unknown (idiopathic) or genetic reasons, it is more frequently associated with chronic lung diseases such as Chronic Obstructive Pulmonary Disease (COPD), pulmonary fibrosis, obesity, and viral infections, disorders that are very prevalent among veterans. A lack of understanding of the factors that cause PH in patients with chronic lung disease has limited the therapeutic options for these patients. Notable is the fact that though some progress has been made in the treatment of patients with idiopathic PAH, none of the drugs shown to be useful in these patients have shown any benefit in patients with chronic hypoxic lung diseases, such as COPD, or lung fibrosis.

Pulmonary hypertension, in the aforementioned chronic lung diseases, is generally believed to be hypoxic in origin. However, PH in these patients is often irreversible or only minimally reversible with supplemental oxygen. This may be due to structural changes in the lung blood vessels in these patients. These vessels exhibit thickening and fibrotic changes due to excessive proliferation and resistance to normal senescence of resident pulmonary vascular wall cells. Recent studies also suggest that an inflammatory mechanism plays a significant role in the pathogenesis of these forms of PH. Interestingly, cells in the hypertensive lung blood vessels, including the ones we are proposing to study, endothelial cells and fibroblasts, have recently been shown to exhibit many features of cancer cells including excessive proliferation, resistance to death, and a hyper-inflammatory phenotype. It has recently been suggested that cancer cells exhibiting these same abnormal functional characteristics also exhibit dramatic changes in their metabolism and it is these metabolic changes that are the principle cause of all the abnormal cell characteristics. In this proposal, we test the hypothesis that metabolic abnormalities similar to those observed in cancer cells, exist in cells of the pulmonary vasculature and that they control the proliferative and inflammatory behavior of cells. Importantly, we also propose that these metabolic abnormalities can be targeted with specific pharmacologic therapies to reverse the cell abnormalities and mitigate pulmonary hypertension.

We propose a series of experiments, which will allow us to determine precisely how the metabolic abnormalities arise, how they direct the abnormalities of cell phenotype that contribute directly to PH, and lastly how we can interrupt this process to achieve better outcomes. We believe these studies will lay the groundwork for a new treatment strategy that targets multiple molecular abnormalities in PH simultaneously and thus, we speculate, will be potentially more effective and achieve greater benefits than the current therapeutic approaches. We also believe these studies will open the door to potential new diagnostics to assess the disease progression as well as responses to therapy.

PH is a prevalent co-morbid condition that significantly worsens morbidity and mortality in patients with a wide variety of disorders, from those who survive acute lung injury to those with pulmonary fibrosis or COPD. Identifying improved treatment strategies for these patients is our long-term goal. Based on existing data, we hypothesized that vascular remodeling in PH results from histone deacetylase (HDAC)-mediated epigenetic modifications in adventitial fibroblasts, which alter expression of miR-124 and poly pyrimidine tract binding protein 1 (PTBP1) to result in sustained metabolic changes (aerobic glycolysis) that control the activated, pro-inflammatory phenotype of fibroblasts from the pulmonary hypertensive vessel wall (PH-Fibs). The long-term goals of our research are: 1) define the mechanisms controlling metabolic abnormalities in PH-Fibs that result in persistence of inflammation in PH, and 2) define whether HDAC inhibition can abrogate metabolic abnormalities and thus sustained pro-inflammatory activation in PH-Fibs, and reverse the PH process and 3) determine if we can define, using metabolomic approaches, specific metabolites that will be useful in diagnosis, assessment of severity, and responses to treatment in PH.

2. KEYWORDS

Pulmonary hypertension, hypoxia, chronic obstructive pulmonary disease, metabolism, fibroblasts, epigenetic regulation, miR-124, poly pyrimidine tract-binding protein 1, alternative splicing, pyruvate kinase, glycolysis, proliferation, inflammation, C-terminal binding protein 1, heme oxygenase 1, HDAC inhibitor.
3. ACCOMPLISHMENTS

Major Goal 1: Define the metabolic profile of pulmonary hypertensive fibroblasts (bovine and human) compared to controls.

What was accomplished under this goal?

We wanted to begin the project by defining in depth the metabolic reprogramming that takes place in cells in the pulmonary hypertensive vessel as we hypothesize that these changes are directly involved in controlling the changes in proliferation and inflammation that characterize vascular remodeling in pulmonary hypertension (PH). We started by performing RNA-seq analysis to examine differentially regulated genes in PH vs. control (CO) fibroblasts. RNA-seq analysis elucidated over 1000 differentially regulated genes in PH-Fibs compared to CO-Fibs. Glycolysis/gluconeogenesis and pyruvate metabolism were identified as two of the most significantly upregulated pathways in data set (Table 1 and Supplemental Figure 2A in the publication by M. Li et al., Circulation, 2016, Appendix 1). We identified upregulation of gene coding for enzymes and transporters involved in glucose lactate catabolism in PH-Fibs (Table 2, M. Li et al., Circulation, 2016). Validation by RT-PCR analysis confirmed increased gene expression of the glycolytic genes in both human and PH-Fibs relative to control fibroblasts. Upregulation of the GLUT1 protein was observed in situ the adventitia of hypoxic hypertensive calves by immunofluorescence (Fig. 1C, Li et al., Circulation, 2016, Appendix 2).

To extensively corroborate the transcriptomic results, steady state and flux tracing experiments were performed via Ultra-High Pressure Liquid Chromatography-Mass Spectrometry (UHPLC-MS) by incubating CO and PH-Fibs with U-13C-glucose. Principal component analysis of metabolomics data revealed distinct metabolic phenotypes (metabotypes) for PH-fibroblasts and controls. Metabotypes of bovine PH-fibroblasts overlapped with the human counterparts, underpinning the validity of the animal model.

PH-fibroblasts were characterized by increased glucose uptake and lactate generation, and accumulation of glycolytic intermediates (Fig. 1). Decreased pyruvate export to the mitochondria and accumulation of metabolites of the pentose phosphate pathway were observed, consistent with the necessity to generate reducing equivalents (NADPH) to recycle oxidized glutathione. Indeed, increased levels of oxidized glutathione, impaired GSH/GSSG ratios, increased ROS levels (DCF and HSP33-FRET imaging) were observed in PH-fibroblasts. Increased fluxes through the non-oxidative phase of the pentose phosphate pathway and accumulation of products of lipid anabolism are consistent with the necessity to synthesize new DNA and cell membrane in proliferating PH-fibroblasts (Fig. 1).

Glutamine uptake was more sustained in PH fibroblasts, as determined by the ratios of steady state levels of the amino acid in the supernatants of cultured cells vs. controls. PH-fibroblasts mostly used glutamine to generate glutamate, both to synthesize reduced glutathione (to partially counteract oxidative stress) and fuel the Krebs cycle through the generation of alpha-ketoglutarate. However, increased oxidative stress affected oxygen consumption rates at the Complex I level, resulting in a metabolic blockade in late Krebs cycle reactions. On the other hand, alpha-ketoglutarate/citrate ratios could be interpreted on the basis of the mass action law, which suggests, together with the accumulation in 2-hydroxyglutarate, potential reductive carboxylation fluxes from glutamine in mitochondria. Data also suggest redox-dependent regulation of oxoglutarate dehydrogenase activity and ongoing substrate level phosphorylation to generate minimum levels of nucleoside triphosphates in mitochondria independently from the electron transport chain (Figure B). These results were published in two recent papers) L. Plecita’-Hlavata et al., Am. J. Resp. Cell Mol. Biol., Dec. 2015 (appendix reference 2) and M. Li et al., Circulation, Sept. 2016 (appendix reference 1).
Major Goal 2: Define the signaling pathways through which metabolic dysregulation and pro-inflammatory activation of PH-Fibs contributes to the recruitment, retention, and activation of macrophages.

What was accomplished under this goal?
Our findings of glycolytic programming and consistently increased free NADH in PH-Fibs were consistent with observations in cancer cells where C-terminal binding protein 1 (CtBP1), a transcriptional co-repressor, which specifically binds genes involved in regulating proliferation, apoptosis, and inflammation is increased and contributes to their hyperproliferative apoptosis resistant phenotype. Our studies show, for the first time, upregulation in vivo in cells of the adventitia and in cultured adventitial fibroblasts of CtBP1 in a non-cancerous disease condition. We performed extensive studies using both siCtBP1 and a novel pharmacologic inhibitor of CtBP1, 4-Methylthio-2-oxobuteric acid (MTOB) and demonstrated that CtBP1 controlled expression of the cyclin-dependent genes p15, p21, the pro-apoptotic regulators NOXA and PERP, and also attenuated proliferation, corrected the glycolytic reprogramming of PH-Fibs and augmented transcription of the anti-inflammatory gene HMOX1 (Fig. 2).
Figure 2

CtBP1 regulates the expression of genes involved in proliferation, cell survival and metabolic state in adventitial fibroblasts. Inhibition of CtBP1 by siRNA (50nM, 72hrs) or by MTOB (2.5mM, 48hrs) (A) significantly attenuated proliferation of both bovine and human PH-Fibs (n=3-6, SCR=scrambled. *, P <0.05; **, P <0.01; ***, P <0.001, compared to scrambled siRNA treated PH-Fibs-repeated measures ANOVA), (B) restored anti-proliferative gene (p21, p15) and pro-apoptosis gene (NOXA, PERP) expression. (n=3-6, *, P <0.05; **, P <0.01; ***, P <0.001, compared to scrambled siRNA treated or untreated PH-Fibs). MS metabolomic analysis (n=3) revealed that siCtBP1 and MTOB (C, D) altered the overall metabolic status of both bovine and human PH-Fibs and (E, F) showed the tendency to decrease the levels of metabolites involved in proliferative anabolic pathways (e.g. energy metabolism – AMP, ADP, orthophosphate and diphasphate; nucleotide biosynthesis, and antioxidant reactions – amino acids, glutamine/ glutamate, and pentose phosphate pathway intermediates), consistent with a less proliferative phenotype.

In addition, using Chip analysis we demonstrated for the first time that CtBP1 directly binds the HMOX1 promoter thus explaining, in part, how changes in metabolism can directly regulate the inflammatory state of the cell. Most intriguingly we found that treatment of hypoxic mice with MTOB decreased glycolysis and expression of inflammatory genes, attenuated proliferation, and suppressed macrophage numbers in remodeling in the distal pulmonary vasculature (Fig. 3).
Figure 3: Hypoxia exposure induced and MTOB treatment inhibited proliferation, inflammation and vascular remodeling in mouse lung. (A) Four day hypoxia exposure significantly increased cyclin-dependet kinase 1 (CDK1) mRNA expression in mouse whole lung tissues compared to their normoxic contols; MTOB treatment significantly decreased CDK1 levels. (B) Ki67 immunoflurescent staning (red=ki67, green= -SMC, blue=DAPI, scale bar=50um) demonstrated that hypoxia increased and MTOB decreased cell proliferation in mouse lung tissue. (C) Four day hypoxia exposure significantly increased MCP1 mRNA expression in mouse whole lung tissues compared to their normoxic contols, and MTOB treatment significantly decreased the MCP1 level. (D) Consistent with qPCR data for MCP1, staining of the monocyte/macrophage marker, CD68, showed hypoxia increased, and MTOB decreased, recruitment of monocytes/macrophage (red=CD68, green=elastin, blue=DAPI, scale bar=50um). (E) Four day hypoxia exposure significantly increased tenascin C (TN-C), an extra-cellular matrix marker, mRNA expression in mouse whole lung tissues compared to their normoxic contols, and MTOB treatment significantly decreased the TN-C level. (F) Accordingly, TN-C staining demonstrated MTOB attenuated vascular remodeling induced by hypoxia exposure (red=TN-C, green=elastin, blue=DAPI, scale bar=50um) (n=5, *** , P<0.001, compared to normoxic controls. #, P<0.05; ##, P< 0.01 compared to hypoxic mouse lungs). (G) CtBP1 links metabolic changes to gene expression and contributes to the development of pulmonary hypertension: pulmonary artery adventitial fibroblast cells isolated from chronic hypoxia induced pulmonary hypertensive cow model and patients with pulmonary hypertension (PH-Fibs) and maintained under normoxic conditions demonstrated a perpetuated pro-inflammatory and hyper-proliferative phenotype, as well as a metabolic reprograming towards aerobic glycolysis and subsequently increased NADH levels. The transcriptional co-repressor activity of CtBP1 is stimulated as a result of elevated NADH level. CtBP1 then enhances cell proliferation via transcriptional repression of cell cycle inhibitors P21, P15, and promotes cell survival through repression of pro-apoptotic genes (NOXA and PERP). CtBP1 also induces inflammation through the repression of anti-inflammatory gene HMOX1. Reducing NADHs level by 2DG or pyruvate can inhibit proliferation in PH-Fibs and augment the anti-inflammatory phenotype of PH-Fibs. Targeting CtBP1 at the RNA level via siRNA or at the protein level by MTOB can not only inhibit proliferation and augment anti-inflammatory phenotype of PH-Fibs, but can also rescue cell metabolic state.

The entirety of this data was recently published in Circulation (appendix 1).

Major Goal 3: Define the mechanisms by which the transcriptional splicing factor PTBP1 regulates PKM1 to PKM2 switching and thus the metabolic status of pulmonary hypertensive fibroblasts and further to determine whether restoring PTBP1 to normal would abrogate metabolic dysfunction and normalize the proliferative and inflammatory characteristics of PH-Fibs.

What was accomplished under this goal?

In previous experiments we have shown that in the PH-Fibs described above that there is a significant decrease in miR124 expression (D. Wang et al., MicroRNA-124 controls the proliferative, migratory, and
inflammatory phenotypes of pulmonary vascular fibroblasts. Circ. Res., 2014, p67-78). We further showed that miR124 regulates PTBP1 expression. Furthermore, we previously established that PH-Fibs (both bovine and human) have increased Class 1 HDAC expression and that HDAC inhibitors (HDACi) restore miR124 and decrease PTBP1 expression. In cancer cells it has been established that increases in the expression of PTBP1 promotes switching of pyruvate kinase isozyme expression from M1(PKM1) to (PKM2), which favors aerobic glycolysis. We have now performed extensive experiments testing the hypothesis that 1) high PTBP1 expression, as a result of decreased miR124 expression, mechanistically underlies the elevated PKM2 to PKM1 ratio and thus aerobic glycolysis and that normalizing PTBP1 or miR124 or treating cells with HDAC inhibitors would abrogate the metabolic and functional changes.

Hyper-proliferative, apoptosis-resistant, pro-inflammatory PH-Fibs exhibit an altered metabolic status that favors aerobic glycolysis (high glucose uptake, increased PDH phosphorylation and increased lactate production) and constitutive mitochondrial alterations (mitochondrial hyperpolarization, retarded oxidative phosphorylation, and increased ROS production). In PH-Fibs, PTBP1 knockdown, restoration of miR124 or treatment with HDACi – all resulted in: 1) Reversed glycolysis reprogramming to normal (decreased metabolites, α-Ketoglutarate, GSH, Glutamine…and decreased lactate production); 2) rescued mitochondria abnormalities towards to normal (enhanced maximal respiratory capacity, decreased mitochondrial membrane potential and decreased ROS production); 3) significantly reduced cell proliferation. A small molecule, PKM2 activator inhibited lactate production and cell proliferation by promoting PKM2 tetramer formation (Fig. 4).

Fig. 4

Fig. 4: MiR-124 overexpression and PTBP1 silencing regulate the metabolic phenotype in PH-Fibs. Steady state UHPLC- MS demonstrated decreased glucose uptake and lactate production 48hrs post-transfection of miR-124 mimic and siPTBP1 in PH-Fibs (A, bovine; B, human). MS metabolomic analysis revealed that miR-124 mimic and siPTBP1 altered the overall metabolic status of both...
bovine (C) and human (E) toward to CO-Fibs. Heat-map generated from MS showed the tendency to decrease the levels of metabolites involved in glycolysis and mitochondrial oxidative phosphorylation 48hrs post-transfection with miR-124 mimic and siPTBP1. Each column represents an individual samples from each group (D, bovine; F, human). (n=3, *P<0.05, **P<0.01, ***P<0.001, compared to scrambled siRNA).

At present, we can conclude that in PH-Fibs, PTBP1 silencing, miR-124 restoration, or treatment with HDACi can reverse the overall metabolic state of the cells and result in normalization of proliferative and inflammatory capabilities. These data have been presented in abstract form (appendix #3) and will be submitted for publication by November 1, 2016.

What opportunity for training and professional development has the project provided?

Nothing to report

How were the results disseminated to communities of interest?

What do you plan to do during the next reporting period to accomplish the goals?

We will finish the experiments needed to submit a manuscript on Major Goal 3, described above. We will also begin working on our next major goal, which is to identify specific epigenetic changes in the histone acetylation status of miR-124 and/or miR processing genes in PH-Fibs that lead to decreased expression of miR-124. Lastly, we will obtain IRB approval to obtain blood from human subjects to identify glycolytic metabolites (biomarkers and serum) that will aid in the diagnosis portion of disease severity in responses to therapy.

4. IMPACT

The impact on the development of the principal discipline(s) of the project:

In pulmonary hypertension, little is known about the molecular mechanisms that link the metabolic state of cells to gene transcription and functional changes in their phenotype. We show that CtBP1, a transcription factor that is activated by increased free NADH, acts as a molecular linker to drive the proliferative and pro-inflammatory phenotype of adventitial fibroblasts within the hypertensive vessel wall.

This work supports the novel hypothesis that at least some forms or stage of pulmonary hypertension are associated with the rewiring of cellular metabolic programs that use alterations in the cellular redox state to control the activity of CtBP1, which then coordinates expression of a network of genes implicated in cell proliferation, apoptosis resistance, and inflammation. This changes the way we think about how functional changes in cells are initiated and maintained.
We also found that treatment of fibroblasts from the pulmonary hypertensive vessel and of hypoxic mice with a pharmacological inhibitor of CtBP1, MTOB, leads to a normalization of proliferation, inflammation, and the aberrant metabolic signaling. Our results suggest that targeting this metabolic sensor may be a more specific approach to treating metabolic abnormalities in pulmonary hypertension than use of more global metabolic inhibitors.

It will be important in future studies to determine whether inhibition of CyBP1 can be combined with other vasodilating drugs to effect reversal of established severe forms of pulmonary hypertension.

What was the impact on other disciplines?
Our findings regarding miR-124 and its regulation of the glycolytic phenotype of cells has now been extended by collaborative investigators of ours who show that similar abnormalities in miR-124 processing and in targets (PTBPI an subsequently PKM2) contribute to dysregulation of circulating endothelial progenitor cells in patients with idiopathic or hereditary PAH. These abnormalities in the behavior of endothelial cells have been shown not only in PH but also in other lung and cardiac fibrotic conditions. Thus, the impact of the original work proposed is having far reaching effects on the understanding of PH and lung fibrotic conditions that were not predicted at the time the experiments were proposed.

What was the impact on technology transfer?
Nothing to report

What was the impact on society beyond science and technology?
Nothing to report

5. CHANGES / PROBLEMS
Nothing to report

6. PRODUCTS
Publications, conference papers, and presentation
7. PARTICIPANTS / COLLABORATING ORGANIZATIONS

What individuals have worked on the project?

Kurt R. Stenmark, MD
 Identifier: 125823
 Nearest person month worked: 3
 Contributions to the project
 Stenmark oversaw experimental design, data collection, and data interpretation.
 Funding support
 P01 HL014985 - NHLBI
 1R01HL114887 - NHLBI
 1R01HL125642 - NHLBI

Hui Zhang, PhD
 Identifier: 245717
 Nearest person month worked: 8
 Contributions to the project
 Did all cell and molecular experiments provided in the report.
 Funding support
 NIH/NHLBI PPG – 5 P01 HL014985-40A1

Angelo D’alessandro, PhD
 Identifier: 264840
 Nearest person month worked: 2
 Contributions to the project
 Performed all ultra-high pressure liquid chromatography mass spectrometry analysis in human and bovine cells.
 Funding support
 No change

Mehdi Fini, MD
 Identifier:
 Nearest person month worked: 1
 Contributions to the project
 Consulting on the project and preparing regulatory documents for human tissue studies
 Funding support
 No change

CHENG JUN HU, PhD
 Identifier: 184956
 Nearest person month worked: 3
 Contributions to the project
 Worked with Hui Zhang to perform experiments aimed at understanding regulation of PCAM1/2 ratio changes and participated in experiments aimed at understanding miR-124 control of PTBP1 and PCAM1/2 splicing.
 Funding support
 No change

Flockton Amanda
 Identifier: 141862
 Nearest person month worked: 3
 Contributions to the project
 Technician – helped to perform all cell experiments
 Funding support
 No change
Brittany McKeon

Identifier: 211509
Nearest person month worked: 2
Contributions to the project
Technician – helped to perform all cell experiments
Funding support
No change

Min Li

Identifier: 184463
Nearest person month worked: 4
Contributions to the project
Technician – helped to perform cells characterization experiments
Funding support
none

Maria Frid

Identifier: 125931
Nearest person month worked: 1
Contributions to the project
Technician – helped to prepare ACURO and IACUC documentation
Funding support
none

Has there been a change in the active other support of the PD/PI(s) or senior/key personnel since the last reporting period?
No changes

What other organizations were involved as partners?
Nothing to report

8. SPECIAL REPORTING REQUIREMENTS
N/A

9. APPENDICES
Constitutive Reprogramming of Fibroblast Mitochondrial Metabolism in Pulmonary Hypertension

Lydie Plecitá-Hlavatá¹, Jan Tauber¹, Min Li², Hui Zhang²,³, Amanda R. Flockton², Soni Savai Pullamsetti⁴, Prakash Chelladurai⁴, Angelo D’Alessandro⁵, Karim C. El Kasmi⁶, Petr Ježek¹, and Kurt R. Stenmark²

¹Department of Membrane Transport Biophysics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; ²Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratory, University of Colorado, Denver, Colorado; ³Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China; ⁴Department of Lung Biology and Cardiovascular Pulmonary Research Laboratory, University of Colorado, Denver, Colorado; ⁵Biochemistry and Molecular Genetics, and ⁶Pediatric Gastroenterology, University of Colorado, Denver, Colorado

Abstract
Remodeling of the distal pulmonary artery wall is a characteristic feature of pulmonary hypertension (PH). In hypoxic PH, the most substantial pathologic changes occur in the adventitia. Here, there is marked fibroblast proliferation and profound macrophage accumulation. These PH fibroblasts (PH-Fibs) maintain a hyperproliferative, apoptotic-resistant, and proinflammatory phenotype in ex vivo culture. Considering that a similar phenotype is observed in cancer cells, where it has been associated, at least in part, with specific alterations in mitochondrial metabolism, we sought to define the state of mitochondrial metabolism in PH-Fibs. In PH-Fibs, pyruvate dehydrogenase was markedly inhibited, resulting in metabolism of pyruvate to lactate, thus consistent with a Warburg-like phenotype. In addition, mitochondrial bioenergetics were suppressed and mitochondrial fragmentation was increased in PH-Fibs. Most importantly, complex I activity was substantially decreased, which was associated with down-regulation of the accessory subunit nicotinamide adenine dinucleotide reduced dehydrogenase (ubiquinone) Fe-S protein 4 (NDUFS4). Owing to less-efficient ATP synthesis, mitochondria were hyperpolarized and mitochondrial superoxide production was increased. This pro-oxidative status was further augmented by simultaneous induction of cytosolic nicotinamide adenine dinucleotide phosphate reduced oxidase 4. Although acute and chronic exposure to hypoxia of adventitial fibroblasts from healthy control vessels induced increased glycolysis, it did not induce complex I deficiency as observed in PH-Fibs. This suggests that hypoxia alone is insufficient to induce NDUFS4 down-regulation and constitutive abnormalities in complex I. In conclusion, our study provides evidence that, in the pathogenesis of vascular remodeling in PH, alterations in fibroblast mitochondrial metabolism drive distinct changes in cellular behavior, which potentially occur independently of hypoxia.

Keywords: mitochondria; complex I; oxidative metabolism; pulmonary hypertension; adventitial fibroblasts
Clinical Relevance

Our study provides evidence that, in the pathogenesis of vascular remodeling in pulmonary hypertension (PH), alterations in fibroblast mitochondrial metabolism drive distinct changes in cellular behavior, which potentially occur independently of hypoxia. This brings new knowledge to the field of PH and its metabolic theory.

Strikingly, metabolic changes, resembling those observed in cancer, have also recently been reported in PH (1, 2, 4, 6, 7). These changes have been described to occur in smooth muscle cells (SMCs) (8), endothelial cells (7), and, recently, in fibroblasts (9). These observations support a metabolic hypothesis of PH whereby mitochondrial and cytosolic alterations drive a metabolic adaptation similar to that observed in cancer cells and referred to as Warburg metabolism (described originally for cancer cells, which reprogram metabolic pathways toward aerobic glycolysis to support high proliferation). Recent studies provide evidence that inflammatory activation of immune cells also involves metabolic adaptations that closely resemble those observed by Warburg (6). Therefore, the molecular and functional abnormalities seen in PH cells, including excessive proliferation, apoptosis resistance, and inflammation, might be closely linked to cellular reprogramming of metabolism (7).

Fibroblasts have been recognized to play a critical role within the microenvironment of the vasculature, where they detect and respond to a variety of local environmental stresses, and thereby initiate and coordinate pathophysiological tissue responses, including innate immune/proinflammatory functions (10–14). We have documented that, in both experimental hypoxic PH and human PH, the pulmonary artery adventitia harbors activated fibroblasts (hereafter termed PH-Fibs) with a hyperproliferative, apoptosis-resistant, and proinflammatory phenotype, which persists ex vivo over numerous passages in culture (15–19). Furthermore, in line with the paradigm that stromal cells play a critical role in initiation and perpetuation of vascular inflammation (14, 20–22), we have recently shown that PH-Fibs potently recruit, retain, and activate naïve macrophages through paracrine signaling (17, 23). However, at present, no studies have tested the hypothesis that abnormalities in mitochondrial metabolism drive the dramatic phenotypic changes observed in adventitial fibroblasts in PH, and even more importantly, if metabolic alterations can become imprinted and persist ex vivo.

Here, we sought to delineate mitochondrial metabolism in adventitial fibroblasts from chronically hypoxic hypertensive calves and humans with idiopathic pulmonary arterial hypertension (IPAH) demonstrating a hyperproliferative, apoptotic-resistant, and proinflammatory phenotype. We focused our studies on the role of mitochondria in the cellular redox status, as numerous studies have implicated heightened reactive oxygen species (ROS) production as playing a key role in driving the altered phenotype of cells, especially in hypoxic forms of PH (24–26).

We studied respiratory parameters of fibroblasts, focusing on intensity and capacity of oxidative phosphorylation along with the activity of respiratory chain complexes, with emphasis on complex I. Employing a variety of redox-sensitive probes, we determined redox status in both the mitochondria and cytosol. We demonstrate the emergence of fibroblast-like cells in both a human and a bovine model of PH, with markedly heightened ROS production secondary to an acquired and persistent defect in complex I that is not simply secondary to hypoxia-induced changes in metabolism.

Materials and Methods

Unless specified otherwise, chemicals were purchased from Sigma (St. Louis, MO).

Cell Cultures

Bovine/human pulmonary artery adventitial fibroblasts were isolated from control/donor (CO-Fibs/hCO-Fibs) and hypoxic hypertensive/IPAH (PH-Fibs/hPH-Fibs) calves/humans, as described in the online supplement.

Isolated calf fibroblasts were cultured at 37°C in humidified air with 5% CO2 in Dulbecco’s modified Eagle’s medium (Life Technologies, Carlsbad, CA) without glucose supplemented with 4 mM glutamine, 1 mM sodium pyruvate, 25 mM HEPES, 10% bovine calf serum, nonessential amino acids, and 25 mM glucose. The experiments were performed between four and eight passages. For hypoxic cultivation (5%/38 or 3%/23 mm Hg O2, besides 5% CO2), Scitec N workstation (Ruskinn, Pencoed, UK) was employed.

Immunochemical Semiquantification

Protein detection was performed as described previously (27). Primary antibodies (i.e., translocase of inner mitochondrial membrane 23 [Tim23], pyruvate dehydrogenase [PDH], phosphorylated PDH, nicotinamide adenine dinucleotide reduced dehydrogenase [ubiquinone] Fe-S protein 4 [NDUFS4], nicotinamide adenine dinucleotide phosphate reduced oxidase isoform 4 [NOX4], hypoxia-inducible factor [HIF] 1a, oxidative phosphorylation [OXPHOS] cocktail, optic atrophy 1 [autosomal dominant] [OPA1], and mitofusin 2 [MFN2]) all were purchased from Abcam (Cambridge, MA). Quantitative analysis was performed with Image J software (ImageJ, U.S. National Institutes of Health, Bethesda, MD) densitometry.

Conventional Confocal Microscopy

Fibroblasts were cultured on poly-L-lysine–coated glass coverslips. A TCS SP2/SP8 AOBs microscope (Leica Microsystems, Mannheim, Germany) was employed, using a PL APO 100×/1.4–0.7 oil immersion objective (a pinhole 1 Airy unit). The samples were placed into a thermostable, gas-controlled chamber. LCS software (Leica Microsystems) was used for quantification.

Semiquantification of Matrix Superoxide Release Rate Using Confocal Microscopy

MitoSOX Red (Life Technologies) was used to detect in situ surplus O2− release to the matrix rate of mitochondrial superoxide production (Jm), as described previously (28).

Semiquantification of Cytosolic ROS Levels Using Confocal Microscopy and Spectrofluorometry

For microscopic ROS detection, the cells attached on coverslips were transiently transfected with a plasmid expressing the...
redox-sensitive heat shock protein 33 (HSP33) protein targeted to FRET probe (29) by Lipofectamine 2,000 (Life Technologies). After 24-hour incubation, the Forster resonance energy transfer (FRET) emission was recorded in time. Alternatively, carboxy-2',7'dichlorodihydro fluorescein diacetate (H2DCFDA) (Life Technologies) was used according to the manual, and fluorescence emission was recorded on an RF PC fluorometer (Shimadzu, Tokyo, Japan).

Semiquantification of mitochondrial membrane potential using confocal microscopy was assessed using mitochondrial membrane potential (JC1) probe (Life Technologies) (see the online supplement).

Lactate Quantification

Determination of lactate content was based on nicotinamide adenine dinucleotide reduced (NADH) absorption, as described previously (30).

Isolation of Mitochondria

Mitochondria were isolated using a standard procedure (31).

High-Resolution Respirometry

O2 consumption was measured using an Oxygraph 2k (Oroboros, Innsbruck, Austria) after the air calibration and background correction in cultivation medium (for trypsinized cells) or in respiratory buffer (125 mM sucrose, 65 mM KCl, 10 mM HEPES, 1 mM Tris-EGTA, 0.5 mM KPi, 100 μM MgCl2, pH 7.2; for isolated mitochondria). Endogenous respiration was followed by oligomycin (ATP synthase inhibitor), trifluromethoxy carbonyl cyanide phenylhydrazine (FCCP) (uncoupler of electron transport chain and ATP synthase), and potassium cyanide (KCN) (cytochrome c oxidase inhibitor) addition, respectively, or in combination. Rotenone/piericidine stepwise titration was used to inhibit respiration from complex I. Mitochondrial respiration was established by 1 mM malate, 5 mM glutamate and pyruvate, and 1 mM ADP.

Statistical Analysis

All experiments were repeated at least three times. The average values (±SD) was plotted. Student’s t test was employed.

Results

Pulmonary Adventitial Fibroblasts from Chronically Hypoxic Hypertensive Calves and Humans (PH-Fibs) Exhibit Decreased Pyruvate Entry to the Krebs Cycle

Similar to our previous findings (15–19, 32), all PH-Fibs (both bovine and human) used in these studies demonstrated a significantly higher growth rate than CO-Fibs (data not shown). This raised the possibility that the glycolytic state of these cells would be altered. The glycolytic pathway gives rise to pyruvate as the final product. The pyruvate can then either be converted by PDH to acetyl–coenzyme A (CoA) in mitochondria or by lactate dehydrogenase to lactate in cytoplasm according to PDH phosphorylation status. The latter reaction is typical for fast–proliferating cells, such as cancer cells. Lactate production was found to be increased in PH-Fibs (Figure 1A). Thus, we determined the portion of phosphorylated PDH, which leads to the inhibition of its activity. We found a roughly 30% increase in phosphorylated:nonphosphorylated PDH ratio in both bovine and human PH-Fibs (Figure 1B). Increased PDH phosphorylation restricts influx of pyruvate into the mitochondria of PH-Fibs.

Oxidative Phosphorylation of PH-Fibs Is Diminished and the Mitochondrial Network Is Fragmented

The finding of suppressed pyruvate processing to acetyl-CoA, necessary for feeding the Krebs cycle, prompted us to characterize mitochondrial energy production machinery and respiration in PH-Fibs. The difference in endogenous respiration, (i.e., oxygen consumption) was not statistically different compared with CO-Fibs (Figure 2A). However, the respiratory control ratio, which assesses the potential of ATP synthesis (i.e., mitochondrial oxidative phosphorylation, within endogenous respiration, showed significant suppression in PH-Fibs; (Figure 2B). An even greater suppression (~35%) in the maximal respiratory capacity was observed in PH-Fibs (Figure 2C). As these findings might result from a lower mitochondrial mass in PH-Fibs versus CO-Fibs, we quantified the mitochondrial mass by immunocytochemistry with Tim23 antibodies along with mitochondrial green fluorescent protein (GFP) signal quantification using fluorescent confocal microscopy (Figure 2D). We did not detect a significant difference in mitochondrial mass between the two cell populations. Although differences in the amount of respiratory chain complexes in PH-Fibs could also explain the repressed respiratory parameters in PH-Fibs, the total amount of...
Mitochondrial Complex I is Down-Regulated in PH-Fibs, Leading to Mitochondrial Superoxide Production

A detailed quantification of each protein complex of respiratory chain separately showed a significant down-regulation of the accessory protein subunit of complex I–NDUFS4 in PH-Fibs (bovine and human) versus CO-Fibs (both bovine and human) (Figure 3A). Deficiencies in this subunit have been shown to be associated with certain neurodegenerative pathologies, excessive inflammation, and cardiomyopathy (33). We investigated the impact of complex I deficiency on respiratory activity in PH-Fibs. We examined complex I activity using both rotenone and piericidine (complex I inhibitors) to evaluate the extent of inhibition of respiration. We found that respiration was decreased in PH-Fibs to a much greater extent compared with CO-Fibs when the same amount of rotenone or piericidine was applied (Figure 3B).

To directly determine complex I activity in situ, we isolated mitochondria from CO-Fibs and PH-Fibs and performed respiratory measurements using substrates for complex I (glutamate plus malate and pyruvate) and ADP to determine the capacity of oxidative phosphorylation driven through complex I. We found a roughly 17% drop in oxygen consumption driven through complex I. We found a much greater extent compared with CO-Fibs when the same amount of rotenone or piericidine was applied (Figure 3B).

Complex I belongs to the proton pumping complexes of the respiratory chain; thus, its decreased activity, in the absence of compensation, must influence proton-motive force and its component, mitochondrial membrane potential. Indeed, we found an approximate twofold increase in fluorescence, reflecting mitochondrial membrane potential, indicating that mitochondria were hyperpolarized in PH-Fibs (Figure 3D).
Complex I is also known to comprise one of the major sites of superoxide production within mitochondria. We found an approximate 2.5-fold increase in matrix superoxide release rate of J_m rates in PH-Fibs versus CO-Fibs (Figure 3E).

PH-Fibs Exhibit Pro-Oxidative Cellular Status

To elucidate cytosolic redox status in addition to the mitochondrial redox state, we employed both a redox-sensitive HSP33-FRET probe (containing redox-sensitive cysteines) and a nonspecific cell-permeable diﬂuorescein (DCF) probe. Both approaches showed elevation in cytosolic oxidation in PH-Fibs (Figure 4A). As NOX4 has been shown previously to be up-regulated in adventitial fibroblasts in various models of PH (24, 34), we quantified NOX4 protein levels. We observed marked increases in NOX4 expression in PH-Fibs (Figure 4B). The importance of this pro-oxidative status for the hyperproliferative phenotype of PH-Fibs was highlighted by experiments in which PH-Fibs were exposed to antioxidant, tempol. Tempol reduced the proliferative potential of PH-Fibs (Figure 4C) while also decreasing mitochondrial and cytosolic ROS production (Figures 3E and 4A).

Hypoxia Alone Is Not Sufficient to Induce Complex I Deficiency

To investigate potential mechanisms responsible for the mitochondrial changes observed in PH-Fibs in vivo, we used an in vitro approach and exposed CO-Fibs to hypoxic conditions (3 and 5% O₂) for a minimum of 24 hours, up to 10 days. Metabolic phenotypes of PH and CO-Fibs were assayed through UHPLC–mass spectrometry–based metabolomics, confirming increased levels of lactate, impaired redox homeostasis, and accumulation of Krebs cycle intermediates (Figure 5). Exposure to 3% hypoxia for 24 hours promoted transient alterations of the metabolic phenotype of CO-Fibs, which were restored by subsequent exposure to normoxia for 24 hours (Figure 5). We then detected a large (three- to eightfold) increase of the master regulatory transcription factor, HIF1α, in human Fibs (Figure E2). We found an increased phosphorylation of PDH in CO-Fibs exposed to 3 or 5% O₂ at all time points examined (Figure 6A). Concurrently, we also observed increased lactate production (Figure 5). We next investigated the effects of hypoxic exposure on mitochondrial energy metabolism. We observed a significant (~30%) decrease of endogenous respiration of hypoxic...
b and c). To determine whether this was due to down-regulation of mitochondrial mass, we quantified mitochondrial protein by Tim23 immunohistochemistry. We did not observe significant changes in mitochondrial mass (data not shown) in response to hypoxic conditions. We examined the effect of hypoxia on complex I of the electron transport chain in CO-Fibs, first performing a rotenone inhibitory assay along with quantification of complex I NDUF54 subunit. We did not find any effect of 3 or 5% O2 exposure for up to 10 days on complex I activity or NDUF54 protein levels (Figure 6C, a and b). Furthermore, no effects of hypoxia on mitochondrial superoxide production or membrane potential were observed (Figure 6D, a and b). Thus, ex vivo exposure of control fibroblasts to hypoxia alone induced predictable changes toward increased glycolysis and reduced mitochondrial metabolism, but did not cause complex I down-regulation or significant increases in ROS production. Importantly, hypoxia alone was insufficient to have any further effect on PH-Fib mitochondrial metabolism (data not shown). These data suggest that hypoxia alone and hypoxia-induced HIF1 signaling is insufficient to induce the complex I alterations observed in PH-Fibs, and that metabolic reprogramming observed in PH-Fibs is not explained by the effect of hypoxia alone.

Suppression of PDH Inhibition in PH-Fibs Does Not Correct Energy and Redox Metabolism

PH-Fibs exhibit suppressed influx of pyruvate to mitochondria due to inhibition of PDH compared with CO-Fibs. As dichloroacetate (DCA) is a widely used pyruvate dehydrogenase kinase (PDK) inhibitor, and has even been proposed as a treatment for patients with PAH (6), we wanted to determine if DCA could restore mitochondrial bioenergetics and redox homeostasis in PH-Fibs. We found that, although DCA treatment of PH-Fibs decreased inhibition of PDH and suppressed cell proliferation, mitochondrial endogenous respiration did not show any increase in oxygen consumption, indicating continued complex I dysfunction and persistent mitochondrial and cytosolic ROS production (Figure E1).

Discussion

Here, we show that persistent alterations in mitochondrial metabolism, specifically in complex I, characterize the hyperproliferative, apoptotic-resistant, and proinflammatory adventitial fibroblasts derived from the remodeled pulmonary arteries of hypoxic calves and humans with IPAH. Mitochondrial energy metabolism of PH-Fibs is also decreased, which, together with down-regulation of complex I, leads to increased mitochondrial superoxide production. Furthermore, this pro-oxidative mitochondrial metabolism is accompanied by increased cytosolic ROS production, which our data suggest is most probably due to NOX4. Importantly, our data functionally link these metabolic changes to cellular function, as we show markedly decreased proliferation of PH-Fibs upon treatment with the ROS scavenger, tempol.

An additional important observation of our studies is that mitochondrial respiratory parameters were decreased in PH-Fibs, even under normoxic conditions. Mechanistically, decreased mitochondrial respiration can potentially be attributed to enhanced phosphorylation of PDH, resulting in its inhibition. PDH acts as a gatekeeper enzyme for the entry of pyruvate produced by glycolysis into the mitochondrial tricarboxylic acid cycle by converting it to acetyl-CoA and thus
regulating mitochondrial metabolism. PDH phosphorylation has been shown to be regulated by hypoxia, as HIF1 increases the expression and activity of PDH kinase, which increases PDH phosphorylation (35). Interestingly, our studies suggest that hypoxia alone, and HIF1 signaling in response to hypoxia, likely do not contribute to this metabolic alteration in PH-Fibs. In contrast, we observed a critical role for HIF1 and hypoxia in controlling PDK, and thus pyruvate flux, in fibroblasts exposed to hypoxia. Exposing CO-Fibs to hypoxia \textit{ex vivo} was sufficient to decrease mitochondrial respiratory parameters through enhancement of PDH phosphorylation, but did not promote the extreme metabolic reprogramming observed in normoxic PH-Fibs, nor did it lead to a complex I deficiency in a 24-hour to 10-day time window, respectively. These data suggest that \textit{in vivo} hypoxia alone and increased HIF1 signaling in response to hypoxia are insufficient to promote the activated PH-Fib phenotype. These findings are consistent with the hypothesis regarding cellular activation of inflammatory macrophages exhibiting similar metabolic alterations (36). Current data suggest that signals within the microenvironment, such as lactate, cytokines, and danger signals alone or in combination with hypoxia, but likely not hypoxia alone, are important regulators of cellular metabolic programs that allow inflammatory activation. Thus, microenvironmental signals within the adventitia, in addition to hypoxia, are likely driving the PH-Fib phenotype.

Figure 5. PH-Fibs are characterized by distinct metabolic phenotypes in comparison to CO-Fibs, hypoxic CO-Fibs, and transiently hypoxic CO-Fibs. Ultra-high performance liquid chromatography (UHPLC)-mass spectrometry (MS) metabolomics analyses were performed on CO-Fibs and PH-Fibs. Relative metabolite quantities were graphed through heat maps, upon Z score normalization of values determined across samples (blue, lowest values; red, highest values). In agreement with the other measurements, metabolomics analyses confirmed that PH-Fibs were characterized by significant alterations of glycolysis, Krebs cycle, redox homeostasis (glutathione homeostasis and pentose phosphate pathway), and amino acid metabolism. Hypoxia (3% \textit{O}_2 for 24 h) or reoxygenation of hypoxic CO-Fibs were not sufficient to mimic the extreme metabolic derangement observed in PH-Fibs in the tested time window. Metabolic pathways were color coded, as detailed in the bottom right chart. Each sample is represented by three independent experiments depicted in columns.
Figure 6. State of glycolytic switch, mitochondrial parameters, complex I, and mitochondrial oxidation in normoxic CO/PH-Fibs and CO-Fibs kept in 3 or 5% hypoxia for up to 10 days. (A) Phosphorylation of PDH in normoxic CO/PH-Fibs and CO-Fibs kept in 72-hour hypoxia (5% O₂) expressed as P-PDH: PDH protein ratio. It was quantified by protein-normalized Western blot analysis using specific P-PDH and PDH antibodies. (B) Respiratory parameters under 72-hour hypoxia (5% O₂). (Ba) Endogenous respiration (pmol/s/million cells) of normoxic CO/PH-Fibs and CO-FIBs in 72-hour hypoxia (5% O₂). (Bb) Respiratory control ratio expressed as endogenous (state 3)/ATP synthase–inhibited (oligomycin, state 4) respiratory ratio. (Bc) Maximal respiratory capacity expressed as uncoupled (FCCP)/ATP synthase–inhibited (oligomycin, state 4) respiratory ratio. (Ca) Complex I state under hypoxia. (Cb) In situ quantification of complex I activity in normoxic CO/PH-Fibs and CO-Fibs kept in 72-hour/10-day hypoxia (5% O₂) or 7-day hypoxia (3% O₂) determined by rotenone-inhibited decrease of respiration. (C) Quantification of NDUF5 subunit of complex I in normoxic CO/PH-Fibs and CO-Fibs kept in 72-hour hypoxia (5% O₂) by Western blot analysis using specific NDUF5 antibodies. (D) Mitochondrial redox state under hypoxia. (Da) Determination of mitochondrial membrane potential in normoxic CO/PH-Fibs and CO-Fibs kept in 72-hour hypoxia (5% O₂) expressed by JC1 ratio. (Db) Quantification of mitochondrial superoxide in normoxic CO/PH-Fibs and CO-Fibs kept in 72-hour hypoxia (5% O₂) by MitoSOX fluorescence increase rate, Jm. (A, C, and D) Values are expressed as percentage of the normoxic CO-Fibs values. Average values (±SD) are shown. *P < 0.05; **P < 0.01.
addition, as we have previously shown for inflammatory macrophages, HIF1 signaling can be increased by a variety of factors (e.g., lactate, IL-6 [6, 23, 36]). However, the exact microenvironmental signals that induce and maintain cellular changes in metabolism remain elusive. We have therefore begun to address this question in part in the present study by exposing control fibroblasts to soluble factors derived from fibroblast-activated macrophages. Unfortunately, these experiments did not induce metabolic alterations in control fibroblasts that would recapitulate the PH-Fib metabolic phenotype. Therefore, future studies are required to define the local adventitial microenvironment in situ to find potential molecular mediators that induce PH-Fib metabolic changes.

Furthermore, the induction of pyruvate entry to mitochondria by DCA treatment of PH-Fibs did not correct either mitochondrial metabolism or complex I alterations, although it significantly decreased the proliferative potential of PH-Fibs. This indicates that DCA treatment is not able to correct all of the cell phenotypes that emerge and are associated with PH development. Thus, the decrease in complex I activity in PH-Fibs cannot be explained simply by a hypoxia-induced decrease of pyruvate entry into the mitochondria. Rather, we found that the reduced activity of complex I was caused by down-regulation of one of its accessory subunits, NDUFS4, which might then affect the complex assembly.

In the bovine species, complex I consists of 45 different subunits that combine into the complex I holo-complex to form an approximately 1 megadalton MD assembly. Seven complex I subunits originate from mitochondrial DNA, and the rest from the nuclear DNA. NDUFS4 is a nuclear-encoded subunit, which, once phosphorylated by cAMP/protein kinase A (PKA) in the cytosol on its C-terminal end of the protein (37), promotes import and maturation of the precursor protein, which then incorporates into the core complex of complex I and enables its proper activity. Pathological mutations in the human NDUFS4 gene result in the disappearance of the protein encoded by the gene, failure of the final step of complex I assembly, and suppression of the NADH ubiquinone oxidoreductase activity (38). Complex I dysfunction is frequently associated with abnormalities of inflammation and cardiac dysfunction (39, 40). Thus, we suggest that NDUFS4 might be a significant player in the mitochondrial abnormalities observed in cells that are important in PH development.

In PH-Fibs, the activity of complex I is decreased, leading to an increase in the proton-motive force. The proton pumping in complexes III and IV must then substitute for the deficiency in complex I, leading to increased proton-motive force and its mitochondrial membrane potential component. Note also that less-efficient ATP synthesis giving the lower H+ backflow via the ATP-synthase F0 moiety also leads to the observed increase in membrane potential. The elevated leak of electrons from the mitochondrial respiratory chain at NADH>NAD+ and the reaction of these electrons with molecular oxygen lead to increased superoxide production. Of note, complex I is one of the major superoxide-producing sites in the mitochondria (41), with the resultant ROS production localized to the mitochondrial matrix. These observations thus establish the increased pro-oxidative features of mitochondria in PH-Fibs. In addition, the complex I malfunction in humans derived from a reduced level or a complete absence of fully assembled complex I has been shown to induce mitochondrial ROS formation (42).

We also found that NOX4, the only constitutively active NOX isofrom, is increased in PH-Fibs. In parallel, the increased oxidative status in the cytosol can be linked to NOX4 activity in PH-Fibs. Recently, this isofrom was expressed in endothelium and adventitia during development of PH in rat models of PAH (34). That study showed that increased expression of NOX4 in the absence of other stimuli was sufficient to increase fibroblast migration and proliferation; and inhibition of NOX4 activity reduced cellular proliferation. Similarly, we observed that suppressing the pro-oxidative status in PH-Fibs using the antioxidant, tempol, a superoxide dismutase mimetic and pleiotropic intracellular antioxidant, decreased their proliferative potential. Thus, pro-oxidative metabolism of PH-Fibs comprising mitochondrial and/or cytosolic sources might be crucial for proliferation and thus remodeling of the artery. However, the exact contribution of either ROS sources to PH development remains to be elucidated. The importance of pro-oxidative metabolism in PH is supported by studies where suppression of oxidative metabolism, including the use of tempol, leads to the reduction of PH development (24–26, 43–45).

We also show that the mitochondrial network of PH-Fibs is significantly fragmented, with associated changes in the expression of the mitochondrial fusion proteins, OPA1 and MFN2. The fragmentation of mitochondria in PH-Fibs corresponds with observations in other cells from the pulmonary hypertensive vessel wall (46). However, in addition to the altered expression levels of these proteins, the fusion/fission of mitochondria is also regulated by post-translational modifications of the proteins mentioned previously here, their mitochondrial recruitment, presence of cofactors, and membrane lipid composition (47). The significance of a fragmented mitochondrial network in PH-Fibs with mitochondrial suppressed oxidative phosphorylation and pro-oxidative metabolism remains to be investigated.

The adventitia comprises a loosely defined array of cells, including fibroblasts, collagen, and elastic fibers and immune cells that encircle the tunica media and intima layers of the blood vessel. The adventitia, thus, is capable of orchestrating inflammation and vascular proliferation in response to any incoming insult, such as chronic hypoxia, and therefore playing an important role in the induction of PH. In response to many stimuli, fibroblasts, likely specific subpopulations, secrete growth factors, chemokines, and inflammatory cytokines (16). The precise mechanisms controlling such secretion have not been well defined. However, the secretion of soluble factors could be regulated by the pro-oxidative status of the PH-Fibs represented by hydrogen peroxide as a mediator of signaling or deficiency of complex I alone (40–42). Interestingly, complex I deficiency has been found to be the most common disorder of the mitochondrial oxidative phosphorylation system in human pathologies (48). However, complex I defects have not yet been described in other cell types involved in the remodeling of the pulmonary artery wall during PH development, such as SMCs and endothelial cells. In these cells,
mitochondria were shown to be hyperpolarized, with a restricted influx of carbohydrates, and thus mitochondrial energy metabolism is suppressed and cells are apoptosis resistant (4). Further studies need to be directed at investigating the relevance of complex I disorders in PH. Do complex I defects simply initiate a pro-oxidative signaling through mitochondria (e.g., for regulation of inflammation and/or proliferation), or does complex I deficiency regulate further signaling through decreased oxidative phosphorylation? The oxidative signaling derived from complex I deficiency was shown to be relevant in studies with stable down-regulation of a single subunit of complex I (NADH:ubiquinone oxidoreductase subunit A13 [GRIM-19] or NDUF3) in HeLa cells, decreasing its activity, leading to enhanced cell adhesion, migration, and invasion, and thus influencing the expression of extracellular matrix molecules and playing a role in cancer metastasis (49). It is possible that cells exhibiting a variety of mitochondrial abnormalities will exist during the development of PH.

It will be important to ultimately determine whether and if these abnormalities can or should be targeted therapeutically.

Author disclosures are available with the text of this article at www.atsjournals.org.

Acknowledgments: The help of Jana Vacova with Western blotting, Hana Engstova with Amira software (FEI, Hillsboro, OR), and Marcia McGowan with EndNote software are gratefully acknowledged. The collaboration between the U.S. and Czech partners was initiated by Petr Paucek (University of Colorado, Boulder, CO).

References

56

American Journal of Respiratory Cell and Molecular Biology Volume 55 Number 1 | July 2016
ORIGINAL RESEARCH

ORIGINAL RESEARCH ARTICLE

Metabolic Reprogramming Regulates the Proliferative and Inflammatory Phenotype of Adventitial Fibroblasts in Pulmonary Hypertension Through the Transcriptional Corepressor C-Terminal Binding Protein-1

BACKGROUND: Changes in metabolism have been suggested to contribute to the aberrant phenotype of vascular wall cells, including fibroblasts, in pulmonary hypertension (PH). Here, we test the hypothesis that metabolic reprogramming to aerobic glycolysis is a critical adaptation of fibroblasts in the hypertensive vessel wall that drives proliferative and proinflammatory activation through a mechanism involving increased activity of the NADH-sensitive transcriptional corepressor C-terminal binding protein 1 (CtBP1).

METHODS: RNA sequencing, quantitative polymerase chain reaction, 13C-nuclear magnetic resonance, fluorescence-lifetime imaging, mass spectrometry–based metabolomics, and tracing experiments with U-13C-glucose were used to assess glycolytic reprogramming and to measure the NADH/NAD$^+$ ratio in bovine and human adventitial fibroblasts and mouse lung tissues. Immunohistochemistry was used to assess CtBP1 expression in the whole-lung tissues. CtBP1 siRNA and the pharmacological inhibitor 4-methylthio-2-oxobutyric acid (MTOB) were used to abrogate CtBP1 activity in cells and hypoxic mice.

RESULTS: We found that adventitial fibroblasts from calves with severe hypoxia-induced PH and humans with idiopathic pulmonary arterial hypertension (PH-Fibs) displayed aerobic glycolysis when cultured under normoxia, accompanied by increased free NADH and NADH/NAD$^+$ ratios. Expression of the NADH sensor CtBP1 was increased in vivo and in vitro in fibroblasts within the pulmonary adventitia of humans with idiopathic pulmonary arterial hypertension and animals with PH and cultured PH-Fibs, respectively. Decreasing NADH pharmacologically with MTOB or genetically blocking CtBP1 with siRNA upregulated the cyclin-dependent genes (p15 and p21) and proapoptotic regulators (NOXA and PERP), attenuated proliferation, corrected the glycolytic reprogramming phenotype of PH-Fibs, and augmented transcription of the anti-inflammatory gene HMOX1. Chromatin immunoprecipitation analysis demonstrated that CtBP1 directly binds the HMOX1 promoter. Treatment of hypoxic mice with MTOB decreased glycolysis and expression of inflammatory genes, attenuated proliferation, and suppressed macrophage numbers and remodeling in the distal pulmonary vasculature.

CONCLUSIONS: CtBP1 is a critical factor linking changes in cell metabolism to cell phenotype in hypoxic and other forms of PH and a therapeutic target.

Key Words: cell proliferation, fibroblasts, glycolysis, hypertension, pulmonary, metabolism

© 2016 American Heart Association, Inc.
Clinical Perspective

What Is New?

- In pulmonary hypertension, little is known about the molecular mechanisms that link the metabolic state of cells to gene transcription and functional changes in their phenotype. We show that C-terminal binding protein-1, a transcription factor that is activated by increased free NADH, acts as a molecular linker to drive the proliferative and proinflammatory phenotype of adventitial fibroblasts within the hypertensive vessel wall.
- This work supports the novel hypothesis that some forms of pulmonary hypertension lead to the rewiring of cellular metabolic programs that use alterations in the cellular redox state to control the activity of C-terminal binding protein-1, which then coordinates expression of a network of genes implicated in cell proliferation, apoptosis resistance, and inflammation.

What Are the Clinical Implications?

- We also found that treatment of fibroblasts from the pulmonary hypertensive vessel and of hypoxic mice with a pharmacological inhibitor of C-terminal binding protein-1, 4-methylthio-2-oxobutyric acid, leads to a normalization of proliferation, inflammation, and the aberrant metabolic signaling.
- Our results suggest that targeting this metabolic sensor may be a more specific approach to treating metabolic abnormalities in pulmonary hypertension than use of more global metabolic inhibitors.
- It will be important in future studies to determine whether inhibition of C-terminal binding protein-1 can be combined with other vasodilating drugs to effect reversal of established severe forms of pulmonary hypertension.

Pulmonary hypertension (PH) is a devastating syndrome with high mortality, affecting both pediatric and adult patients with a wide variety of disorders. The pulmonary vasculature in these patients exhibits significant cellular and structural changes within the intima, media, and adventitia that include augmented proliferation, resistance to apoptosis, and increased production of inflammatory mediators and extracellular matrix proteins. These cellular changes are recapitulated, at least in part, in various animal models of PH. Notably, some of the earliest pathophysiological changes are observed in the pulmonary artery adventitia and include robust proliferation of fibroblasts and accumulation of macrophages. These phenotypic changes in adventitial fibroblasts are maintained ex vivo over multiple passages in culture and are regulated, in part, through epigenetic mechanisms. Collectively, these observations are consistent with the hypothesis that many of the cellular and molecular features of PH resemble hallmark characteristics of cancer.

It is increasingly recognized that increased proliferation and inflammatory activation can occur in the context of changes in cellular metabolism toward aerobic glycolysis (the Warburg effect) and that there is an intimate link between metabolic adaptation and functional cellular phenotype. It is important to note that metabolic changes closely resembling those of cancer cells have been reported in PH in endothelial cells, smooth muscle cells, and most recently fibroblasts and have formed the basis for a metabolic theory of PH. Furthermore, findings using in-vivo noninvasive imaging approaches support the hypothesis that the fludeoxyglucose positron emission tomography signal originated in the adventitia where activated fibroblasts and macrophages are observed. However, the mechanisms that link metabolic reprogramming to inflammatory and proliferative pathways in PH remain largely unknown.

C-terminal binding protein (CtBP) comprises a dimeric family of transcriptional repressors encoded by 2 paralogous genes (CTBP1 and CTBP2) that have major roles in animal cell development and cancer and have been suggested to be sensors of the metabolic state of cells that can modulate many aspects of cell phenotype. Overexpression of CtBP is observed in a number of cancers, including prostate, ovarian, colon, and breast. Studies in cancer and nervous system revealed that CtBPs promote cellular survival primarily through repression of Bcl-2 family members and other proapoptotic molecules (PERP, Bax, Bik, Puma, p21, and Noxa), as well as tumor suppressors (eg, p16INK4a and p15 INK4b). Importantly, there is emerging evidence that CtBPs may also function to modulate the inflammatory response. Furthermore, a recent genome-wide analysis in breast cancer provided a more comprehensive description of CtBP repression targets. CtBP targets were categorized into 3 main categories: genes that regulate cell renewal and pluripotency, genes that control genome stability, and genes that regulate epithelial differentiation and prevent epithelial-to-mesenchymal transition, all processes of potential importance in PH pathogenesis.
tional repressor activity. CtBPs may thus be an example of how cellular metabolic status can influence epigenetic control of cell function and fate.

Here, we sought to test a novel hypothesis that in PH the metabolic/redox sensor CtBP1 drives persistent proliferative, antiapoptotic and proinflammatory activation of pulmonary adventitial fibroblasts by linking metabolic reprogramming (aerobic glycolysis and subsequently increased NADH) to gene transcription. Our approach was first to use RNA sequencing (RNA-Seq) to determine whether metabolic pathways differ between control (CO-Fibs) and pulmonary hypertensive (PH-Fibs). We then performed a detailed metabolic evaluation of both CO-Fibs and PH-Fibs cultured under normoxic conditions using nuclear magnetic resonance (NMR) and mass spectrometry (MS; steady-state and tracing experiments with 13C-glucose). We assessed NADH directly using MS and fluorescence lifetime imaging (FLIM) in cultured fibroblasts. CtBP1 expression was also evaluated by quantitative polymerase chain reaction (qPCR) and immunostaining approaches. We assessed the functional role of CtBP1 in controlling cell phenotype using both genetic (siRNA) and a novel pharmacological inhibitor of CtBP1, 4-methylthio-2-oxobutyric acid (MTOB), a substrate of CtBP dehydrogenase that has recently been shown to antagonize CtBP transcriptional regulation.18,24 Finally, using a hypoxic mouse model of PH, we treated mice with MTOB to prove the concept that CtBP1 could serve as a therapeutic target to inhibit hypoxia-induced cell proliferation and inflammation.

METHODS

A detailed Methods section is provided in the online-only Data Supplement.

Animals

Neonatal calves and C57BL/6 mice exposed to chronic hypoxia were used in this study. All animal procedures were performed in accordance with the Guidelines for Animal Experimentation established and approved by the University of Colorado Anschutz Medical Campus and Colorado State University Institutional Review boards.

Tissue Specimen

Lung tissues from hypertensive and control calves (n= 5–7 for each group) and mice (n= 5 for each group) were used for reverse transcription–PCR and immunohistochemical/immunofluorescent staining analyses. Human lung tissue specimens from subjects with idiopathic pulmonary arterial hypertension (IPAH; n=7) or donor control subjects (n=8) were obtained during lung transplantation and used for qPCR and immunohistochemical staining analysis. The study protocol for tissue donation was approved by the ethics committee (Ethik Kommission am Fachbereich Humanmedizin der Justus Liebig Universität Giessen) of the University Hospital Giessen (Giessen, Germany) in accordance with national law and with Good Clinical Practice/International Conference on Harmonization guidelines. Written informed consent was obtained from each individual patient or the patient's next of kin (AZ 31/93).

Cell Culture

Isolation of adventitial fibroblasts from distal pulmonary arteries of hypertensive and control calves was performed as described in Methods in the online-only Data Supplement. Human pulmonary artery fibroblasts were derived from patients with IPAH or from control donors undergoing lobectomy or pneumonectomy. All cells were cultured under normoxic conditions. Experiments were performed on cells at passages 5 to 10.

RNA Sequencing

RNA from bovine CO-Fibs and PH-Fibs (n=6 for each group) was used to perform RNA-Seq analysis. Total RNA was purified, fragmented, and converted to cDNA. Sequencing libraries were made with the TruSeq RNA Sample Preparation kit (Illumina, San Diego, CA). RNA-Seq was performed on a HiSeq2000 sequencer analyzer. Sequence reads were assembled to the annotated UMD3.1 bovine reference genome.23 Quality control analysis was performed with the CLC Genomics workbench software (CLC Bio, Aarhus, Denmark). All the samples analyzed passed all the quality control parameters, indicating a very good quality.

Data were normalized by calculating the reads per kilobase per million mapped reads for each gene. Statistical analysis was performed with the total exon reads used as expression values by the empirical analysis of differential gene expression tool of CLC Bio Genomic workbench software. This tool is based on the EdgeR Bioconductor package and uses count data (ie, total exon reads) for the statistical analysis. Genes were filtered on the basis of minimum expression >0.2 reads per kilobase per million mapped reads. False discovery rate (FDR) was used for multiple testing corrections. Finally, differentially expressed genes were selected based on fold change (≥2), P value (P<0.01), and FDR value (q<0.1). Detailed methods are provided in the online-only Data Supplement.

Real-Time Reverse Transcription–PCR

Total RNA from cultured cells was isolated using Qiagen Mini Kit (Qiagen, Valencia, CA). Total RNA from tissues was isolated with Trizol. The sequences for all primers are listed in Table I in the online-only Data Supplement. Results are presented as fold change using the ΔΔCt method.

Quantitative Multi-NMR Metabolomics and 13C-Glucose Fluxes

Fibroblasts were incubated with 10 mmol/L 13C$_4$glucose (glucose with 13C at C$_4$ position, Cambridge Isotope Laboratories, Tewksbury, MA) as the exclusive glucose source (and otherwise under standard growth conditions). After 24 hours, cells were extracted with perchloric acid and used for NMR analysis. High-resolution 1H, 31P-, and 13C-NMR experiments were performed with a Bruker 400-MHz Avance III spectrometer (Bruker BioSpin, Fremont, CA). In cell extracts, intracellular 13C-glucose and its 13C-labeled products from glycolysis and the tricarboxylic acid cycle were calculated from 13C-NMR spectra. Spectra...
acquisition and metabolite integration were performed with Bruker TopSpin software. Metabolite identification and multivariate partial least squares–discriminant analysis were performed using the Human Metabolome Database. Data were normalized to cell mass.

Ultrahigh-Performance Liquid Chromatography–MS–Based Direct NADH Measurements and Metabolomics Analyses: Steady State and U-13C-Glucose Tracing Experiments

CO-Fibs and PH-Fibs (n=3 for each group), cultured in normal media or in media supplemented with 10 mmol/L U-13C-glucose (Cambridge Isotope Laboratories) for 5 minutes and 1, 8, and 24 hours were extracted (2×10⁶ cells/mL buffer) and run through a C18 reversed-phase column (Phenomenex, Torrance, CA) through an ultrahigh-performance liquid chromatography (UHPLC) system (Vanquish, Thermo Fisher). Metabolite assignment, peak integration for relative quantification, and isotopologue distributions in tracing experiments were calculated through the software Maven (Princeton), against the KEGG pathway database and an in-house validated standard library (>650 compounds, also including NADH; product No. N8129, Sigma Aldrich, IROATech). To determine linearity (r² >0.99) and sensitivity of the approach (limit of detection and limit of quantification), NADH was weighed and progressively diluted (from 0.5–5000 injected pmol range; 4 orders of magnitude) before injection through UHPLC-MS. Integrated peak areas were exported into Excel (Microsoft, Redmond, CA) for statistical analysis (t test, ANOVA through the software GraphPad Prism).

Frozen mouse whole-lung tissues were snap-frozen, powered, and weighed in the presence of liquid nitrogen and dry ice, and cold lysis buffer (10 mg tissue/mL buffer) was added. Samples were extracted at 4°C for 30 minutes and centrifuged, and the supernatants were used for metabolomics analysis as described above. Data were normalized by tissue mass.

Assessment of NADH/NAD⁺ Ratio

NADH/NAD⁺ ratio was determined with an enzymatic cycling reaction using modified methods by Williamson et al²⁶ as described in Methods in the online-only Data Supplement.

Fluorescence Lifetime Imaging

To directly visualize NADH level in cells, FLIM of 2-photon–excited NADH was performed at the University of California-Davis Advanced Light Microscopy Core.

Inhibition of CtBP1

CtBP1 was inhibited either genetically by siRNA or pharmaceutically by MTOB. Transfection efficiencies are shown in Figure I in the online-only Data Supplement.

Cell Proliferation Assay

An equal number of cells were plated onto 24-well plates in full DMEM supplemented with 10% bovine calf serum for bovine cells or with 10% fetal bovine serum for human cells and then treated with 2-deoxy-glucose (2-DG; 10 mmol/L), pyruvate (20 mmol/L), MTOB (2.5 mmol/L), CtBP1 siRNA (50 nmol/L), or scrambled siRNA or were left untreated. Cell numbers were counted in triplicate wells on days 1, 2, and 3. In parallel, cells with each type of treatment were collected for reverse transcription–PCR.

Chromatin Immunoprecipitation Assay

Chromatin immunoprecipitation assay was used to study CtBP1 protein interaction with its target gene. Human fibroblasts were cross-linked with ice-cold 1% formaldehyde for 15 minutes, and the reaction was stopped by adding 0.125 mol/L glycine. Cell lysates were centrifuged, and the pellet was sonicated in lysis buffer to shear DNA. Fragmented DNA was precipitated with CtBP1 antibody (EMD Millipore, Billerica, MA) with the use of immobilized recombinant protein A affinity resins (RepliGen, Waltham, MA). Unbound DNA fragments were washed off, and beads were removed with elution buffer. Precipitated protein/DNA complexes were reverse cross-linked by adding 350 mmol/L NaCl and incubated for 6 hours at 65°C. DNA was then purified and used for PCR analysis.

Statistical Analysis

Prism software version 5 (GraphPad, Software, Inc²⁷) was used for t test or ANOVA followed by Bonferroni posttest analysis. Values were expressed as mean±SEM. For basic comparisons of 2 gaussian-distributed sample sets, we used Student t tests. In comparisons of multiple groups, the respective ANOVA (1 way when comparing 1 characteristic, or 2 way if 2 dependent variables were involved) was performed. P values were subject to multiple testing adjustment with Bonferroni correction. Supervised partial least squares–discriminant analysis (Simca, Umetrics, San Jose, CA) was used to determine the variance of metabolic phenotypes in CO-Fibs and PH-Fibs as determined via NMR and MS analyses and were sufficient to discriminate biological samples. To validate partial least squares–discriminant analysis, random permutations were performed through MetaAnalyst and Multibase (20 random permutations were selected; significance threshold, 0.05; <100 variables tested). FDR (Benjamini Hochberg) was <0.1 for all significant metabolites. Power analysis was performed to ensure that the number of replicates was sufficient to ensure >80% probability to have an FDR<0.1 for all the significant observations (tested through MetaAnalyst 3.0). Differences with values of P<0.05 were considered statistically significant.

RESULTS

PH-Fibs Are Metabolically Reprogrammed to Aerobic Glycolysis

RNA-Seq analysis elucidated >1000 differentially regulated genes in bovine PH-Fibs compared with CO-Fibs (n=6 for each group; P<0.01; fold change >2). Glycolysis/gluconeogenesis and pyruvate metabolism were identified as 2 of the most significantly upregulated pathways (Table 1 and Figure IIA in the online-only Data Supplement). In particular, 9 genes that code for enzymes and transporters involved in glucose-to-lactate catabolism were upregulated in PH-Fibs (Table 2).
Table 1. Most Significant Pathways Identified in the List of 1012 Differentially Expressed Genes (P<0.01 and Fold Change >2) Between Control and Hypertensive Calves by Blast2GO

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Sequences, n</th>
<th>Enzymes, n</th>
<th>P Value (Fisher Exact Test)</th>
<th>P Value (Bonferroni)</th>
<th>Pathway</th>
<th>Sequences, n</th>
<th>Enzymes, n</th>
<th>P Value (Fisher Exact Test)</th>
<th>P Value (Bonferroni)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purine metabolism</td>
<td>27</td>
<td>17</td>
<td>3.06E−07</td>
<td>5.84E−05</td>
<td>Phenylalanine metabolism</td>
<td>4</td>
<td>3</td>
<td>0.002</td>
<td>0.251</td>
</tr>
<tr>
<td>Phosphatidylinositol signaling system</td>
<td>11</td>
<td>5</td>
<td>5.33E−07</td>
<td>1.02E−04</td>
<td>Tyrosine metabolism</td>
<td>4</td>
<td>3</td>
<td>0.002</td>
<td>0.270</td>
</tr>
<tr>
<td>Glycolysis/gluconeogenesis</td>
<td>9</td>
<td>10</td>
<td>2.10E−06</td>
<td>4.02E−04</td>
<td>Propanoate metabolism</td>
<td>4</td>
<td>3</td>
<td>0.002</td>
<td>0.310</td>
</tr>
<tr>
<td>Inositol phosphate metabolism</td>
<td>9</td>
<td>4</td>
<td>1.02E−05</td>
<td>0.002</td>
<td>Glyceraminoglycan biosynthesis, chondroitin sulfate/dermatan sulfate</td>
<td>4</td>
<td>5</td>
<td>0.002</td>
<td>0.328</td>
</tr>
<tr>
<td>Glycerolipid metabolism</td>
<td>7</td>
<td>6</td>
<td>1.04E−05</td>
<td>0.002</td>
<td>Glyceraminoglycan degradation</td>
<td>4</td>
<td>2</td>
<td>0.002</td>
<td>0.367</td>
</tr>
<tr>
<td>Pyrimidine metabolism</td>
<td>7</td>
<td>6</td>
<td>2.68E−05</td>
<td>0.005</td>
<td>Pentose and glucuronate interconversions</td>
<td>4</td>
<td>4</td>
<td>0.003</td>
<td>0.384</td>
</tr>
<tr>
<td>β-Alanine metabolism</td>
<td>6</td>
<td>5</td>
<td>2.76E−05</td>
<td>0.005</td>
<td>Biosynthesis of unsaturated fatty acids</td>
<td>3</td>
<td>2</td>
<td>0.003</td>
<td>0.393</td>
</tr>
<tr>
<td>Galactose metabolism</td>
<td>6</td>
<td>5</td>
<td>3.46E−05</td>
<td>0.007</td>
<td>Metabolism of xenobiotics by cytochrome P450</td>
<td>3</td>
<td>3</td>
<td>0.004</td>
<td>0.521</td>
</tr>
<tr>
<td>Nitrogen metabolism</td>
<td>5</td>
<td>3</td>
<td>6.44E−05</td>
<td>0.012</td>
<td>Chloroalkane and chloroalkene degradation</td>
<td>3</td>
<td>2</td>
<td>0.005</td>
<td>0.579</td>
</tr>
<tr>
<td>Glycerophospholipid metabolism</td>
<td>5</td>
<td>4</td>
<td>1.33E−04</td>
<td>0.020</td>
<td>Streptomycin biosynthesis</td>
<td>3</td>
<td>2</td>
<td>0.005</td>
<td>0.582</td>
</tr>
<tr>
<td>Fructose and mannose metabolism</td>
<td>5</td>
<td>5</td>
<td>2.12E−04</td>
<td>0.040</td>
<td>Valine, leucine, and isoleucine degradation</td>
<td>3</td>
<td>2</td>
<td>0.005</td>
<td>0.625</td>
</tr>
<tr>
<td>Steroid hormone biosynthesis</td>
<td>5</td>
<td>4</td>
<td>2.42E−04</td>
<td>0.045</td>
<td>Lysine degradation</td>
<td>3</td>
<td>2</td>
<td>0.005</td>
<td>0.630</td>
</tr>
<tr>
<td>Arachidonic acid metabolism</td>
<td>4</td>
<td>5</td>
<td>3.81E−04</td>
<td>0.070</td>
<td>Starch and sucrose metabolism</td>
<td>3</td>
<td>2</td>
<td>0.005</td>
<td>0.540</td>
</tr>
<tr>
<td>Sulfur metabolism</td>
<td>4</td>
<td>4</td>
<td>4.46E−04</td>
<td>0.082</td>
<td>Fatty acid metabolism</td>
<td>3</td>
<td>2</td>
<td>0.005</td>
<td>0.640</td>
</tr>
<tr>
<td>Drug metabolism, other enzymes</td>
<td>4</td>
<td>3</td>
<td>4.53E−04</td>
<td>0.065</td>
<td>Glycine, serine, and threonine metabolism</td>
<td>3</td>
<td>2</td>
<td>0.005</td>
<td>0.554</td>
</tr>
<tr>
<td>Pyruvate metabolism</td>
<td>4</td>
<td>3</td>
<td>6.05E−04</td>
<td>0.109</td>
<td>Ascorbate and aldurate metabolism</td>
<td>3</td>
<td>2</td>
<td>0.006</td>
<td>0.506</td>
</tr>
<tr>
<td>Methane metabolism</td>
<td>4</td>
<td>4</td>
<td>0.001</td>
<td>0.206</td>
<td>Histidine metabolism</td>
<td>3</td>
<td>3</td>
<td>0.008</td>
<td>0.691</td>
</tr>
<tr>
<td>Amino sugar and nucleotide sugar</td>
<td>4</td>
<td>3</td>
<td>0.001</td>
<td>0.195</td>
<td>mTOR signaling pathway</td>
<td>3</td>
<td>2</td>
<td>0.009</td>
<td>0.666</td>
</tr>
</tbody>
</table>

mTOR indicates mammalian target of rapamycin.
Validation by reverse transcription–PCR analysis confirmed increased gene expression of the glycolytic genes GLUT1, HK2, and LDHA in both bovine and human PH-Fibs relative to CO-Fibs (Figure 1A). In addition, upregulation of GLUT1, GLUT4, and G6PD genes (as well as HK2 and LDHA, which are submitted as part of another manuscript) was observed in vessels isolated by laser capture microdissection of IPAH patients compared with control subjects (Figure 1B). Furthermore, upregulation of GLUT1 protein expression was observed in situ in the adventitia of hypoxic hypertensive calves by immunofluorescence (Figure 1C) and in vitro in cultured bovine and human PH-Fibs by Western blot (Figure 1D).

NMR- and MS-based metabolomics analyses confirmed transcriptomics results, showing that significantly different metabolic phenotypes exist between CO-Fibs and PH-Fibs (Figures IIIB, IIC, IIIA, and IIID in the online-only Data Supplement), as well as metabolic reprogramming to aerobic glycolysis in PH-Fibs (Figure 2 and Figures II and III in the online-only Data Supplement). Glycolytic changes included increased glucose uptake; generation of sugar phosphates, 13C-glycolytic signature, and 13C-lactate (from 13C-glucose steady-state NMR analyses; Figures IIC, IIIC, and IIID in the online-only Data Supplement); and increased D-glucose, glyceraldehyde 3-phosphate, pyruvate, and lactate production (from steady-state MS analyses Figure 2A and 2B).

Finally, PH-Fibs displayed alterations in redox homeostasis as indicated by increased amounts of reduced (GSH) and oxidized (glutathione disulfide, GSSG) glutathione, evidence of use of the NADPH-generating pentose phosphate pathway, and increased phosphogluconate and ribose phosphate (Figure 2B and Figure IIIB in the online-only Data Supplement). These findings are consistent with our recent observations of oxygen-independent increased mitochon-

Figure 1. Bovine and human hypoxic-induced hypertensive pulmonary artery adventitial fibroblast cells (PH-Fibs) exhibit differences in mRNA and protein expression of genes involved in glucose metabolism compared with control fibroblasts (CO-Fibs).

A. Quantitative polymerase chain reaction showed significantly higher expression of glucose transporter 1 (GLUT1), hexokinase 2 (HK2), and lactate dehydrogenase A (LDHA) mRNA levels in both bovine and human PH-Fibs compared with CO-Fibs. B. Upregulation of GLUT1, GLUT4, glucose-6-phosphate dehydrogenase (G6PD), monocyte chemotactic protein-1 (MCP1), and stromal cell–derived factor-1 (SDF1) and downregulation of heme oxygenase-1 (HMOX1) were observed in vessels isolated by laser capture microdissection of IPAH patients compared with controls. C. Immunofluorescent staining showed higher expression of GLUT1 (red) in the adventitia (Adv) of chronic hypoxia-induced pulmonary hypertensive bovine lung section compared with control lungs. AW indicates airway; EC, endothelium; L.P., lung parenchyma; and M, media. Scale bar=100 μm. D. Western blot confirmed higher protein expression of GLUT1 in both bovine and human PH-Fibs. Data are presented as mean±SEM; n=3–9. *P<0.05, **P<0.01 vs CO-Fibs or vessels from human donors.
Adventitial Fibroblast Metabolism, CtBP1, and PH

October 11, 2016

ORIGINAL RESEARCH

ARTICLE

drial and cytoplasmic (NOX4-generated) reactive oxygen species production in both human and bovine PH-Fibs.28

To validate steady-state observations suggesting increased uptake and oxidation of glucose through glycolysis, CO-Fibs and PH-Fibs were cultured under normoxia in the presence of U-13C-glucose for 5 minutes and 1, 8, and 24 hours. Tracing experiments via UHPLC-MS confirmed significantly increased (P<0.05, ANOVA) glucose uptake and intracellular and supernatant 13C1-3-lactate generation in PH-Fibs as early as 8 hours from normoxic incubation with heavy glucose (Figure 2C).

NADH Concentrations Are Increased in PH-Fibs

To determine whether aerobic glycolysis in PH-Fibs formed the basis of increased concentrations of NADH (reflecting changes in the cellular redox status), FLIM (Figure 3A, red) and UHPLC-MS–based measurements (Figure 3B) were used to visualize free NADH and to directly measure NADH and NAD+. Free NADH was markedly higher in bovine and human PH-Fibs relative to CO-Fibs (Figure 3A). Direct measurements of total NADH and NAD+ were performed through a targeted UHPLC-MS method, after determining linearity (Figure IVA in the online-only Data Supplement) of the NADH detection over 4 orders of magnitude. The results showed significant increased NADH in both bovine and human PH-Fibs (Figure 3B). The NADH/NAD+ ratio was also significantly increased in bovine PH-Fibs. The NADH/NAD+ ratio was remarkably higher in each human PH-Fib population, but because of the extremely low NAD+ value found in 1 human PH-Fib, the overall variability is high, and P=0.07 (Figure IVB in the online-only Data Supplement). To further validate these observations, we performed an orthogonal and frequently used measure of the NADH/NAD+ ratio based on an enzymatic cycling reaction and represented by lactate/pyruvate ratio26,29 (Figure IVC in the online-only Data Supplement).

Aerobic Glycolysis and Free NADH Are Critical in PH-Fib Proliferation

We next determined whether metabolic reprogramming and increased NADH concentrations were critical for promoting proliferation in PH-Fibs. Bovine and human PH-Fibs

Figure 2. Metabolomics evidence for aerobic glycolysis in pulmonary hypertension fibroblasts (PH-Fibs).

Steady-state and flux tracing experiments were performed via ultrahigh-performance liquid chromatography–mass spectrometry (UHPLC-MS) by incubating bovine control fibroblasts (CO-Fibs) and PH-Fibs with U-13C-glucose. A, Steady-state UHPLC-MS demonstrated increased glucose content, utilization through glycolysis, and increased lactate production in PH-Fibs compared with CO-Fibs (n=3; *P<0.05, **P<0.001 vs CO-Fibs). B, Heat map generated from MS showed differences in metabolite production between CO-Fibs and PH-Fibs. Each column represents an individual samples from each group, and the differences between each groups are significantly different (P<0.05). C, Tracing experiments were performed by incubating CO-Fibs and PH-Fibs (n=3) for 5 minutes or 1, 8, or 24 hours with U-13C-glucose to confirm increased uptake and catabolism of glucose through aerobic glycolysis in PH-Fibs cultured in normoxia. Median (continuous line) and interquartile ranges (dashed lines) are shown for CO-Fibs (blue) and PH-Fibs (red). *P<0.05, **P<0.01, ***P<0.001 vs CO-Fibs, repeated measures ANOVA.
were treated with 2-DG (10 mmol/L) to block glucose metabolism or with pyruvate (20 mmol/L) to directly decrease NADH by providing a substrate for NADH recycling to NAD⁺ by lactate dehydrogenase. FLIM analysis showed the both 2-DG and pyruvate decreased free NADH in bovine and human PH-Fibs (Figure 3C). Enzymatic cycling reaction measurement also demonstrated that 2-DG significantly decreased the NADH/NAD⁺ ratio in bovine and human cells (Figure IVD in the online-only Data Supplement). These decreases in free NADH resulted in a significant reduction in proliferation of both bovine and human PH-Fibs (Figure 3D).

Aerobic Glycolysis Is Critical for the Proinflammatory PH-Fib Phenotype

Recent reports demonstrate that proinflammatory activation of macrophages depends on metabolic reprogramming to aerobic glycolysis. Similar to observations in activated macrophages, we have previously reported that PH-Fibs express high amounts of proinflammatory mediators. Confirming our previous report of increased MCP1 and SDF1 gene and protein expression in PH-Fibs we detected increased expression of monocyte chemoattractant protein-1 ([MCP1]) and stromal cell–derived factor-1 ([SDF1]) and increased anti-inflammatory factor (HMOX1) expression in PH-Fibs (n=3–8; P<0.05, **P<0.01, ***P<0.001 vs untreated PH-Fibs).

Figure 3. Pulmonary hypertension fibroblasts (PH-Fibs) exhibit increased NADH levels compared with control fibroblasts (CO-Fibs).

2-Deoxy-glucose (2-DG) and pyruvate inhibited proliferation and attenuated the inflammatory phenotype of PH-Fibs by decreasing NADH levels and thus decreasing C-terminal binding protein 1 (CtBP1) activity. A, Fluorescence lifetime imaging (FLIM) of 2-photon–excited NADH was performed to directly visualize free NADH (shorter lifetime, red). Phasor plot showed free NADH collection localization (red circle). A remarkably increased detection of free NADH was seen in PH-Fibs compared with CO-Fibs.

B, Direct NADH measurements were performed through a targeted ultrahigh-performance liquid chromatography–mass spectrometry (UHPLC-MS) method after determination of the linearity of the NADH detection down to a limit of quantification of 500 fmol injected over 4 orders of magnitude. NADH analysis of bovine and human via UHPLC-MS confirmed the results obtained with FLIM and showed a significant increase in NADH in PH-Fibs compared with CO-Fibs (n=3; *P<0.05, **P<0.01 vs CO-Fibs).

C, Treatment with 2-DG (10 mmol/L) and pyruvate (20 mmol/L) for 48 hours decreased free NADH (red color) detection (FLIM) in PH-Fibs. D, 2-DG and pyruvate significantly inhibited the proliferation of PH-Fibs (n=3; *P<0.05, **P<0.01, ***P<0.001 vs untreated PH-Fibs, repeated measures ANOVA). E, 2-DG decreased proinflammatory factors (monocyte chemotactic protein-1 [MCP1] and stromal cell–derived factor-1 [SDF1]) and increased anti-inflammatory factor (HMOX1) expression in PH-Fibs (n=3–8; *P<0.05, **P<0.01, ***P<0.001 vs untreated PH-Fibs).
laser capture microdissection of IPAH patients showed decreased expression of the \textit{HMOX1} relative to control subjects (Figure 1B). Inhibition of aerobic glycolysis with 2-DG resulted in increased expression of \textit{HMOX1} in both bovine and human PH-Fibs (Figure 3E).

CtBP1 Expression Is Increased in Adventitial Fibroblasts in PH

Considering that aerobic glycolysis promotes increases in free NADH concentrations that in turn increase CtBP1 activity, we questioned whether CtBP1 expression was simultaneously increased in PH-Fibs. Notably, immunofluorescence and immunohistochemical staining demonstrated that CtBP1 protein expression was increased in situ in the mouse and bovine hypoxic PH models and in pulmonary arteries from humans with IPAH relative to control subjects (Figure 4A). Importantly, CtBP1 expression was localized primarily to the pulmonary arterial adventitia of hypoxic hypertensive subjects (Figure 4A). Consistent with increased expression of CtBP1 in PH-Fibs observed in RNA-Seq analysis ($P=0.033$, FDR), expression of CtBP1 was increased in both cultured bovine and human PH-Fibs relative to CO-Fibs (Figure 4B).

CtBP1 Links Aerobic Glycolysis With Proliferation in PH-Fibs

Simultaneous increases in CtBP1 expression and NADH accumulation suggest a functional role for CtBP1 in PH-Fibs. Therefore, we next determined the role of CtBP1 in PH-Fib proliferation using siRNA to knock down \textit{CTBP1} expression and MTOB (2.5 mmol/L) to inhibit CtBP1 activity. Both siCTBP1 and MTOB significantly inhibited PH-Fib proliferation (Figure 5A). We also determined the effects of these agents on the expression of genes involved in cell proliferation and cell survival that had previously been shown to be direct targets of CtBP1 in cancer cells.15,18,24 siCTBP1 and MTOB treatment resulted in significant upregulation of genes that promote growth arrest (eg, cyclin-dependent kinase inhibitors genes \textit{P21} and \textit{P15}) and apoptosis (eg, \textit{NOXA} and \textit{PERP}; Figure 5B and Figure V in the online-only Data Supplement).

The antiproliferative effect induced by genetic or pharmacological inhibition of CtBP1 was accompanied by a correction of the main metabolic aberrations of bovine and human PH-Fibs. Silencing of CTBP1 or treatment with MTOB resulted in a significant decrease in relative levels of metabolites involved in proliferative anabolic pathways (eg, energy metabolism, nucleotide biosynthesis, and antioxidant reactions; Figure 5C and 5E) and human PH-Fibs (Figure 5D and 5F).

CtBP1 Suppresses Anti-Inflammatory \textit{HMOX1} Expression in PH-Fibs

Because metabolic reprogramming to aerobic glycolysis has been shown to suppress anti-inflammatory genes in macrophages,34 we hypothesized that disruption of CtBP1 signaling would increase transcription of anti-inflammatory genes in PH-Fibs. As mentioned above, the important anti-inflammatory gene implicated in the pathogenesis of PH, \textit{HMOX1},35-38 was decreased in IPAH vessels (Figure 1B) and in PH-Fibs relative to controls (Figure 6A). Consistent with the proposed repressive activity of CtBP1, siRNA knockdown or pharmacological
inhibition of CtBP1 by MTOB resulted in significantly increased HMOX1 transcription (Figure 6A).

These findings suggested that HMOX1 was a direct target of the repressive activity of CtBP1, which, to the best of our knowledge, has not been previously reported. We therefore used chromatin immunoprecipitation assay to determine direct binding of CtBP1 to the HMOX1 promoter in human PH-Fibs. We also examined whether 2-DG, pyruvate, or MTOB would decrease recruitment of CtBP1 to the HMOX1 promoter. HMOX1 promoter binding was significantly higher in PH-Fibs compared with CO-Fibs. Knockdown of CtBP1 by siRNA decreased binding of CtBP1 to the HMOX1 promoter. 2-DG, pyruvate, and MTOB also suppressed binding of CtBP1 to the HMOX1 promoter region (Figure 6B).

MTOB Inhibits Proliferation and Inflammation In Vivo in a Mouse Model of Hypoxic PH

In light of the ability of MTOB to attenuate proliferation, correct metabolism, and reduce inflammation of cultured PH-Fibs, we next sought to determine the therapeutic potential of MTOB in vivo in a mouse model of hypoxic PH (mice were chosen because the extremely high cost of the compound; eg, the cost of similar experiments in rats was calculated to exceed $35,000). Initial time course experiments using different time points of hypoxic exposure (4, 14, and 28 days) performed to determine longitudinal expression of known genes involved in cellular proliferation and inflammatory activation demonstrated that expression of most of these genes peaked at day 4 (Figure VIA in the online-only Data Supplement), which is consistent with previous studies in hypoxic mice. Hypoxic (4 days) whole mouse lung tissue exhibited increased glycolysis compared with normoxia as evidenced by the accumulation of lactate and increased NADH/NAD+ ratios (Figure 7A and 7B). Metabolomics analyses by MS indicated a progressive alteration of lung normoxic metabolic phenotype during prolonged exposure to hypoxia, alterations that were corrected by the MTOB treatment (Figure 7C). Specifically, MTOB corrected the hypoxia-induced increase in
glucose consumption and prevented the accumulation of glycolytic intermediates (glyceraldehyde 3-phosphate) and products (NADH/NAD+ ratios [Figure 7B] and lactate [Figure 7A and 7D]). At day 4 of hypoxia, qPCR data demonstrated an 8-fold increase in the expression of the proproliferative gene CDK1 (cyclin-dependent kinase 1), which was inhibited by MTOB treatment (Figure 8A). Immunostaining for Ki67 nuclear proliferation–associated antigen revealed that at 4 days of hypoxia, the number of proliferating lung cells was significantly increased and that MTOB treatment markedly decreased the number of proliferating cells (Figure 8B). These changes were especially prominent in the distal pulmonary vasculature and in lung parenchyma. Furthermore, qPCR analysis of the whole-lung tissue demonstrated that hypoxia promoted monocyte chemotactic protein-1 (Mcp1/Ccl2) mRNA expression and that MTOB treatment attenuated it (Figure 8C). Correspondingly, we demonstrated an influx of monocytes/macrophages (expressing the macrophage marker CD68) into pulmonary vascular adventitia of hypoxic hypertensive mice, and this proinflammatory response was markedly attenuated in distal pulmonary vasculature by MTOB treatment (Figure 8D). Last, to assess early pulmonary vascular remodeling (at day 4 of hypoxic exposure, before any significant deposition of collagen can be identified), we determined mRNA and protein expression of tenascin-C (TN-C), a matricellular protein with an expression that is sharply upregulated in tissues undergoing remodeling, neovascularization, inflammation, or tumorigenesis. At day 4 of hypoxic exposure, TN-C mRNA expression in lung tissues was upregulated 4-fold compared with normoxic controls, and TN-C protein was prominent in distal pulmonary vasculature (Figure 8E and 8F). MTOB treatment attenuated TNC expression at mRNA and protein levels (Figure 8E and 8F). We did not observe significant differences in CDK1, TN-C, and monocyte chemotactic protein-1 mRNA levels between untreated and MTOB- (1g/kg) treated normoxic mice (online-only Data Supplement Figure VIB). Hematoxylin and eosin staining and α-smooth muscle actin staining also showed perivascular inflammation and vascular remodeling, respectively, in hypoxic mice lung.

Figure 6. C-terminal binding protein 1 (CtBP1) directly regulates HMOX1 gene expression in pulmonary artery adventitial fibroblasts.

A. Inhibition of CtBP1 by siRNA (50 nmol/L, 72 hours) or 4-methylthio-2-oxobutyric acid (MTOB; 2.5 mmol/L, 48 hours) significantly increased anti-inflammatory gene HMOX1 expression in bovine and human pulmonary hypertension fibroblasts (PH-Fibs; n=3–6; *P<0.05, **P<0.01, ***P<0.001 vs scrambled [SCR] siRNA–treated PH-Fibs). B. Chromatin immunoprecipitation (ChIP) assay confirmed increased recruitment of CtBP1 to the promoter region of HMOX1 in PH-Fibs compared with control fibroblasts (CO-Fibs). CtBP1 siRNA attenuated precipitation of CtBP1 with HMOX1. 2-Deoxy-glucose (2-DG), pyruvate, and MTOB also suppressed binding of CtBP1 with HMOX1 (n=3; *P<0.05, ***P<0.001 vs scrambled siRNA–treated PH-Fibs or untreated PH-Fibs).
tissue, and both were attenuated by MTOB treatment (online-only Data Supplement Figure VII).

Taken together, MTOB treatment of hypoxic hypertensive mice successfully attenuated pulmonary vascular cell proliferation, inflammation (as seen by the reduction in Ccl2/Mcp1 expression and decreased recruitment of CD68-expressing macrophages), and vascular remodeling (TN-C, α-smooth muscle actin, and hematoxylin and eosin staining).

DISCUSSION

In the present study, we have demonstrated that in the pathogenesis of PH, adventitial fibroblasts undergo metabolic reprogramming with increased aerobic glycolysis relative to oxidative phosphorylation. Our findings expand on our previous observations of anomalous mitochondrial metabolism in PH and highlight the critical function of metabolic adaptations in supporting fibroblast proliferation and inflammatory activation.28 We have also demonstrated increased expression of CtBP1 in the lungs of hypoxia-induced experimental PH in the cow and mouse model and in patients with IPAH patients and linked that expression to disease pathogenesis. It is important to note that we identified CtBP1, a transcriptional corepressor that is activated by increased free NADH secondary to glycolytic reprogramming, as a molecular link and potential therapeutic target to correct the aberrant metabolic, hyperproliferative, and inflammatory phenotype of bovine and human PH-Fibs in vitro and in hypoxic mice in vivo. Our study thus supports the novel hypothesis that chronic hypoxic PH and seemingly IPAH or familial pulmonary arterial hypertension lead to the rewiring of cellular metabolic programs that use alterations in the cellular redox state (ie, available NADH) to control activity of CtBP1 and thus coordinate expression of a network of genes implicated in cell proliferation, apoptosis resistance, and inflammation (Figure 8G).

PH pathology often involves an imbalance of cell proliferation versus cell death; thus, the hypothesis has been put forth that the cellular and molecular features seen in PH resemble hallmark characteristics described...
Changes in metabolism have emerged as key contributors to cancer pathophysiology and inflammation and thus have become emerging targets for novel diagnostic and therapeutic approaches that may have relevance to PH. Our study provides strong evidence that in vivo and in vitro aerobic glycolysis is a metabolic adaptation in pulmonary artery adventitial fibroblasts in the setting of chronic hypoxia and in IPAH. Metabolic data here suggest that, akin to Warburg metabolism in cancer cells and inflammatory macrophages, incomplete glucose oxidation provides PH-Fibs with building blocks to support anabolic reactions (amino acid anabolism, fatty acid synthesis, urea cycle, gluconeogenesis) necessary to sustain proliferation and inflammatory activation, counteract oxidative stress, and promote resistance to apoptosis.

Unlike other transcriptional corepressors, CtBP1 is uniquely structured to sense increases in free NADH and metabolism in cancer cells and inflammatory macrophages, incomplete glucose oxidation provides PH-Fibs with building blocks to support anabolic reactions (amino acid anabolism, fatty acid synthesis, urea cycle, gluconeogenesis) necessary to sustain proliferation and inflammatory activation, counteract oxidative stress, and promote resistance to apoptosis.
concentrations that typically occur secondary to glycolytic reprogramming. Studies by our group and others have demonstrated that changes in the cellular reducing environment alter the interaction of CtBP1 with DNA-binding transcriptional repressors. As a foe of multiple tumor suppressors, CtBP1 also provides a link between transcriptional regulation and the metabolic status of the cell. In line with the hypothesis that free NADH concentrations increased CtBP activity, treatment of PH-Fibs with 2-DG or pyruvate to interfere with aerobic metabolism reprogrammed PH-Fibs, respectively, was associated with attenuation of cell phenotype in PH, although how this is related to or regulated by metabolic reprogramming is unclear. Because of its prominent role in the pathogenesis of PH, we focused attention on the anti-inflammatory gene HMOX1 and demonstrated...
ed that inhibition of aerobic glycolysis was associated with robust increases in \textit{HMOX1} expression. The results showed that \textit{HMOX1} is a direct target of CtBP1, which has not previously been reported. Heme oxygenase (HO) catalyzes the oxidation of heme to carbon monoxide and biliverdin, which is then converted to bilirubin by biliverdin reductase. 46 Carbon monoxide released by HO-1 confers protection against vasoconstriction and vascular remodeling induced by hypoxia in vitro. 47,48 Studies using an HO-1-null mouse model suggest that HO-1 plays a central role in protecting the right ventricle from hypoxic pulmonary pressure-induced injury. 49 In contrast, transgenic mice with constitutive, lung-specific overexpression of HO-1 do not manifest the early inflammatory changes and are protected against PH on continued exposure to hypoxia,52 suggesting that increasing HO-1 can serve as a prevention or therapeutic intervention for PH. In all, our findings suggest that it is possible that targeting CtBP1 has the potential to convert proinflammatory activation to an anti-inflammatory phenotype and thus to suppress inflammation and vascular remodeling, as was observed in our MTOB-treated hypoxic mice.

Until recently, CtBP1 had been implicated in responding to the metabolic status of the cell rather than regulating the cellular metabolic pathways.18,50 It is interesting to note that a recent study demonstrated that CtBP promotes glutaminolysis in cancer cells by directly decreasing SIRT4 gene expression, a mitochondrial repressor of glutamate dehydrogenase and thus glutaminolysis. Therefore, increased CtBP levels in cancer cells repress SIRT4, which in turn leads to an increase in glutamine supply that promotes ammonia production to neutralize the acidification associated with increased glycolytic fluxes.51 Because glycolytic rate drops as pH falls, the role of CtBP1 in preventing intracellular acidification sustains glycolysis and, in turn, cancer cell growth. RNA-Seq and metabolomic analysis from our study are consistent with these findings, showing higher level of glutamate dehydrogenase \textit{(P=0.02, FDR)} together with significantly decreased SIRT4 level (Table 2) in PH-Fibs with concomitant increases in the expression and activation of CtBP1. Consistently, inhibition of CtBP1 by siRNA or MTOB corrected the metabolic phenotype of PH-Fibs and mouse lung tissue (Figures 5C–5F, 7C, and 7C). In particular, MTOB treatment prevented the accumulation of glycolytic reprogramming induced by prolonged exposure to hypoxia in mouse lungs (Figure 7C). Indeed, although prolonged hypoxia promoted increases in glycolysis in mice lungs, MTOB treatment resulted in normoxic-like levels of glyceraldehyde 3-phosphate, lactate, and NADH/NAD+ ratios (Figure 7). Thus, similar to cancer, the proliferation-promoting function of CtBP1 in PH-Fibs requires its involvement in metabolic control.

We have previously reported that the PH-Fibs described in this study fail to exhibit high expression levels of \textalpha-smooth muscle actin and Coll and in fact continue to express markers of mesenchymal progenitors such as RGS5 (Table 2). CtBP1 could thus be an essential regulator to support self-renewal and expansion, particularly in hypoxic environments as might be observed at the medial-adventitial border of inflamed vessels. Of note, metabolic reprogramming toward aerobic glycolysis was observed in PH-Fibs cultured under normoxia, suggesting that whether hypoxia represents a key trigger to promote metabolic reprogramming and CtBP1 activation, hypoxia-independent perpetuation of the metabolic reprogramming-CtBP1 activity axis results in a feed-forward mechanism that can be disrupted by pharmacological or genetic ablation of either component of the axis in vitro and in vivo.

Last, our ex-vivo data demonstrate that targeting CtBP1 at the RNA level via siRNA or at the activity level by MTOB or reducing NADH level by 2-DG or pyruvate can inhibit the proliferative and augment the anti-inflammatory phenotype of PH-Fibs. These results provide evidence that small molecules such as MTOB or NSC9539 (a CDC25 inhibitor that inhibits the CtBP1 adenovirus E1A protein interaction) that demonstrate antitumor properties may be used as tools to treat hypoxia-induced PH.52,53 As a first step in examining this hypothesis, we treated mice made hypoxic with MTOB (at present a prohibitively expensive drug). We found that MTOB successfully attenuated vascular remodeling (cell proliferation, glycolytic and overall metabolic reprogramming, macrophage accumulation, and extracellular matrix production) induced by hypoxia. Thus, it is tempting to speculate that in certain forms or stages of PH, including hypoxia (group 3), targeting the transcriptional repressor CtBP1, which links changes in metabolism to an activated cell phenotype, may have beneficial effects.

ACKNOWLEDGMENTS

The authors dedicate this work to the memory of their colleague, Dr QingHong Zhang, an inquisitive scientist and joyful spirit who initiated their work with CtBP1 but who passed away before the publication of this article. Dr Zhang leaves behind an excellent body of scholarship focusing on the role of CtBP1 in the cancer field. The authors are deeply saddened by her loss. The authors are thankful to Marcia McGowan for her outstanding help in preparing the manuscript, Dr Dale Brown and Andy Poczobutt for coordinating the calf studies, and Alma Islas-Trejo for making the libraries for RNA-Seq.

SOURCES OF FUNDING

This manuscript was supported by National Institutes of Health grants NIH HL084923, HL014985, and HL114887; Department of Defense grant W81XWH-15-1-0280; KONTAKT grants LH 11055 and LH 15071; and John E. Rouse Endowment for Animal Breeding Research, Colorado State University.
DISCLOSURES
None.

AFFILIATIONS
From Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO (M.L., S.R., H.Z., A.F., B.A.M., M.F., S.K., M.A.F., K.R.S.); Department of Biochemistry and Molecular Genetics and Biological Mass Spectrometry Shared Resource (A.D., K.C.H.), Department of Anesthesiology (N.J.S.), Advanced Light Microscopy Core Facility (R.M.), Department of Dermatology (H.L., H.L., Q.Z.), and Department of Animal Science, Colorado State University, Fort Collins (M.G.T.).

FOOTNOTES
Received February 25, 2016; accepted August 12, 2016.

REFERENCES

Metabolic Reprogramming Regulates the Proliferative and Inflammatory Phenotype of Adventitial Fibroblasts in Pulmonary Hypertension Through the Transcriptional Corepressor C-Terminal Binding Protein-1

Min Li, Suzette Riddle, Hui Zhang, Angelo D'Alessandro, Amanda Flockton, Natalie J. Serkova, Kirk C. Hansen, Radu Moldvan, B. Alexandre McKeon, Maria Frid, Sushil Kumar, Hong Li, Hongbing Liu, Angela Caánovas, Juan F. Medrano, Milton G. Thomas, Dijana Iloska, Lydie Plecitá-Hlavatá, Petr Jezek, Soni Pullamsetti, Mehdi A. Fini, Karim C. El Kasmi, QingHong Zhang and Kurt R. Stenmark

Circulation. 2016;134:1105-1121; originally published online August 25, 2016;
doi: 10.1161/CIRCULATIONAHA.116.023171

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/134/15/1105

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2016/08/25/CIRCULATIONAHA.116.023171.DC1.html
SUPPLEMENTAL MATERIAL

METHODS

Animals (Bovine and Mouse)

All animal procedures were performed in accordance with the Guidelines for Animal Experimentation established and approved by the University of Colorado Anschutz Medical Campus and Colorado State University.

The neonatal calf model of severe chronic hypoxia-induced pulmonary hypertension (PH) has been described previously \(^1, 2\). Briefly, one-day-old male Holstein calves were exposed to hypobaric hypoxia (Pb=445mmHg) for 2 weeks, while age-matched controls were kept at ambient altitude (Pb=640 mmHg). Standard veterinary care was used following institutional guidelines at the Department of Physiology, School of Veterinary Medicine, Colorado State University (Fort Collins, CO). Animals were euthanized by overdose of sodium pentobarbital (160 mg/kg body weight).

The hypoxic mouse model of PH is well established in our laboratory \(^3, 4\). Briefly, 8 weeks old male wild-type B6 mice (C57B6, Jackson Laboratories, Maine, USA) were kept at simulated sea level altitude for one week with controlled temperature (22–24 °C) under a 12-hour-light–dark cycle. Food and water were accessible ad libitum. After one week, they were randomly separated into four groups: 1) sea level normoxia, 2) sea level normoxia + MTOB, 3) hypoxia, 4) hypoxia + MTOB. Hypoxic groups were placed in hypobaric hypoxic chambers (0.5 atm) with simulated altitude of 18,000ft and in a ventilated chamber for 4, 14, or 28 days. The chamber was flushed with a mixture of room air and nitrogen and was opened on the alternate day during health check and feeding. The gas was re-circulated. The hypoxic condition was monitored using an oxygen monitor. Control mice (normoxia) were kept at sea level altitude under the same
light–dark cycle. MTOB groups were pre-treated for one week at sea level (I.P injection, 3 times per week, either 0.75g/kg or 1g/kg. Sigma-Aldrich, Saint Louis, MO). After pre-treatment, they were kept in either sea level or hypoxic chamber for 4 days with continued MTOB treatment. The I.P injection of MTOB was proved to be safe for mice.

Human, Bovine, and Mouse Tissues

For laser-capture microdissection, human lung tissue specimens from subjects with IPAH (n =7) or donor controls (n = 8), obtained during lung transplantation, were used as previously described. Cryosections from lung tissues were mounted on polyethylene membrane-coated glass slides and 150–200 vessels per patient were collected. After briefly staining with hemalaun, intrapulmonary vessels (<100µm) were microdissected from the sections with the use of the LMD6000 (Leica, Wetzlar, Germany) as described. Total cellular RNA from vessels was isolated with the micro RNeasy kit (Qiagen, Valencia, CA). The cDNA was synthesized using BioRad iScript cDNA synthesis kit (BioRad Laboratories, Reinach, Germany). The study protocol for tissue donation was approved by the ethics committee (Ethik Kommission am Fachbereich Humanmedizin der Justus Liebig Universität Giessen) of the University Hospital Giessen (Giessen, Germany) in accordance with national law and with Good Clinical Practice/International Conference on Harmonization guidelines. Written informed consent was obtained from each individual patient or the patient’s next of kin (AZ 31/93). All lungs were reviewed for pathology, and the IPAH lungs were classified as grade III or IV according to Heath and Yacoub.

Frozen sections of lung tissue from human subjects with idiopathic pulmonary arterial hypertension (IPAH) were used for immunohistochemical analysis of CtBP1 as previously
described \(^1,^7,^9\). Lung tissue sections from calves and mice described above were obtained and used for immunohistochemical or immunofluorescent analyses as previously described \(^3,^10,^11\).

Cell Culture

Isolation of adventitial fibroblasts from distal pulmonary arteries of hypertensive and control calves was performed as described previously \(^1,^9,^11\). Human pulmonary artery fibroblasts were derived from patients with idiopathic PH or from control donors undergoing lobectomy or pneumonectomy. Cells were cultured under normoxic conditions. Experiments were performed on cells at passages 5-10.

Immunostaining

Mouse monoclonal antibody against CtBP1 was purchased from BD Biosciences (San Jose, CA), and used at 1:100 dilution. Mouse monoclonal antibody against GLUT1 was purchased from Novus Biologicals (Littleton, CO) and used at 1:1,000 dilution. Rabbit monoclonal antibody against Ki67 was purchased from Thermo Scientific (Waltham, MA), and used at 1:200 dilution. Rabbit polyclonal antibody against tenascin C (TN-C) was purchased from EMD Millipore (Billerica, MA. Brand Family: Chemicon), and used at 1:100 dilution \(^10,^12\). Mouse monoclonal antibody against macrophage marker CD68 was purchased from AbD Serotec (Raleigh, NC) and used at 1:200 dilution. Indirect immunofluorescent (IF) staining was performed on frozen 5 µm-thick lung tissue sections via a Biotin-Streptavidin detection system using Alexa-488 or -594 fluorochromes according to manufacturer’s manual (Molecular Probes/Invitrogen, Frederick, MD). Stained sections were mounted with VectaShield embedding medium with DAPI (Vector Labs, Burlingame, CA), and examined under a Zeiss fluorescent microscope. Images were acquired using AxioVision digital imaging system.
Immunohistochemical (IHC) staining with CtBP1 antibodies was performed on formalin-fixed paraffin-embedded (FFPE) lung tissue sections using DAB detection system (Dako, Carpinteria, CA).

RNA Sequencing (RNA-Seq)

RNA from bovine CO-Fibs (n=6) and PH-Fibs (n=6) were used to perform RNA-sequencing analysis. Total RNA was purified using Qiagen Mini Kit (Qiagen, Valencia, CA). Quality was evaluated using RNA Integrity Number (RIN) value from the Experion automated electrophoresis system (BioRad, Hercules, CA). The RIN values were near 10 in all the samples. mRNA was purified, fragmented, and converted to cDNA. Adapters were ligated to the ends of double-stranded cDNA and PCR amplified to create libraries. Sequencing libraries were executed with the TruSeq RNA Sample Preparation kit (Illumina, San Diego, CA). RNA-sequencing was performed on a HiSeq 2000 sequencer analyzer. Sequence reads (100bp) were assembled to the annotated UMD3.1 bovine reference genome (http://www.ncbi.nlm.nih.gov/genome/?term=bos+taurus). Quality control analysis was performed using the CLC Genomics workbench software (CLC Bio, Aarhus, Denmark). This tool assess sequence quality indicators based on the FastQC-project (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Quality was measured taking into account sequence-read lengths and base-coverage, nucleotide contributions and base ambiguities, quality scores as emitted by the base caller and over-represented sequences. All the samples analyzed passed all the QC parameters, indicating a very good quality.

Data was normalized by calculating the ‘reads per kilo base per million mapped reads’ (RPKM) for each gene. The statistical analysis was performed using the total exon reads as expression values by the empirical analysis of differential gene expression (EDGE) tool of CLC
Bio Genomic workbench software. This tool is based on the EdgeR Bioconductor package and uses count data (i.e. total exon reads) for the statistical analysis. Genes were filtered based on minimum expression greater than 0.2 RPKM. False discovery rate (FDR) was used for multiple testing corrections. Finally, differentially expressed genes were selected based on fold-change (equal or higher to 2), P-value (p<0.01), and FDR value (q<0.1).

Western Blotting

The procedure was performed as previously described. GLUT1-specific antibodies were purchased from Novus Biologicals (Littleton, CO) and used at 1: 200 dilution.

Real-Time RT-PCR

Total RNA from cultured cells was isolated using Qiagen Mini Kit (Qiagen, Valencia, CA). Total RNA from tissues was isolated with Trizol. First-strand cDNA synthesis and real-time RT-PCR were performed as described previously. The sequences for all primers are listed in Suppl. Table 1. Results are presented as fold change using delta-delta Ct method.

Quantitative Multinuclear Magnetic Resonance (NMR) Metabolomics and steady-state 13C-glucose uptake and metabolism

Fibroblasts were cultured in 150 mm tissue culture dishes until 90% confluent, and then were incubated with 10 mM of 13C1-glucose (glucose with 13C at C1 position, Cambridge Isotope Laboratories, Tewksbury, MA) as the exclusive glucose source and otherwise under standard growth conditions for 24 hrs prior to perchloric acid extraction, as per a previously published extraction protocol. Cells from five plates were pooled per condition for fibroblasts.

After extractions, both hydrophilic and lipophilic extracts were lyophilized overnight and reconstituted in deuterated solvents for NMR analysis. Collected culture media were lyophilized as well for glucose uptake/lactate export analysis. High-resolution 1H-, 31P- and 13C-NMR
experiments were performed using Bruker 400 MHz Avance III spectrometer (Bruker BioSpin, Fremont, CA) as described previously. Trimethylsilyl propionic-2,2,3,3,-d4 acid (TSP) and diphosphoric acid (DPA) in sealed capillaries were used as external standards for metabolite quantification in 1H- and 31P-NMR, respectively. The 13C$_3$-lactate peak at 21 ppm was used as an internal reference (calculated from 1H-NMR) for quantification of 13C spectra. All spectra acquisition and metabolite integration was performed using Bruker TopSpin software. Intracellular 13C-glucose and its 13C-labeled products from glycolysis and the TCA cycle were calculated from 13C-NMR spectra. All metabolite identification and multivariate partial least squares-discriminant analysis (PLS-DA) were performed using the Human Metabolome Database (HMDB). NMR data are normalized to cell mass.

Ultra-high Pressure Liquid Chromatography-Mass Spectrometry-Based direct NADH measurements and Metabolomics Analyses: steady-state and tracing experiments with U-13C-glucose

Metabolomics analyses were performed as previously reported. Briefly, CO and PH fibroblasts (n=3) were extracted in ice-cold lysis/extraction buffer (methanol:acetonitrile: water 5:3:2, 2x10^6 cells/ml buffer). After discarding protein pellets, water and methanol soluble fractions were run through a C18 reversed phase column (phase A: water, 0.1% formic acid; B: acetonitrile, 0.1% formic acid - Phenomenex, Torrance, CA) through an ultra-high performance chromatographic system (UHPLC - Ultimate 3000, Thermo Fisher). UHPLC was coupled in line with a high resolution quadrupole Orbitrap instrument run in either polarity modes (QExactive, Thermo Fisher) at 70,000 resolution (at 200 m/z). Metabolite assignment and peak integration for relative quantitation were performed through the software Maven (Princeton), against the KEGG pathway database and an in-house validated standard library, including NADH (product
no. N8129 - SIGMA Aldrich, St Louis, MO; >650 compounds; IROATech). To determine linearity ($r^2 > 0.99$ – Suppl Fig. 2C) and sensitivity of the approach (LOD and LOQ), NADH was weighed and progressively diluted (from 0.5 to 5000 injected pmol range – 4 orders of magnitude) before injection through UHPLC-MS. Integrated peak areas were exported into Excel (Microsoft, Redmond, CA) for statistical analysis (T-Test, ANOVA) through supervised partial least square-discriminant analysis with the software Multibase and MetaboAnalyst 3.0.

Alternatively, CO and PH fibroblasts were cultured in 60mm petri dish in duplicate (for experiment and cell counting) until 90% confluent, and then were incubated with 10 mM of U-13C-glucose (glucose with all 13C carbon atoms at positions 1 through 6, Cambridge Isotope Laboratories, Tewksbury, MA) as the exclusive glucose source and otherwise under standard growth conditions for 5 min, 1, 8 and 24 hrs. Extractions were performed as described above, by normalizing lysis buffer volume to cell counts at each time point (2x106 cell/ml of lysis buffer). Isotopologue distributions from U-13C-glucose in tracing experiments were determined through the software Maven, as previously reported 23, 24.

Frozen mouse whole lung tissues were snap-frozen by liquid nitrogen as soon as they were isolated. The tissues were powdered in the presence of liquid nitrogen to make the tissue uniform. Some tissues were weighed in the presence of liquid nitrogen and dry ice in a cold room and lysis buffer (10mg tissue /ml buffer) was added. Samples were extracted at 4°C for 30min, centrifuged, and the supernatants were used for metabolomics analysis as described above.

Assessment of NADH/NAD$^+$ Ratio

NADH/NAD$^+$ ratio was determined using modified methods of DH Williamson *et al* 25 based on the enzymatic cycling reaction (Pyruvate + NADH + H$^+$ \leftrightarrow Lactate + NAD$^+$) and was performed as previously described 26. Briefly, cells were cultured in 100 mm Petri dish in growth
medium to 80% confluence and all medium was replaced with fresh growth medium. After
24hrs, cells were washed with cold PBS and homogenized with 100 μl of cold acid-extraction
buffer (1 M HClO₃) and then neutralized with 50 μl of cold 2 M KHCO₃. The pH of HClO₃ and
KHCO₃ mixture was 7.0. The absorbance of NADH at 340nM was measured before and after the
enzymatic cycling reaction. The difference of NADH absorbance was used to determine the
concentration of lactate or pyruvate. Standard curves for lactate and pyruvate concentration were
generated for every set of experiments. The ratio of [lactate]: [pyruvate] was used to calculate the
NADH:NAD⁺ ratio according to the following equation: NADH: NAD⁺ =
K(lactate)/(pyruvate)(H⁺), where K is the equilibrium constant for lactate dehydrogenase.

Frozen mouse whole lung tissues were snap-frozen by liquid nitrogen as soon as they were
isolated. The tissues were powdered in the presence of liquid nitrogen to make the tissue
uniform. Some tissues were weighed in the presence of liquid nitrogen and dry ice in a cold
room, put in 1.5ml Eppendorf tubes and extracted with 200 μl of acid-extraction buffer (1 M
HClO₃) and neutralized with 100 μl of 2 M KHCO₃ at the pH of 7.0. Samples were centrifuged
and the supernatant were used for enzymatic cyclin reaction and the result were normalized by
tissue mass.

Fluorescence Lifetime Imaging (FLIM)

FLIM of two-photon excited NADH was performed at the UCD Advanced Light
Microscopy Core as previously described²⁷,²⁸ to directly visualize NADH level in cells.
Measurements were carried out on a Zeiss LSM780 (Carl Zeiss, Jena, Germany) confocal
microscope equipped with ISS Fast FLIM technology and a titanium:sapphire Chameleon Ultra
II (Coherent, Santa Clara, CA). Briefly, the intrinsic NADH fluorescence was observed through
a 40x water-immersion objective (Zeiss Korr C-Apochromat NA 1.2, Carl Zeiss, Jena, Germany)
for a monolayer cell culture. The NADH fluorescence was isolated using a 488nm long pass dichroic mirror (Semrock Di02-R488-25-D) and a bandpass filter with the spectral range 415nm-485nm (Semrock FF01-450/70-25) and detected with a Hamamatsu H7422p-40 photon-counting PMT connected to a ISS A320 FastFLIM box (ISS, Champaign, IL). Lifetime calibration was done using a 30nM fluorescein aqueous solution with a lifetime of 4 ns. Calibration and NADH imaging of the live cells were done using the same acquisition parameters. All FLIM images show pixels with free-NADH in red and pixels with bound NADH in green, defined by the red or green circles respectively on the phasor plot. The positioning of the red circle encloses the majority of the free-NADH signal. Even though the fluorescent properties of the nicotinamide ring of NADPH are identical to those of NADH, a recent study demonstrated that FLIM can separate free-NADH and NADPH fluorescence in live cells and tissues when they are bound to proteins. Another important consideration is that the dissociation constant (Kd) of CtBP is much higher for NADH (1nM) than NADPH (10^4nM), which indicate that the relative contribution of free NADPH to CtBP activation would have been minimal.

Inhibition of CtBP1

CtBP1 was inhibited genetically by siRNA or pharmaceutically by 4-Methylthio 2-oxobutyric acid (MTOB). Briefly, transfection assay was performed as follows: Fibroblast cells (at 60% confluency) were transfected with scrambled siRNA (control) or siCTBP1 (50 nM) using Lipofectamine 2000 (Invitrogen, Grand Island, NY) as previously described. Transfection efficiencies were 75% and 82% for bovine and human cells respectively based on RT-PCR results (Suppl Fig. 1). CtBP transcriptional repression is dependent on active regulation by the dehydrogenase domain. MTOB is a substrate for CtBP dehydrogenase. At high
concentrations it may inhibit the dehydrogenase, impacting repression function \(^{36}\). It was also reported that MTOB can displace CtBP from the Bik promoter and induce Bik expression \(^{5}\).

Cell Proliferation Assay

Equal numbers of cells were plated onto 24-well plates in full DMEM supplemented with 10% calf serum (CS, bovine cells) or with 10% fetal calf serum (FCS, human cells), and then treated with 2-deoxy-glucose (2-DG, 10 mM), pyruvate (20 mM), 4-Methylthio 2-oxobutyric acid (MTOB, 2.5 mM), CtBP1 siRNA (25 nM), scrambled siRNA, or left untreated. Cells in triplicate wells were counted on days 1, 2, and 3. In parallel, cells from each treatment type were collected for RT-PCR.

Chromatin Immunoprecipitation (ChIP) Assay

ChIP assay was used to study CtBP1 protein interaction with its target gene. Human fibroblast cells were cross-linked with ice cold 1% formaldehyde for 15min and the reaction quenched with addition of 0.125M glycine. Cells were scrapped off the plates, centrifuged and the pellets sonicated in lysis buffer to shear DNA. Fragmented DNA was precipitated with CtBP1 antibody (EMD Millipore, Billerica MA) using immobilized recombinant protein A affinity resins (RepliGen. Waltham, MA). Unbound DNA fragments were washed off and beads were removed with elution buffer. Precipitated protein/DNA complex were reverse cross-linked by adding 350mM NaCl and incubated for 6hrs at 65°C. DNA were then purified and used for PCR analysis.

Statistical Analysis

Prism software version 5 (GraphPad, Software, Inc, www.graphpad.com) was used for t-test or ANOVA followed by Bonferroni post-test analysis.
Values were expressed as mean ± SEM. For basic comparisons of two gaussian distributed sample sets, we used student t-tests. When comparing multiple groups, the respective ANOVA Analysis (one way when comparing one characteristic, or two way if two dependent variables were involved) was performed. P-values were subject to multiple testing adjustment using Bonferroni correction. Supervised partial least square-discriminant analysis (PLS-DA, Simca, Umetrics, San Jose, CA) were used to determine the variance of metabolic phenotypes in CO- and PH-Fibs, as determined via NMR and MS analyses and were sufficient to discriminate biological samples. To validate partial least square-discriminant analysis in MS, random permutations were performed through MetaboAnalyst and Multibase (20 random permutations were selected (significance threshold 0.05, <100 variables tested). False discovery rate (Benjamin Hochberg) was <0.1 for all significant metabolites. Power analysis was performed to make sure that the number of replicates was sufficient to ensure >80% probability to have a FDR<0.1 for all the significant observations (tested through MetaboAnalyst 3.0). Differences with P values less than 0.05 were considered statistically significant.
Supplemental References

11. Frid MG, Li M, Gnanasekharan M, Burke DL, Fragoso M, Strassheim D, Sylman JL and Stenmark KR. Sustained hypoxia leads to the emergence of cells with enhanced growth,

27. Stringari C, Cinquin A, Cinquin O, Digman MA, Donovan PJ and Gratton E. Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ

Supplemental Figure Legend:

Supplemental Figure 1: CtBP1 siRNA successfully decreased CTBP1 mRNA level in adventitial fibroblast cells.

Bovine and human pulmonary artery adventitial fibroblast cells from both control (CO-Fibs) and hypoxic-induced hypertensive groups (PH-Fibs) were transfected with CTBP1 siRNA (siCtBP1: 50nM) or scrambled RNA (SCR) when they were 60% confluent for 72hrs and cells were collected, CtBP1 mRNA levels were determined by qPCR. siRNA significantly inhibited CtBP1 level by 75% and 82% for bovine and human cells respectively (Ux=untreated, n=3. *, P<0.05; **, P < 0.01, ***, P < 0.001, compared to scrambled cells within each group)

Supplemental Figure 2. Aerobic glycolysis and its correlated metabolites are among the top metabolism pathway and top metabolites in PH-Fibs detected through RNA sequencing (RNA-Seq), mass spectrometry (MS) and Nuclear magnetic resonance (NMR).

(A) Most significant pathways identified by RNA-Seq (Bonferroni analysis of Gene Ontology in Blast2GO of PH-Fibs compared to CO-Fibs with stringency of RPKM p<0.01, fold change > 2), correlate with aerobic glycolysis reprograming in PH-Fibs. More detailed information presented in Table 1. Steady-state experiments were performed via nuclear magnetic resonance (NMR) and Ultra-High Pressure Liquid Chromatography-Mass Spectrometry (UHPLC-MS) by incubating bovine CO and PH-Fibs either with 13C$_1$ or U-13C-glucose, respectively. (B) Top metabolites analyzed by MS analysis (p<0.05, fold change > 2 in PH-Fibs compared to CO-Fibs, n=3) are indicative of aerobic glycolysis reprograming in PH-Fibs. The important metabolites correlated with aerobic glycolysis are highlighted in red. (C) Variable Importance in Projection (VIP) scores (from NMR data) identify increased glycolytic metabolites (highlighted in red) and processes as key for separation of PH-Fibs from CO-Fibs by PLS-DA. Phospholipid metabolism,
consistent with rapidly dividing cells, and hydroxybutyrate, a metabolite associated with altered redox status also differentiate the populations ($P< 0.05$, $n=4$).

Supplemental Figure 3. Nuclear magnetic resonance (NMR) and mass spectrometry (MS) analysis confirm PH-Fibs have different overall metabolic profile compared to CO-Fibs and PH-Fibs exhibit aerobic glycolysis.

(A, B) Statistical elaborations, Partial Least Square Discriminant Analysis (PLS-DA, from NMR: n=4 and MS: n=3) indicate that PH-Fibs (green) can be clearly differentiated from CO-Fibs (pink) by metabolic analysis. (C) Carbon tracing strategy of NMR analysis shows different isotopes of carbon in the cellular fractions. Open circle: 12C, red circle: 13C, pink circle: 13C, but the quantity is too low for NMR detection. The flow chart shows the pathway of glucose metabolism: glucose is metabolized to pyruvate and either enters the TCA cycle or is converted to lactate by glycolysis, or converted into alanine. Glucose entering glycolysis (or glycolytic signature) is determined by carbon tracing and calculated by the sum of 13C-Glucose-6-PO_4, 13C-Fructose-6-PO_4, 13C-lactate and 13C-alanine. Glucose entering the TCA cycle is calculated by the sum of 13C-Glutamate and 13C-Glutamine generated via pyruvate dehydrogenase and pyruvate carboxylase. 13C$_1$-glucose loses 13C at position 1 and enters pentose phosphate pathway. LDH-Lactate dehydrogenase; Glu-Glutamate; Gln-Glutamine; ALT-Alanine transaminase; PDH-Pyruvate dehydrogenase; PC-Pyruvate carboxylase; OAA-Oxaloacetate; a-KG- alpha ketoglutarate; PPP-pentose phosphate pathway. (D) As demonstrated by 13C-glucose incubation NMR experiments, PH-Fibs (green) exhibit increases in intracellular glucose uptake, glucose consumption by glycolysis, and glucose entering glycolysis versus TCA cycle compared to CO-Fibs (pink) at steady state. ($n=3$, * $P < 0.05$, ** $P < 0.01$, compared to CO-Fibs)
Supplemental Figure 4. NADH/NAD⁺ ratio measured by the Ultra-high Pressure Liquid Chromatography-Mass Spectrometry (UHPLC-MS) and enzymatic cycling reaction method showed an increased ratio in bovine and human PH-Fibs compared to CO-Fibs and 2-deoxy-glucose (2DG) decreased the NADH/NAD⁺ ratio in PH-Fibs.

(A) Linearity of the NADH detection down to a LOQ of 500 fmol injected, over four orders of magnitude, was performed through a targeted UHPLC-MS method in order to measure NADH directly. (B) Mass spectrometry-based analysis showed significant increased NADH/NAD⁺ in bovine PH-Fibs compared to CO-Fibs (n=3, *, P < 0.05, compared to CO-Fibs, NS, non-statistic significant). (C) Both bovine and human PH-Fibs have a significantly higher NADH/NAD⁺ ratio (as indicated by the ratio of [lactate]/[pyruvate]) compared to CO-Fibs. (n=3-5, *, P<0.05; **, P < 0.01, compared to CO-Fibs). (D) 2DG decreased the NADH/NAD⁺ ratio, as extrapolated from the ratio of lactate to pyruvate concentration. (n=3. ***, P < 0.001, compared to untreated PH-Fibs).

Supplement Figure 5. Bovine and human PH-Fibs, as well as vessels from IPAH patients exhibited decreased expression of pro-proliferative and anti-apoptotic genes

qPCR analysis showed decreased expression of pro-proliferative (p21, p15) and anti-apoptotic (NOXA, PERP) genes in bovine and human PH-Fibs as well as vessels isolated from IPAH patients. (n=3-8, *, P <0.05; **, P <0.01, compared to PH-Fibs or IPAH vessels)

Supplement Figure 6. mRNA expression profile for normoxic and hypoxic mouse whole lung tissue.

(A) Genes involved in proliferation (CDK1), vascular remodeling (tenasin C, TN-C), and inflammation (MCP1, SDF1, HMOX1, IL6, IL1β) were analyzed by qPCR in normoxia (Nx) and hypoxia exposed (Hx, day 4, 14 and 28) mouse whole lung tissue and revealed that most
genes peaked at day 4 hypoxia. (n=5, *, P <0.05; **, P <0.01; ***, P <0.001, compared to normoxic lungs). (B) MTOB has no significant effect on CDK1, TN-C and MCP1 mRNA expression in normoxic mice lungs (n=5).

Supplement Figure 7. MTOB attenuates perivascular inflammation and vascular remodeling in the hypoxic mouse lung at 4 days.

(A) Hematoxylin and Eosin (H&E) staining demonstrates initiation of vascular inflammation at 4 days of hypoxia. MTOB treatment attenuates this response. (B) alpha-smooth muscle actin (α-SMA) expression is increased in distal vessels at 4 days of hypoxia. This response is mitigated in MTOB-treated animals. (SL: sea level; 4d-Hx: hypoxia, 4 days; Scale bars: H&E, 500µm and α-SMA, 200µm; α-SMA: red color; DAPI: blue color).
<table>
<thead>
<tr>
<th>Bovine Gene</th>
<th>Forward 5'-3'</th>
<th>Reverse 5'-3'</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPRT</td>
<td>CAGGACCCACACACCTCCACCTCC</td>
<td>TGGTCACTCCAGAAAGCCCTTTC</td>
</tr>
<tr>
<td>CTBP1</td>
<td>CGACCTTGAGCCACCCCACTCC</td>
<td>TCCTTCCACACCCCAAAAC</td>
</tr>
<tr>
<td>GLUT1</td>
<td>AGTGTGCTGCTTCCCTTCC</td>
<td>AAGGTGTACGCTGCGCTGCG</td>
</tr>
<tr>
<td>HEXOKINASE 2 (HK2)</td>
<td>CGGAGCTGCTAAACGAGCTCGC</td>
<td>TGGTCTCTCCAGGCTGGCTGG</td>
</tr>
<tr>
<td>LDHA</td>
<td>GGTACCACTGCGCTGCCTTT</td>
<td>TGGTCTCTCCAGGCTGGCTGG</td>
</tr>
<tr>
<td>HMOX1</td>
<td>CCGTGCTGCTGCTTCCCA</td>
<td>TGGTCTCTCCAGGCTGGCTGG</td>
</tr>
<tr>
<td>p21</td>
<td>TGGTCTCTCCACACCCCAAAACTTA</td>
<td>TGGTCTCTCCAGGCTGGCTGG</td>
</tr>
<tr>
<td>p15/CDKN2B</td>
<td>AGTGTGCTGCTGCTGCTGCT</td>
<td>TGGTCTCTCCAGGCTGGCTGG</td>
</tr>
<tr>
<td>NOXA</td>
<td>GGTGACCACTGCGCTGCTTCC</td>
<td>TGGTCTCTCCAGGCTGGCTGG</td>
</tr>
<tr>
<td>PERP</td>
<td>CTGCCGCTGCTGCTGCTGCTT</td>
<td>TGGTCTCTCCAGGCTGGCTGG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Human Gene</th>
<th>Forward 5'-3'</th>
<th>Reverse 5'-3'</th>
</tr>
</thead>
<tbody>
<tr>
<td>18S</td>
<td>GAGTCGAGCTTCTTCACTGCA</td>
<td>CCGGTGTACGCTGCGCTGCG</td>
</tr>
<tr>
<td>CTBP1</td>
<td>GAGACCTTGCTTCCACACCCCACTCC</td>
<td>TGGTCTCTCCAGGCTGGCTGG</td>
</tr>
<tr>
<td>GLUT1</td>
<td>TGCCACCTGCGCTGCTGCTTCC</td>
<td>TGGTCTCTCCAGGCTGGCTGG</td>
</tr>
<tr>
<td>HEXOKINASE 2 (HK2)</td>
<td>CGGAGCTGCTAAACGAGCTCGC</td>
<td>TGGTCTCTCCAGGCTGGCTGG</td>
</tr>
<tr>
<td>LDHA</td>
<td>AGTGTGCTGCTTCCACACCCCAAAACTTA</td>
<td>TGGTCTCTCCAGGCTGGCTGG</td>
</tr>
<tr>
<td>HMOX1</td>
<td>AGTGTGCTGCTTCCACACCCCAAAACTTA</td>
<td>TGGTCTCTCCAGGCTGGCTGG</td>
</tr>
<tr>
<td>p21</td>
<td>AGTGTGCTGCTTCCACACCCCAAAACTTA</td>
<td>TGGTCTCTCCAGGCTGGCTGG</td>
</tr>
<tr>
<td>p15/CDKN2B</td>
<td>AGTGTGCTGCTTCCACACCCCAAAACTTA</td>
<td>TGGTCTCTCCAGGCTGGCTGG</td>
</tr>
<tr>
<td>NOXA</td>
<td>GGTGACCACTGCGCTGCTTCC</td>
<td>TGGTCTCTCCAGGCTGGCTGG</td>
</tr>
<tr>
<td>PERP</td>
<td>CTGCCGCTGCTGCTGCTGCTT</td>
<td>TGGTCTCTCCAGGCTGGCTGG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mouse Gene</th>
<th>Forward 5'-3'</th>
<th>Reverse 5'-3'</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPRT</td>
<td>TGCCGCTGCTGCTGCTGCTG</td>
<td>TGGTCTCTCCAGGCTGGCTGG</td>
</tr>
<tr>
<td>CDK1</td>
<td>AAGTGTGCTGCTGCTGCTG</td>
<td>TGGTCTCTCCAGGCTGGCTGG</td>
</tr>
<tr>
<td>MCP1</td>
<td>CAGGACCCACACCCCACTCC</td>
<td>TGGTCTCTCCAGGCTGGCTGG</td>
</tr>
<tr>
<td>SDF1</td>
<td>TGGTCTCTCCACACCCCAAAACTCC</td>
<td>TGGTCTCTCCAGGCTGGCTGG</td>
</tr>
<tr>
<td>IL6</td>
<td>CCGTGCTGCTGCTGCTGCTT</td>
<td>TGGTCTCTCCAGGCTGGCTGG</td>
</tr>
<tr>
<td>HMOX1</td>
<td>CCGTGCTGCTGCTGCTGCTT</td>
<td>TGGTCTCTCCAGGCTGGCTGG</td>
</tr>
</tbody>
</table>
Supplemental Figure 1

CtBP1 mRNA level normalized to Ux

Bovine CO-Fibs

- Ux
- SCR
- siCtBP1

Bovine PH-Fibs

- Ux
- SCR
- siCtBP1

Human CO-Fibs

- Ux
- SCR
- siCtBP1

Human PH-Fibs

- Ux
- SCR
- siCtBP1
Supplemental Figure 3

A NMR Scores Plot

B UPLC-MS

C NMR 13C-glucose tracing strategy

- **Glycolysis**: Sum of 13C-Glucose-6-PO$_4$, 13C-Fructose-6-PO$_4$, 13C-lactate, 13C-alanine
- **TCA**: Sum of 13C-Glutamate and 13C-Glutamine

- 13C-glucose
- 13C-pyruvate
- 13C-fructose
- 13C-alanine
- 13C-pyruvate

D NMR

- Intraacellular 13C-Glucose
- Glycolysis
- Glycolysis/TCA

LDH-Lactate dehydrogenase; Glu-Glutamate; Gln-Glutamine; ALT-Alanine transaminase; PDH-Pyruvate dehydrogenase; PC-Pyruvate carboxylase; OAA-Oxaloacetate; a-KG-alpha ketoglutarate; PPP-pentose phosphate pathway
Supplemental Figure 4

A
NADH
664.1171 m/z

UHPLC-MS

NADH

R² = 0.994

Intensity (A.U. x 10^4)

CO-Fibs PH-Fibs
Bovine

NAD+

Intensity (A.U. x 10^4)

CO-Fibs PH-Fibs
Human

B
NADH/NAD+

Ratio

CO-Fibs PH-Fibs
Bovine

C
NADH/NAD+

Ratio

CO-Fibs PH-Fibs
Bovine

D
NADH/NAD+

Ratio

untreated 2DG

Bovine Human

untreated 2DG

Human PH-Fibs

**

*
Supplemental Figure 6

A

mRNA level normalized to normoxic controls

CDK1

Nx 4d 14d 28d

Hx Hx Hx

*** * *

TNC

Nx 4d 14d 28d

Hx Hx Hx

*** * *

MCP1

Nx 4d 14d 28d

Hx Hx Hx

SDF1

Nx 4d 14d 28d

Hx Hx Hx

HMOX1

Nx 4d 14d 28d

Hx Hx Hx

IL6

Nx 4d 14d 28d

Hx Hx Hx

IL1b

B

mRNA level normalized to normoxic controls

CDK1

Nx Nx+MTOB

TN-C

Nx Nx+MTOB

MCP1

Nx Nx+MTOB

**

*
Metabolic reprogramming and inflammation act in concert to control vascular remodeling in hypoxic pulmonary hypertension

Kurt R. Stenmark,1,3 Rubin M. Tuder,4 and Karim C. El Kasmi2

1Division of Critical Care Medicine, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Denver, Colorado; 2Division of Gastroenterology, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Denver, Colorado; 3Cardiovascular Pulmonary Research Laboratories, Department of Medicine, University of Colorado, Anschutz Medical Campus, Denver, Colorado; and 4Program in Translational Lung Research, Department of Medicine, Division of Pulmonary Sciences, University of Colorado, Anschutz Medical Campus, Denver, Colorado

Submitted 6 April 2015; accepted in final form 28 April 2015

Stenmark KR, Tuder RM, El Kasmi KC. Metabolic reprogramming and inflammation act in concert to control vascular remodeling in hypoxic pulmonary hypertension. J Appl Physiol 119: 1164–1172, 2015. First published April 30, 2015; doi:10.1152/japplphysiol.00283.2015.—Pulmonary hypertension (PH) is a complex, multifactorial syndrome that remains poorly understood despite decades of research. PH is characterized by profound pulmonary artery (PA) remodeling that includes significant fibro-proliferative and inflammatory changes of the PA adventitia. In line with the emerging concept that PH results from a multistep process driven by reprogramming of gene-expression patterns that govern changes in cell metabolism, inflammation, and proliferation. Data demonstrate that in addition to PA endothelial cells and smooth muscle cells, adventitial fibroblasts from animals with experimental hypoxic PH and from humans with PH (hereafter, termed PH-Fibs) exhibit proinflammatory activation, increased proliferation, and apoptosis resistance, all in the context of metabolic reprogramming to aerobic glycolysis. PH-Fibs can also recruit, retain, and activate naïve macrophages (MΦ) toward a proinflammatory/proremodeling phenotype through secretion of chemokines, cytokines, and glycolytic metabolites, among which IL-6 and lactate play key roles. Furthermore, these fibroblast-activated MΦ (hereafter, termed FAMΦ) exhibit aerobic glycolysis together with high expression of arginase 1, Vegfa, and Hif1α, all of which require hypoxia-inducible factor 1α and STAT3 signaling. Strikingly, in situ, the adventitial MΦ phenotype in the remodeled PA closely resembles the MΦ phenotype induced by fibroblasts in vitro (FAMΦ), suggesting that FAMΦ crosstalk involving metabolic and inflammatory signals is a critical, pathogenetic component of vascular remodeling. This review discusses metabolic and inflammatory changes in fibroblasts and MΦ in PH with the goal of raising ideas about new interventions to abrogate remodeling in hypoxic forms of PH.

glycolysis; HIF; IL-6; fibroblast; macrophage

PEOPLE WITH PULMONARY HYPERTENSION (PH), due to lung diseases and/or hypoxemia, comprise a distinct group (Group 3) in the World Health Organization (WHO) clinical classification system (80). WHO Group 3 comprises a heterogeneous set of diseases sharing the common feature of hypoxia-induced pulmonary vascular remodeling. The presence of PH in these patients, who include survivors of acute lung injury and those with pulmonary fibrosis or chronic obstructive pulmonary disease (COPD), significantly worsens morbidity and mortality. Furthermore, recent data demonstrate that in these patients, PH is markedly underdiagnosed and is specifically associated with substantial mortality (19, 45, 53). Unfortunately, all therapies currently approved for use in PH have been designed for patients with WHO Group 1 PH [so-called pulmonary arterial hypertension (PAH), e.g., idiopathic PAH (iPAH), scleroderma PAH, human immunodeficiency virus-related PAH, etc.], and to date, no clinical trial with these drugs has shown benefit in patients with WHO Group 3 disease (78). Furthermore, whereas oxygen supplementation attenuates PH and improves overall survival in patients with COPD, it remains unclear whether these effects are mediated by improved pulmonary vascular modeling or why some patients with COPD develop severe pulmonary vascular disease despite oxygen therapy (1, 10). Thus the identification of underlying pathogenic mecha-
nisms, which may instruct the development of novel and improved treatment strategies for PH in these patients, is of paramount importance. The goal of this mini-review is to examine evidence supporting the hypothesis that chronic hypoxia can induce adaptations in metabolism of both mesenchymal cells (specifically fibroblasts) and immune cells [macrophages (Mφ)], particularly in genetically susceptible individuals, who induce and maintain signaling networks that drive sustained increases in cell proliferation and inflammatory activation/phenotype (Fig. 1). This cell-proliferation/inflammation nexus is therefore critical to the pathogenesis of PH.

METABOLIC THEORY OF PH: RELATIONSHIP TO CANCER

Lung tissue hypoxia, to a variable extent, is common to all of the conditions encountered in patients with Group 3 PH. As the lung cells, including the pulmonary vasculature, react to hypoxia, PH develops; this paradigm is particularly relevant in patients with COPD, sleep-disordered breathing, and fibrosing interstitial lung diseases and those living in altitude (80, 83). Oxygen therapy alone, in these patients, is usually not sufficient to normalize pulmonary arterial pressure, suggesting the involvement of cellular growth mechanisms, which cannot wholly be explained by hypoxic vasoconstriction responses (45). Importantly, in all of these conditions, PH is also consistently associated with early and persistent perivascular inflammation and pulmonary arterial remodeling (87, 93). A striking feature is the predominance of perivascular Mφ surrounding remodeled pulmonary arteries (27, 49, 77). This remodeling involves an imbalance of cell proliferation vs. cell death, which taken in conjunction with inflammation and Mφ activation, has led to the hypothesis that the cellular and molecular features of PH resemble hallmark characteristics of cancer monoclonal behavior (18, 39, 93, 95). It is increasingly recognized that changes in cell metabolism in cancer cells, as well as in cells in the surrounding stroma, including Mφ, are essential for cancer cells to proliferate, migrate, and exhibit proinflammatory characteristics (22, 55, 101). As such, there is an intense effort in the cancer field to define the molecular mechanisms that underlie the coordinated response of cancer cells with their immediate cellular microenvironment, made of cancer-associated...
ated fibroblasts (CAFs) and Mϕ. The basis of this interaction relates to changes in metabolism, growth, and inflammation. These pathogenic nodes may offer new opportunities for therapy.

Strikingly, a metabolic adaptation akin to aerobic glycolysis (“Warburg-like”), historically assigned to cancer cells, has also recently been reported in PH (18, 32, 67, 93, 105). These changes have been described to occur in smooth muscle cells (SMCs), endothelial cells, and fibroblasts (34, 67). Additional strong data in support of the importance of this metabolic adaptation are supported by 18-fluorodeoxyglucose (18FDG) PET imaging, which has demonstrated increased glucose uptake and metabolism in PAH patients as well as in the monocrotaline rat model of PH (54, 105). Furthermore, 18FDG uptake and gene-expression studies in pulmonary arterial fibroblasts, isolated from iPAH patients, lend support to the concept that a proliferative and inflammatory pulmonary vascular pathology contributes to the lung 18FDG PET signal (105). This study also showed that 18FDG uptake occurs in perivascular mononuclear cells, which accumulate in the adventitial perivascular regions. In vivo studies in the monocrotaline model demonstrated a close correlation between lung 18FDG uptake and pulmonary vascular remodeling. Importantly, enhancement of oxidative glycolysis with dichloroacetate-mediated inhibition of the enzyme pyruvate dehydrogenase kinase attenuated PH and vascular remodeling in this model and also reduced expression of the glucose transporter (Glut1) typically upregulated in cells exhibiting high glycolysis. These findings correlated with reduced 18FDG PET signals, which were associated with decreased peripheral vascular muscularization and inflammatory cell accumulation. Collectively, these in vivo and ex vivo observations support a “metabolic hypothesis” for the pathogenesis of PH, whereby a rearrangement of the mitochondrial and cytosolic metabolism, known as the “Warburg effect,” might explain, at least partially, the molecular and functional abnormalities seen in PH cells, including excessive proliferation, apoptosis resistance, and inflammatory activation (67).

METABOLIC AND INFLAMMATORY CHANGES IN FIBROBLASTS AND Mϕ IN CANCER

Our laboratory has been particularly focused on fibroblasts and Mϕ in PH, based on observations of inflammation occurring largely in the perivascular regions in PH (which harbor fibroblasts and Mϕ) in humans and animal models of PH (9, 77, 85, 87). Interestingly, similar observations of largely adventitial inflammatory responses, mostly involving Mϕ, are observed in systemic circulation in response to changes in blood flow and are necessary for remodeling (89). It seems that despite marked cytokine and chemokine production by medial SMCs, Mϕ accumulation occurs largely in the adventitia (48, 108). These observations are consistent with the idea that under most circumstances, the vascular media of most all arteries appear to be an immune-privileged site (91). Here again, the cancer paradigm is appropriate: consistent with the hypothesis put forth by Dvorak (26), almost 30 years ago—that a “tumor is a wound that never heals”—an ever-increasing body of evidence demonstrates that the fibroblasts and Mϕ in tumors, often referred to as CAFs and tumor-associated Mϕ (TAMs), are key players in the process of tumorigenesis (39, 62).

Several recent studies have shown that in many cancers, the cancer-promoting and therapy-resistant properties of the tumor stroma largely reside in the activity of fibroblasts and Mϕ (61, 62). CAFs have been shown to play roles in many aspects of tumor initiation, progression, and metastasis. CAFs are now implicated in the following: 1) modulating the tumor and microenvironment through the secretion of a large variety of soluble factors; 2) modifying tumor metabolism; 3) remodeling the extracellular matrix of the tumor; 4) regulating cancer stenness; 5) modulating the immune response (and affecting Mϕ phenotype); 6) promoting cancer cell migration and metastasis; and 7) altering therapeutic responses in a variety of tumors (12, 13). Of particular relevance to the hypothesis that PH exhibits a critical relationship to cancer is the ability of fibroblasts to secrete cytokines and growth factors, their ability to modify tumor metabolism, and their role in modulating immune responses and Mϕ phenotype. A wide variety of growth factors and cytokines has been documented to be produced and released into the tumor microenvironment by fibroblasts (75). The CAF secretome also regulates angiogenesis. VEGF-A as well as CXCL12, CXCL14, and connective tissue growth factor are induced in CAFs by neoplastic cells (4). Interestingly, CAFs also show important metabolic changes that probably promote their own survival as well as promote tumorigenesis. CAFs demonstrate increased autophagy in concert with upregulation of members of the glycolytic pathway, including phosphoglycerate kinase 1 (PGK1). Overexpression of PGK1 in normal fibroblasts results in a myofibroblastic phenotype and an ability to promote tumor cell growth (13, 99). Furthermore, in many tumors, CAFs express glycolytic enzymes related to the Warburg effect, such as the M2 isoform of pyruvate kinase (PKM2), as well as lactate dehydrogenase. This metabolic adaptation toward increased aerobic glycolysis in CAFs is hypothesized to generate lactate and ketones, which are secreted into the intracellular space and can act as paracrine oncometabolites that fuel the oxidative mitochondrial metabolism in neoplastic cells. This phenomenon is often referred to as the “reverse” Warburg effect (68). In addition, lactate and ketones have been recognized to modulate Mϕ activation (16).

As noted, chronic inflammation is a prominent risk factor for many cancers. An inflammatory environment, especially in the context of the metabolic environment described above, is known to promote error-prone, high-rate proliferation, thereby facilitating tumorigenesis (37). CAFs mediate tumor-enhancing inflammation by expressing a proinflammatory gene signature, which creates a microenvironment that attracts myeloid cells and supports tumor growth and angiogenesis (92). Importantly, carcinoma cells can induce normal surrounding fibroblasts to turn on a proinflammatory gene signature. Furthermore, accumulating evidence shows that the tumor stroma and CAFs, in particular, actively participate in modulating the immune response to help neoplastic cells escape detection, thereby supporting tumor progression (43). Recent studies have shown that depletion of fibroblast-activating protein α-positive cells restored immunologic detection and destruction of the tumor, indicating that presumably fibroblasts can act as immunosuppressant cells in the tumor microenvironment (31). Additionally, reports suggest that at least within the pancreas, fibroblast-like cells induce the differentiation of peripheral blood mononuclear cells into immune-suppressive,
myeloid-derived suppressor cells, contributing to T cell inhibition (51). In summary, CAFs possess the ability to manipulate the innate (i.e., Mφ, natural killer cells) and the adaptive immune system (i.e., T cells) to maintain an aberrant inflammatory environment tailored to promoting tumorigenesis.

METABOLIC AND INFLAMMATORY CHANGES IN PULMONARY ARTERIAL ADVENTITIAL FIBROBLASTS: PARALLELS TO CAFS

Fibroblasts are also recognized to play a critical role within the vasculature and its innate immune system in the absence of oncogenic transformation by acting as “sentinel” cells (8, 25, 44, 79, 86, 87), which detect and respond to a variety of local environmental stresses and thereby initiate and coordinate pathophysiological responses (5, 6, 8, 33, 41, 63, 81, 82, 96, 102). We have documented that in both experimental hypoxic PH and human PAH, the pulmonary artery (PA) adventitia harbors activated fibroblasts (hereafter, termed PH-Fibs) with a hyperproliferative, apoptosis-resistant, and proinflammatory phenotype that persists ex vivo over numerous passages in culture (2, 20, 49, 66, 98). This particular phenotype would be centrally involved in cell signaling, shaping the surrounding inflammation-prone microenvironment. Indeed, in line with the cancer paradigm—that stromal cells play a critical role in initiation and perpetuation of inflammation (7, 40, 81, 84, 86, 87, 96, 102)—we have recently shown that PH-Fibs potently initiate and perpetuate inflammation (7, 40, 81). Bovine PH-Fibs exhibit an intriguingly similar cytokine profile to that described for CAFs. We have recently established that these fibroblast-activated Mφ (FAMφ) are polarized to a very distinct, hertofores undescribed, proinflammatory/proremodeling phenotype, in which STAT3 and hypoxia-inducible factor 1α (HIF1α) signaling promote expression of genes implicated in chronic, nonresolving tissue responses in PH [e.g., Pim1; nuclear factor of activated T cells, cytoplasmic 2; Arginase-1 (Arg1); VEGF] (27). This fibroblast-driven polarization of Mφ into a distinct phenotype is similar to that recently described for hypoxic tumor-driven Mφ polarization (16, 51). In addition, expression of Arg1, Hif1, and Vegfa is characteristic of wound-healing Mφ (26, 58). Thus Mφ activation and expression of HIF1α, Arg1, and Vegfa appear to not only be a functional requirement for Mφ to promote physiological wound healing but also can be “high jacked” to shape an environment, not only conducive to tumor growth but also importantly, to promote pathological tissue remodeling. These observations highlight the idea that hypoxia signaling, inflammation, and remodeling and ultimately, PH are linked through stromal cell (fibroblast)/Mφ interactions, driven specifically by local changes in a hypoxic or hypoxic-like vascular microenvironment.

Data also show that similar to cancer cells, which reprogram metabolic pathways to support high proliferation (Warburg effect) (3, 23, 24, 57, 71, 88, 93), highly proliferative PH-Fibs exhibit a marked and persistent change in their metabolism toward aerobic glycolysis (i.e., Warburg effect), which is maintained ex vivo (105). However, the mechanisms controlling the metabolic, molecular, and functional changes in the fibroblast phenotype in PH have only recently begun to be investigated. Importantly, observations from our laboratory (49, 66, 87, 93, 95, 98, 106) have documented that cells (including SMCs, endothelial cells, and fibroblasts), derived from the PH vessel wall, exhibit durable ex vivo changes in their metabolic state (aerobic glycolysis), as well as in their proliferative and inflammatory capabilities and in their “molecular phenotype”. Stable, “imprinted” changes in the functional phenotype of cell observations strongly support the idea that these stable changes in cells, especially as they relate to metabolism and cell signaling, could arise from acquired somatic mutations and/or epigenetic change.

Here again, there is a striking parallel to observations in cancer. It is now well accepted that signal transduction regulates metabolism (101). Cancer cells exploit signaling-dependent regulation of metabolism. For example, oncogenic activation of signal transduction pathways drives nutrient uptake and metabolism to support continuous macromolecular biosynthesis and cell proliferation (46, 101). Reciprocally, signaling pathways have been shown to be regulated by metabolism through intracellular nutrient-sensing molecules, such as AMP-activated protein kinase (AMPK) and mammalian target of rapamycin complex 1. In addition, metabolites may serve as indicators of the metabolic status of the cell and through metabolite-sensitive protein modifications, modulate the activity of signaling proteins, metabolic enzymes, and transcriptional regulators (101). Modifications, including acetylation, methylation, glycosylation, and phosphorylation, are all generated from metabolites (56). Acetylation, a protein modification involving the addition of an acetyl group obtained from the metabolite acetyl-CoA, is controlled by the combined activities of acetyltransferases and deacetylases (38). There is evidence that both acetylation and deacetylation can be influenced by nutrient availability, suggesting that protein acetylation could serve as a sensitive indicator of cellular metabolic resources (101). It is also recognized that metabolism itself can be regulated by acetylation. A growing body of evidence indicates that nearly all enzymes involved in glucose and fatty acid metabolism are acetylated (107). For some of these enzymes, such as the critically important PKM2, acetylation seems to modulate their activity in a nutrient-responsive, biologically meaningful way (15, 50, 107). The acetylation status of PKM2 was shown to be relevant to tumor growth, as expression of an acetylation mimic mutant version of PKM2 enhanced the growth of xenograft tumors (50).

Similarities to this concept of reciprocal regulation of metabolism and signaling have been raised in PH. We recently documented that the highly proliferative, apoptotic-resistant, and proinflammatory [high expression of IL-6, CCL2/monocyte chemotactic protein 1 (MCP-1), CCL12/stromal cell-derived factor 1, IL-1β] phenotype of PH-Fibs, isolated from the pulmonary circulation of humans and calves with severe PH, is mediated, at least in part, by a marked decrease in the expression of microRNA 124 (miR-124) and the increased expression of its direct target, the alternative splicing factor poly(A) tract-binding protein 1 (PTBP1), as well as increased expression of class I histone deacetylases (HDACs), a specific subgroup of the deacetylase mentioned above (98). With the use of miR-124 inhibitors and mimics in human and bovine fibroblasts, we demonstrated that overexpression of miR-124 decreased the proliferation and migration rates of PH-Fibs. Similarly, inhibition of miR-124 (via anti-miR-124) in normal control fibroblasts (CO-Fibs) augmented cell proliferation and migration, demonstrating that miR-124 regulates...
proliferative and migratory characteristics of fibroblasts. It should be noted that with the use of both miR array analysis and real-time PCR, we noted decreased expression of several other miRs (including miR-184; miR-21, miR-155) in PH-Fibs (from calves and humans) compared with corresponding controls. We made miR mimics of each of these miRs and transfected them into PH-Fibs, as we did for miR-124. In no case did overexpression of these miRs decrease proliferation, migration, or inflammatory cytokine expression. Collectively, these data suggest that loss of miR-124 in PH-Fibs is a major contributor to their “constitutively” activated phenotype.

To elucidate the mechanisms by which miR-124 regulates cell proliferation and migration, we screened transcript levels of cell cycle-related genes and found that miR-124 positively regulates Notch1, phosphatase and tensin homolog (PTEN), forkhead box O3 (FOXO3), p21/Cip1, and p27/Kip1, all of which were reduced in PH-Fibs. Next, we sought to determine the target of miR-124 upstream of the cell cycle regulator genes, knowing that these genes would have to increase, since miR-124 was decreased, as it suppresses cell cycle genes. Previously published data identified PTBP1 as a direct target of miR-124 and showed that PTBP1 can suppress Notch1 signaling (14, 52). Therefore, we focused on PTBP1, which is an abundantly expressed RNA-binding protein involved in several post-transcriptional regulation events, including repression of RNA alternative-splicing events, activation of internal ribosomal entry site-driven translation, and RNA localization and stability. It is overexpressed in a variety of cancer cells in response to oncogenes, such as cMyC and the transcription factor STAT3. We found that PTBP1 expression is increased in bovine and human PH-Fibs (in vitro), as well as in vivo in PH adventitial of humans and calves with severe PH (98). Overexpression of miR-124 (using miR-124 mimics) in human and bovine PH-Fibs inhibited PTBP1 expression, whereas inhibition of miR-124 (using anti-miR-124) in CO-Fibs upregulated PTBP1 expression. We conducted luciferase/PTBP1 3′ untranslated region assays and proved that PTBP1 is a direct target of miR-124 (98). We also showed that PTBP1 acts upstream of Notch1 and negatively regulates the cell cycle-related genes Notch1, PTEN, FOXO3, p21, and p27. Importantly, it is also known that PTBP1 controls splicing of pyruvate kinase, and its increased expression leads to overexpression of the PKM2 isoform, which, as noted above, is an important regulator of the metabolic state of cells. These novel findings demonstrate that miR-124 expression is markedly attenuated in PH-Fibs and results in an increase of an RNA-binding protein, PTBP1, which post-transcriptionally regulates expression of several genes controlling cell proliferation, metabolism, and inflammation.

Given the importance of PTBP1 in regulating the proliferative, metabolic, and inflammatory phenotype of PH-Fibs, we performed experiments elucidating the mechanism controlling expression of miR-124. Since it has previously been shown that miR-124 itself is subject to epigenetic modifications (36, 100), we interrogated whether miR-124 is epigenetically silenced in PH-Fibs. Perhaps not unexpectedly, given the significant change in metabolic status of PH cells (aerobic glycolysis) and the increase in class I HDAC expression, we found that treatment of PH-Fibs with the HDAC inhibitors, suberoylanilide hydroxamic acid and Apicidin, led to a significant increase in miR-124 expression with concurrent decreases in expression of its direct targets, PTBP1 and CCL2/MCP-1 (98). These observations support our previously published data, showing increased class I HDAC activity in cultured PH-Fibs and in hypoxic lungs (11, 106). Furthermore, this suggested that decreased miR-124 expression in PH-Fibs occurred through epigenetic modifications, likely through the removal of acetylation marks on histones, resulting in a more condensed chromatin structure and inhibition of transcription. Such an epigenetic event would explain the constitutively activated phenotype of PH-Fibs, which we have shown to be “reversible” (close to normal) through the application of HDAC inhibitors (11, 106).

In summary, it seems increasingly clear that a fibroblast (fibroblast-like cell) emerges in the adventitia of humans and animals with severe PH that bears a striking resemblance to CAFs. These cells exhibit a Warburg-like glycolytic phenotype and are characterized by excessive proliferation, apoptosis resistance, and a proinflammatory phenotype. Metabolism and signaling pathways in these cells are intimately linked and driven by epigenetic changes that are intimately linked to the metabolic state of the cell (Fig. 1).

METABOLIC AND INFLAMMATORY CHANGES IN PA FAMΦ

We propose that the synchronized and mutually interactive signaling between pulmonary perivascular fibroblasts and MΦ is central in PH pulmonary vascular remodeling. There is evidence that MΦ accumulation in the remodeled PA is largely restricted to the adventitia, where MΦ are in close proximity to adventitial fibroblasts and that MΦ critically contribute to the vascular remodeling process (27, 35, 73, 77, 86). Importantly, there is evidence for adventitial MΦ progenitor cells (at least in the systemic circulation in the setting of atherosclerosis) that can serve as a durable pool for adventitial MΦ populations (72). As outlined for fibroblasts above, rapidly increasing evidence supports a role for the Warburg effect in immune activation (65), specifically, in MΦ and dendritic cells (DCs). Initial reports by the Pearce lab (29, 30, 47, 69) have demonstrated that Toll-like receptor-activated DCs undergo a metabolic adaptation from oxidative phosphorylation to aerobic glycolysis and that this metabolic switch is critical for DC maturation and function, while it also regenerates NADP oxidase and citric acid cycle intermediates to support fatty acid production. In DCs, this metabolic switch to aerobic glycolysis is promoted by phosphatidylinositol 3 kinase/Akt signaling and is inhibited by the AMPK, a central regulator of catabolic metabolism that is also displayed by cancer cells (29). More recent reports by the O’Neill lab (64, 90) have similarly shown that increased aerobic glycolysis and reduced oxidative phosphorylation are critical events required for innate MΦ activation in response to LPS. These studies have also identified PKM2 as the critical molecular switch to turn on aerobic glycolysis in LPS-activated MΦ (64). Conversely, the alternatively activated MΦ phenotype (induced by IL-4) depends on increased oxidative phosphorylation and lipolysis (42, 60, 76, 97). It is, however, unresolved which metabolic adaptations occur in and are critical for the functional phenotype of MΦ associated with chronic tissue remodeling and fibrosis, especially because these MΦ often resist categorization into the extremes of M1 (LPS-activated) vs. M2 (IL-4-activated) phenotypes (27); their functional phenotype may be in flux, chang-
The major consequence of metabolic adaptation toward aerobic glycolysis in LPS-activated Mφ is generation of increased concentrations of the citric acid cycle intermediate succinate (90), which is a potent prolyl hydroxylase (PHD) inhibitor and thus stabilizer of HIF1. The functional consequence of this LPS-mediated HIF1 stabilization through metabolic reprogramming in Mφ is increased transcriptional activation of the proinflammatory gene Il1b. In addition, in LPS-activated Mφ, increased activity of PKM2 further promotes HIF1-mediated transcriptional induction of IL-1β and other cytokines in colorectal cancer cells (104). PKM2 is also critical for enhancing STAT3 signaling (through increased phosphorylation) (21, 103, 104), whereas STAT3, in turn, increases HIF1 signaling and expression of Glut1, which is important for glucose uptake and maintenance of increased glycolysis, enhancing the anaerobic metabolism (Warburg effect). Thus this PKM2-STAT3-HIF feedforward may be a critical signaling pathway in tissue Mφ associated with areas of remodeling and fibrosis that typically lack strong M1-inducing signals and is not associated with IL-4 and canonical M2 Mφ but instead, exhibits STAT3 and HIF1 signaling (27, 104). Moreover, PKM2 can drive expression of Arg1 through activation of STAT3, which as we have reported, is highly upregulated in FAMφ (27). Increased activity of Arg1 through metabolism of arginine can have profound effects on restricting arginine availability to “client cells” (e.g., adventitial fibroblasts) (70). Under arginine-limiting conditions, Mφ initiate a salvage pathway (74) that consumes aspartate and generates fumarate, thus directly affecting concentrations of citric acid cycle intermediates that are capable of inhibiting PHDs and thus stabilizing HIF1. Moreover, increased aerobic glycolysis produces increased amounts of lactate. Importantly, because FAMφ does display evidence of both aerobic glycolysis and citric acid cycle activity (unpublished observations), akin to activated T cells (59), pyruvate is excreted as lactate but also entered into the citric acid cycle; in this regard, lactate has been shown to be a potent activator of Mφ toward expression of HIF1 and Arg1 (16). Together, these metabolic pathways make these cells glutamine-dependent, whereas the arginine metabolism through Arg1 may provide glutamate and help replenish the citric acid cycle (unpublished observations).

As such, activation of STAT3, HIF1, and PKM2 in the molecular crosstalk between Mφ and fibroblasts through bidirectional generation and consumption of metabolites downstream and upstream of aerobic glycolysis may perpetuate rather than attenuate inflammatory activation (Fig. 1).

Intriguingly, inhibition of this PKM2 activity has been shown to convert the LPS-activated phenotype toward a Mφ with anti-inflammatory features, as indicated by increased expression of IL-10 (64). Interestingly, in DCs, IL-10 antagonizes DC maturation through inhibition of metabolic adaptation to aerobic glycolysis (47). Thus Mφ phenotypic conversion toward generation of anti-inflammatory mediators and simultaneously increasing responsiveness of inflammatory Mφ to anti-inflammatory IL-10 might be achieved by interfering with PKM2 activity. However, the ability of IL-10 to inhibit LPS-induced IL-1β transcription in Mφ depends, to some degree, on Arg1, a PKM2-STAT3 target gene (unpublished observations). Precisely how PKM2, HIF1, and aerobic glycolysis affect IL-10 production and IL-10 responsiveness requires further analysis.

The aggregate of these findings demonstrates that functional Mφ plasticity depends on discrete metabolic adaptations and suggests that Mφ can be functionally re-educated through manipulating metabolism. However, whether a similar phenotypic conversion/re-education of Mφ from proinflammatory to a less-inflammatory or even reparative Mφ phenotype can be achieved by inhibition of HIF1 alone or by inhibition of aerobic glycolysis alone awaits further studies. Intriguingly, PKM2 might turn out to play a critical role as a “master regulator” in driving and/or fine-tuning Mφ polarization and phenotypic reprogramming/re-education of Mφ away from proinflammatory or proremodeling phenotypes, because it regulates HIF1 activity and glycolysis, and it also affects STAT3 phosphorylation and signaling (21).

In summary, CAFs and TAMs display considerable overlap with the phenotypes described for PH-Fibs and PH-Fib-activated Mφ associated with vascular remodeling in PH. Therefore, similar molecular and metabolic mechanisms may govern fibroblast-Mφ crosstalk in the process of tumorigenesis and vascular remodeling. PKM2 may prove to be a critical driver of the metabolic and functional crosstalk between CAFs and TAMs, as well as between PH-Fibs and FAMφ. Thus PKM2 targeting may turn out to attenuate tumorigenesis and vascular remodeling through similar mechanisms. Interestingly, small molecule activators of PKM2 that enhance tetramerization activity have been shown to compromise the proglycolytic and pro-HIF signaling functions (64), and it is conceivable that these molecules also interfere with the ability of PKM2 to phosphorylate STAT3; they may thus prove to be potent inhibitors of the uncontrolled PKM2-STAT3-HIF feedforward signal but may also increase generation of and responsiveness to endogenous anti-inflammatory mediators, such as IL-10.

GRANTS
Support for this study was provided, in part, by the National Heart, Lung, and Blood Institute [Grants HL114887 (Axis), HL014985 (PPG), and HL125827 (R01)].

DISCLOSURES
No conflicts of interest, financial or otherwise, are declared by the authors.

AUTHOR CONTRIBUTIONS
manuscript; K.R.S., R.M.T., and K.C.E.K. edited and revised manuscript; K.R.S., R.M.T., and K.C.E.K. approved final version of manuscript.

REFERENCES

94. van Nieuwenhoven FA, Turner NA. The role of cardiac fibroblasts in the transition from inflammation to fibrosis following myocardial infarction. Vascul Pharmacol 58: 182–188, 2013.
Contribution of Metabolic Reprogramming to Macrophage Plasticity and Function

Karim C. El Kasmi1,* and Kurt R. Stenmark2
1University of Colorado Denver, School of Medicine, Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, Aurora Colorado, USA.
2University of Colorado Denver, School of Medicine, Section of Pediatric Critical Care and Cardiovascular Pulmonary Research, Department of Medicine, Aurora Colorado, USA.

Abstract

Macrophages display a spectrum of functional activation phenotypes depending on the composition of the microenvironment they reside in, including type of tissue/organ and character of injurious challenge they are exposed to. Our understanding of how macrophage plasticity is regulated by the local microenvironment is still limited. Here we review and discuss the recent literature regarding the contribution of cellular metabolic pathways to the ability of the macrophage to sense the microenvironment and to alter its function. We propose that distinct alterations in the microenvironment induce a spectrum of inducible and reversible metabolic programs that might form the basis of the inducible and reversible spectrum of functional macrophage activation/polarization phenotypes. We highlight that metabolic pathways in the bidirectional communication between macrophages and stromal cells are an important component of chronic inflammatory conditions. Recent work demonstrates that inflammatory macrophage activation is tightly associated with metabolic reprogramming to aerobic glycolysis, an altered TCA cycle, and reduced mitochondrial respiration. We review cytosolic and mitochondrial mechanisms that promote initiation and maintenance of macrophage activation as they relate to increased aerobic glycolysis and highlight potential pathways through which anti-inflammatory IL-10 could promote macrophage deactivation. Finally, we propose that in addition to their role in energy generation and regulation of apoptosis, mitochondria reprogram their metabolism to also participate regulating macrophage activation and plasticity.

Keywords

inflammation; aerobic glycolysis; mitochondria; fibroblast; nitric oxide; arginase1; IL-10; Krebs cycle

*Correspondence to Karim.Elkasmi@ucdenver.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Disclosure statement
The authors declare no financial interests in any of the work submitted here. The authors are not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as influencing the objectivity of this review.
1. Sensing of the microenvironment through metabolic adaptation

Macrophages are present in abundant numbers in all tissues of the body where they are regarded as critical in both monitoring and regulating the local tissue microenvironment, including the coordination of organ specific functions of tissue resident cells, such as fibroblasts and parenchymal cells [1, 2]. It is increasingly recognized that the composition of the local tissue microenvironment (e.g. the composition of metabolites, cytokines, oxygen tension, inflammatory signals) including signals from other tissue cells are critical determinants of macrophage metabolism and functional plasticity [3–11]. Considering that macrophages are highly sensitive to variations in concentrations of metabolites [3, 7, 8, 10, 12–15], substrates [10, 12, 16], toxins [17], oxygen tension [5, 18–21], acidification [9], osmolality [22], and other molecular components associated with alterations within the microenvironment (e.g. cytokines) [11, 23, 24], changes in cellular metabolism in macrophages can function as an important primary indicator of altered tissue homeostasis and thus as a critical regulator of macrophage functional responses [25]. Cellular metabolism in turn may directly affect the microenvironment through generation and/or depletion of metabolites [12]. Furthermore, organ specific differences in availability of substrates, metabolites, or oxygen tension, together with base-line differences in macrophage expression levels of genes that encode for proteins that regulate metabolic and transcriptional processes might account for specificity in macrophage responsiveness across tissues. It follows that the functional phenotype of tissue macrophages may be in near constant flux, continuously changing in response to local environmental cues and local metabolic conditions. This versatility of tissue macrophages (i.e. functional plasticity) is reflected by a vast variety, maybe infinite, number of transcriptional, and possibly metabolic phenotypes [4–6, 8, 26]. For example, during normal homeostasis (e.g. absence of pro-inflammatory stimuli), the resident macrophage must exhibit a functional phenotype that promotes and maintains homeostasis. In contrast, in the presence of tissue stimulation or injury (e.g. pro-inflammatory stimuli), macrophages must detect microenvironmental alterations and actively change from a “base-line” transcriptional and metabolic program that promoted homeostasis into one that is compatible with mounting a pro-inflammatory response, which must return to baseline, once the inciting stimulus has been cleared. Thus, transcriptional and metabolic programs within the macrophage must be inducible and reversible on demand and responsive to environmental cues such that macrophage activation occurs in a regulated fashion with regard to amplitude and duration of activation. These programs must further be tailored to the challenge and to the specific organ/tissue to preserve the integrity and specific organ function [9, 27–29]. Thus, a spectrum of inducible and reversible metabolic programs might form the basis of the inducible and reversible spectrum of functional macrophage activation/polarization phenotypes [1, 2, 30–32]. Here, we review recent evidence that suggests that macrophage function is indeed directly and tightly associated with alterations in cellular metabolism and that macrophage plasticity is directly linked to the ability of the macrophage to alter or reprogram cellular metabolism.
2. Metabolic adaptations associated with inflammatory macrophage activation

ATP production to provide energy for cellular function is essential for cells, including macrophages in both homeostatic conditions and under stress. Glucose is the principal source that can be used for ATP production through two directly linked pathways. The upstream pathway involves metabolism of glucose to pyruvate in the cytosol, where phosphates are transferred from glycolytic intermediates to generate ATP (yielding a net production of 2 ATP molecules). The downstream pathway is the mitochondrial tricarboxylic cycle (TCA cycle, also known as Krebs cycle or citric acid cycle) which is directly linked to glycolysis because pyruvate is converted into acetyl-CoA, which then enters the TCA cycle to generate the reducing equivalents nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2), which donate electrons to the electron transport chain in the mitochondrial oxidative phosphorylation (OXPHOS), in which oxygen serves as an electron acceptor to support ATP generation by ATP synthase (yielding a net production of 36 ATP molecules) (Figure 1). Because complex 2 of the respiratory chain (SDH, succinate dehydrogenase) is part of the TCA cycle, a fully functional TCA cycle is tightly linked to fully functional oxidative phosphorylation, and mitochondrial function. When pyruvate becomes limiting due to reduced glycolysis, cells can also metabolize glutamine or fatty acids to replenish the TCA cycle and maintain OXPHOS. In contrast, when oxygen becomes limiting or the TCA cycle becomes interrupted (see below) cells reprogram metabolism to produce ATP by diverting glycolytic pyruvate to lactate instead of acetyl-CoA. Although glycolysis yields less ATP than OXPHOS (2 vs. 36 ATP molecules), the speed of ATP generation in the former is quicker than in the latter, which is potentially critical to maintain energy levels.

It is believed that under homeostatic conditions macrophages exhibit a metabolic profile (or baseline metabolism) consistent with utilizing glucose mainly through the TCA cycle and utilization of oxygen for mitochondrial oxidative phosphorylation (OXPHOS) to generate ATP [5–7, 10, 33, 34] (Figure 1). In contrast, the hallmark metabolic adjustment observed in the inflammatory macrophage (macrophages activated with LPS or the combination of LPS and IFNγ that produce pro-inflammatory mediators and cytokines [4, 10, 35, 36]) at least in vitro, is decreased utilization of the TCA cycle and decreased OXPHOS together with increased metabolism of glucose to lactate (glycolysis) [4, 5, 8, 33] (Figure 2). Importantly, this metabolic adaptation occurs without lack of oxygen, and has thus been referred to as “aerobic glycolysis” [4, 8, 34, 37–41]. Reduction in mitochondrial oxidative phosphorylation is associated with accumulation of mitochondrial TCA intermediates, such as citrate, succinate, and fumarate (Figure 2) and increased consumption of glutamine and arginine [3, 8, 12, 42–45]. Importantly, this metabolic adaptation is required for pro-inflammatory activation (e.g. in response to LPS) and expression of proper effector function [3–8, 33, 36–41, 46, 47]. Intriguingly, the anti-inflammatory cytokine IL-10 limits glycolysis and blocks activation of dendritic cells in response to Toll-like receptor (TLR) activation [41].
In contrast, the metabolic phenotype observed in IL-4 activated macrophages (so called alternatively activated, M2 macrophages [48]) exhibits absence of aerobic glycolysis and presence of OXPHOS [35, 36]. In addition, it has been demonstrated that IL-4 activated macrophages are very dependent on glutamine together with up-regulated expression of a particular nucleotide sugar, Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) [36]. Because UDP-GlcNAc is required for protein glycosylation, the authors hypothesized that this process might be important for functioning of alternatively activated macrophages, because typical M2 macrophage receptors are glycosylated, although the exact functional relevance of UDP-GlcNAc in M2 macrophages remains elusive [4, 35, 36]. Certain chronic conditions that involve IL-4 signaling (e.g. parasite infestation, allergy, asthma) might be associated with continuous maintenance of macrophages in an OXPHOS state, while on the other hand chronic inflammatory conditions might be associated with macrophages arresting in aerobic glycolysis [29]. The metabolic phenotypes of resident macrophages across tissues under normal homeostatic conditions or under stress conditions and exactly how local metabolic cues promote and regulate distinct metabolic phenotypes of tissue macrophages, especially in vivo, remains unclear [36]. Moreover, whether reprogramming of metabolism can be harnessed to interfere with macrophage function awaits future analysis [4, 12, 29].

3. Functional consequences of metabolic adaptation in macrophages

An important question is why do inflammatory macrophages switch to aerobic glycolysis in addition to altering mitochondrial metabolism and reducing mitochondrial respiration? This seemingly paradoxical metabolic phenomenon of an increase in glycolysis with increased production of lactate at the cost of repressed mitochondrial respiration (reduced OXPHOS) despite presence of oxygen was first described almost a century ago in cancer cells by the Nobel Laureate Otto Warburg and is now commonly referred to as “Warburg effect” or “Warburg metabolism” [49]. The metabolic adaptations in tumor cells are thought to be driven largely by somatic mutations, whereas those in inflammatory cells likely occur independent of somatic mutations. Therefore, as opposed to cancer cells, metabolic reprogramming in inflammatory macrophages may have evolved as a quickly inducible, adaptable and potentially reversible cellular process that can quickly relay the sensing of the microenvironment to the transcriptional machinery and evoke, as well as terminate, effector functions. Considering that inflammatory macrophages as opposed to cancer cells, are likely not proliferating at all or if so at a very slow rate, metabolic reprogramming to aerobic glycolysis must serve cellular functions other than proliferation. Among those, biosynthetic activities for the synthesis and secretion of a broad panel of immune mediators are likely candidates.

It is believed that increased aerobic glycolysis “makes up” for the reduced ATP synthesis in the face of attenuated mitochondrial respiration (due to inhibition of OXPHOS) as a survival response that serves to maintain cellular ATP levels. But perhaps most importantly, glycolytic ATP is thought to be a critical contributor to the maintenance of the mitochondrial membrane potential (and thus mitochondrial integrity) referred to as Δψ m [50]. In the presence of reduced mitochondrial respiration, the Δψ m would collapse over time, provoking cytochrome C release, and apoptosis with ensuing cell death. However, it has been demonstrated that Δψ m can be preserved by a mechanism that involves reversal of
ATP synthase, which under these conditions hydrolyses glycolytic ATP, concomitantly extruding protons from the mitochondrial matrix. As such, the mitochondria become ATP consumers (ATP provided by aerobic glycolysis) rather than ATP generators [50, 51] (Figure 2). This mechanism of ATP synthase reversal to maintain mitochondrial integrity has been observed in various pathologies [50, 51]. Moreover, this suggests that competence for aerobic glycolysis is a critical prerequisite in inflammatory macrophages to maintain $\Delta\psi_m$ and thereby prevent apoptosis. At the same time, preserving mitochondrial integrity allows for continued accumulation of TCA cycle intermediates, which are important in promoting macrophage activation (e.g. succinate and citrate) (Figure 2). A principally similar metabolic adaptation may allow inflammatory macrophages to survive and maintain function in oxygen-deprived environments (e.g. inflammatory hypoxia).

Metabolites that accumulate in the presence of a decreased TCA cycle (e.g. succinate and citrate) and gene products that are upregulated to drive increased glycolysis such as hypoxia-inducible factor 1 (HIF1) can directly increase inflammatory gene transcription [8]. Moreover, reactive oxygen species (ROS) that are increased in the presence of reduced mitochondrial function can also increase inflammatory gene expression (see below) [52, 53]. In addition, metabolites generated downstream of aerobic glycolysis (e.g. lactate) can affect paracrine signaling with other tissue cells and other macrophages (as has been demonstrated in cellular crosstalk between cancer cells and macrophages within tumors [9, 14, 42]). In addition, by reallocating their cellular bioenergetics in favor of glycolytic metabolism, inflammatory macrophages are increasingly reliant on glucose and other nutrients, such as glutamine, for survival and function and if not counteracted become more sensitive to death by nutrient deprivation and local acidification (e.g. lactate). Thus, metabolic programs might also determine macrophage lifespan. Alternatively, akin to cancer cells, macrophages can become autotroph (i.e. independent on external sources) for certain substrates, nutrients and metabolites by inducing specific metabolic salvage pathways (e.g. L-Arginine recovery from citrulline and aspartate), which can maintain function and prolong survival despite nutrient depletion in the microenvironment [44]. In addition, neighboring parenchymal cells might generate metabolites that can be utilized for metabolic and inflammatory pathways in macrophages in auxotroph ways (e.g. lactate, succinate) [9]. Sustained availability of substrates and metabolites through autotrophic and auxotrophic pathways might be a prerequisite for the inflammatory macrophage to remain in aerobic glycolytic metabolism and allow ongoing generation of pro-inflammatory mediators (i.e. chronic inflammatory activation). This hypothesis is further supported by the observation of increased succinate levels in synovial fluid from patients with rheumatoid arthritis (RA) and in stool from animals and patients with inflammatory bowel disease (IBD) [13, 54, 55]. Succinate, which accumulates in cells exhibiting an aerobic glycolytic phenotype due to decreased TCA cycle function, has been shown to promote dendritic cell activation in paracrine ways, especially when combined with TLR activators [13, 52, 54, 56–58]. In addition, increased lactate production by glycolytic cancer cells has been shown to promote macrophage activation towards a phenotype that in turn promoted cancer growth. Lactate activated macrophages that genetically lacked Arginase1 expression no longer supported cancer growth [9]. This finding suggests that Arginase1 induced by paracrine (potentially also autocrine) lactate can
operate as part of a feed forward pathway in the bidirectional communication between macrophages and cancer cells and possible other tissue cells [9, 11, 29].

Yet another important reason to reprogram metabolism to increased glycolysis has been discovered recently by Haschemi et al. The authors demonstrated that LPS promoted the flow of glucose through both the glycolytic pathway and the PPP [33]. This is an important finding because glucose that is shunted through the PPP can reenter glycolysis upstream of pyruvate and continue to contribute to lactate production or enter the TCA [33]. At the same time, shunting glucose through the PPP, generates NADPH, which is required for oxidative reactions (NADPH oxidase-dependent respiratory burst) and glutathione biosynthesis to buffer reactive oxygen species (ROS), which are increased in the activated macrophage (Figure 2). In addition, utilization of the PPP generates substrates for nucleotide metabolism. Haschemi et al. discovered that LPS suppressed carbohydrate kinase-like (CARKL) protein which results in increased glucose flow through the PPP. Forced expression of CARKL antagonized glucose flux through the PPP and attenuated glycolytic flux, as well as LPS-induced cytokine and ROS production [33]. These findings indicate that CARKL is an important regulator of the ability of macrophages to reprogram cellular metabolism in order to equip macrophages with the necessary machinery to sustain mediator production.

4. Linking metabolic reprogramming with inflammatory macrophage activation

Based on above-mentioned Warburg phenotype in cancer cells, it has often been inferred that mitochondrial metabolism, that is the TCA cycle, was attenuated in macrophages that exhibit reprogramming to aerobic glycolysis. However, recent reports suggest that mitochondrial metabolism is not specifically attenuated but rather coordinately reprogrammed [36, 59]. It was found that TCA cycle reprogramming involved downregulation of two important enzymatic steps, functionally interrupting the TCA cycle flow in LPS and interferon gamma (IFN\(\gamma\)) activated macrophages [36].

The first interruption involves significantly decreased expression of the enzyme isocitrate dehydrogenase (IDH), which results in substantial increases in citrate[36]. The proposed functional consequence is that citrate can be withdrawn from the TCA cycle and transported into the cytosol (by the mitochondrial citrate carrier in exchange for malate [3, 60]) and used for at least three important purposes: 1) the production of itaconic acid, which has been shown to have anti-microbial properties [14, 42]; 2) the generation of large amounts of fatty acids that are required for the synthesis of new membrane lipids, arachidonic acid, and prostaglandins[3]; 3) the production of oxaloacetate, which produces NADPH (required to generate ROS through NADPH oxidase, and NO through inducible nitric oxide synthase (iNOS), which is typically highly induced in LPS/IFN\(\gamma\) activated macrophages) [3] (Figure 1). These data demonstrate a critical role for citrate derived from a disrupted TCA cycle in LPS and IFN\(\gamma\) activated macrophage function.

The second interruption of the TCA cycle occurs at the level of conversion of succinate to fumarate due to inhibition of succinate dehydrogenase (SDH) [36]. This SDH inhibition not only results in increased levels of succinate but also in reduced mitochondrial respiration.

Semin Immunol. Author manuscript; available in PMC 2016 October 09.
(because SDH constitutes complex II of the respiratory chain) [3]. Mitochondrial succinate transporters facilitate transport of accumulated succinate into the cytosol. Within the cytosol, succinate has been shown to inhibit prolyl-hydroxylases (PHDs), which normally facilitate the degradation of HIF1. The functional consequence of PHD inhibition is therefore accumulation of HIF1 protein [8]. Accumulated HIF1 protein directly promotes transcription of the proinflammatory cytokine IL-1β [8] and positively regulates expression of key enzymes (e.g. hexokinase1) and transporters (e.g. glucose transporter1, GLUT1) in the glycolytic pathway [8]. In the mitochondria, accumulated succinate can inhibit activity of complex I of the respiratory chain. This results in increased ROS production [61]. ROS can also inhibit PHDs in the cytosol [61, 62], which further stabilizes HIF1. ROS mediated PHD inhibition also positively affects NFκB signaling. In addition, succinate can accumulate in the extracellular space, as has been reported for a number of inflammatory conditions, including RA [13], IBD, and even cancer [55–57]. There, it can bind to a receptor (SUCNR1) on the cell surface and synergize with TLRs in the induction of inflammatory macrophage activation and potentiate production of inflammatory cytokines [58]. Succinate can also mediate dendritic cell chemotaxis and promote presentation of autoantigens and stimulation of autoimmunity [58]. Thus, succinate generated by a disrupted TCA cycle in metabolically reprogrammed macrophages appears to be an intracellular and paracrine metabolic signal that can initiate and maintain inflammatory macrophage activation.

A recent study has demonstrated that mitochondrial accumulation of succinate is not restricted to inflammatory macrophages [52]. Using a mouse model of ischemia and reperfusion injury in kidney, heart and brain, the authors demonstrated that a universal metabolic signature of ischemia is succinate accumulation. This succinate accumulation was also related to dysfunction of SDH. However, in contrast to the inhibition of SDH in LPS/IFNγ activated macrophages, the authors discovered that during ischemia SDH was not inhibited, but instead operated “in reverse” and reduced accumulated fumarate to succinate [52]. The reason for this “in reverse” operation of SDH was believed to be due increased accumulation of fumarate, which typically occurs under ischemic conditions. The most important finding of this study was that the accumulated succinate was causing damage once the tissues were re-perfused, and thus oxygen restored. The authors could show, that upon reperfusion, succinate is quickly re-oxidized by SDH (which now operates in its conventional forward fashion), which drives extensive ROS generation through reverse electron transport at mitochondrial complex I [52]. Collectively, these findings provide a mechanistic and teleological explanation for the observation that certain TCA cycle intermediates accumulate and also suggest that alterations in mitochondrial TCA activity are required for enabling inflammatory macrophage activation and constitute a means of paracrine signaling. Intriguingly, cancer cell metabolism is also associated with increased generation of TCA intermediates, such as succinate [59]. The implication of these findings is that hypothetically, in any situation of mitochondrial succinate accumulation and sufficient presence of oxygen, ROS production might substantially be increased at Complex I (Figure 2). Considering that ROS have also been recognized as an important activator of the inflammasome [63], TCA cycle disruption in LPS/IFNγ activated macrophages might promote inflammasome signaling. Whether SHD operation “in reverse” also underlies macrophage activation in inflammatory conditions during which oxygen becomes limiting...
(i.e. inflammatory hypoxia) awaits further analysis. Furthermore, if the above-mentioned TCA cycle reprogramming also occurs in conditions in which macrophages are activated by LPS alone or by cytokines other than IFNγ remains further analysis.

The reprogramming of the TCA cycle towards inhibition of IDH and SDH requires that the precursors of succinate and citrate be fueled into the TCA cycle. This replenishing of the TCA cycle is referred to as anerplerosis. It has recently been proposed that in LPS/IFNγ activated macrophages coordinated increases in the activity of the aspartate-arginosuccinate cycle together with a modified aspartate-malate shuttle are an important metabolic adjustment to provide the disrupted TCA cycle with the intermediates fumarate and malate [36] (Figure 2). Importantly, upregulation of aspartate-arginosuccinate cycle together with the modified aspartate-malate shuttle has several additional potential consequences on inflammatory macrophage function in the presence of a disrupted TCA cycle:

(i) increased fumarate availability can further inhibit SDH activity and intensify succinate accumulation or promote operation of SDH “in reverse” (see above) [52].

(ii) malate is important within the malate-aspartate shuttle which usually regenerates NAD+ within the cytosol to be used in glycolysis and promotes mitochondrial NADH synthesis for ATP generation; however, in LPS/IFNγ activated macrophages increased expression of iNOS results in high citrulline levels[44]; aspartate can now be used for the reaction with citrulline which generates argininosuccinate (Figure 2). Argininosuccinate is further metabolized to Arginine (which is the substrate for iNOS and so maintains the flux between arginine-succinate and citrulline-arginine cycle) and fumarate, which replenishes the TCA cycle (Figure 2).

What is the functional consequence of utilizing the argininosuccinate pathway in LPS/IFNγ activated macrophages?

The argininosuccinate pathway forms the molecular interface with the citrulline-arginine cycle to regenerate Arginine which allows continued NO production by iNOS [36, 44]. The ability to maintain NO generation has recently been shown to be a critical metabolic adaptation in macrophages to allow killing of intracellular mycobacteria [44, 64, 65]. In addition, IL-1β has also been shown to be critical in mycobacterial control in infected macrophages [66]. On the other hand, continuous activity of iNOS and generation of NO is also critical in inhibiting IL-1β generation through the inflammasome [67]. Thus, context dependent fine-tuning of macrophage function might be regulated through activity of the argininosuccinate pathway and thus also through arginine availability in the microenvironment.

NO also promotes inhibition of complex II (which is SDH) [68], re-reinforcing the above-mentioned break-point in the TCA cycle (Figure 2). This important role of the citrulline-arginine cycle is further supported by studies that show that in blood monocyte-derived DCs that express iNOS and are TLR activated, mitochondrial dysfunction coincided with the expression of iNOS and metabolic reprogramming to aerobic glycolysis occurred only in DC subsets that made NO [47]. Similar observations have been made in macrophages,
where NO promotes glycolysis [43, 47, 69]. NO also promotes electron leakiness resulting in increased ROS generation through inhibition of the respiratory chain, which further promotes PHD inhibition leading to HIF1 stabilization and subsequent cytokine generation [47, 68].

Regenerated arginine can also be used by arginase1 to promote glutamate synthesis from ornithine, which can replenish the disrupted TCA cycle. It has been suggested that the metabolism of glutamine through the gamma-amino-butyric acid (GABA) shunt is responsible for TCA anerplerosis in LPS activated macrophages [8], however it is unclear if the enzymes required for the GABA shunt are expressed in macrophages [36]. Therefore, TCA cycle anerplerosis might occur through glutamate derived from the metabolism of Arginine to ornithine by Arginase1. Considering the proposed inability to metabolize ornithine in the urea cycle in macrophages (because of the lack of expression of ornithine transcarbamylase [44]), ornithine to glutamate metabolism through Arginase1 poses an attractive alternative or additional source of TCA cycle anerplerosis [36].

Finally, through regeneration of arginine from citrulline and aspartate, inflammatory macrophages become autotroph for arginine [44]; this metabolic adaptation could be especially relevant for maintaining macrophage functionality at inflammatory sites where arginine concentrations may become quickly limiting [44]. In addition, T-cell proliferation in granulomatous responses (where M2 macrophage activation with high expression of Arginase1 predominates) might not only be linked to availability of arginine to fuel T cell proliferation [12] but also be linked to the regulation of metabolic programs in M2 macrophages that are necessary for provision of cytokines and other factors that support T cell proliferation.

Considering that Arginase1 is a HIF1 regulated gene [9, 11], these data support the hypothesis that metabolic adaptation towards a coordinated expression of HIF1 and Arginase1 together with a coordinated expression of the malate-aspartate, argininosuccinate, and citrulline arginine pathways might be critical to maintain anerplerosis of the TCA cycle in metabolically reprogrammed inflammatory macrophages. Evidently, these metabolic adaptations are potentially more important under the aspect of strong inflammatory activation of macrophages in response to LPS and INFγ because this combination strongly induces expression of iNOS, and argininosuccinate synthase (ASS) and argininosuccinate lyase (ASL) (key enzymes within the argininosuccinate cycle) [44] (Figure 2). Whether reprogramming of the TCA cycle with inhibition of SDH and IDH and increasing the argininosuccinate cycle is a general metabolic adaptation in macrophages associated with a variety of inflammatory conditions awaits further experimentation. Considering that arginine concentrations can become very limiting in inflamed tissues, activity of the argininosuccinate shunt and arginine availability may turn out to be a critical determinant of metabolic adaption and ability to produce inflammatory cytokines in inflammatory macrophages[44, 45, 65]. Moreover, the relevance of this metabolic program in less inflammatory and chronic inflammatory conditions with low or absent LPS and INFγ needs to be resolved. It is intriguing to speculate that in a manner analogous to cytochrome c release from the mitochondria in apoptosis, and analogous to the role of mitochondrial nucleotides in induction of inflammation [44], generation of inflammatory cytokines

Semin Immunol. Author manuscript; available in PMC 2016 October 09.
regulated by mitochondrial metabolic reprogramming and subsequent generation of ROS and accumulation and release of TCA cycle intermediates such as succinate is yet another critical mitochondrial feature that has evolved to coordinate macrophage activation.

Finally, direct alteration of functional programs through epigenetic mechanisms that involve HIF1 can contribute to prolonged inflammatory activation and/or facilitate responses to subsequent challenge (a response which has been referred to as innate immune memory or trained immunity) [29, 46, 70].

5. Regulation of metabolic adaptation in inflammatory macrophages

Understanding the mechanisms that regulate metabolic reprogramming and that link metabolism to inflammatory activation and deactivation of macrophages is a critical aspect in macrophage biology. The concrete mechanisms that regulate metabolic reprogramming in macrophages have not yet been elucidated in detail.

Recent evidence in cancer cells shows that pyruvate kinase isoform M2 is upregulated relative to isoform M1 (PKM1), which has been proposed to play an important role in the Warburg metabolism because PKM2 promotes metabolism of pyruvate to lactate [4]. The PKM2 and PKM1 isoforms are produced by alternative splicing from the Pkm2 gene [71, 72]. PKM2 exists as a monomer or dimer, both of which have far lower enzymatic activity than the alternatively spliced PKM1, which results in metabolism of glucose to lactate instead of entry into the TCA cycle. PKM2 dimers can enter the nucleus and regulate gene transcription while tetramers are retained in the nucleus [71, 72]. Intriguingly, as recently shown in a seminal study by the Semenza lab, PKM2 can also act as a co-activator for HIF1, greatly increasing the transcriptional activity of HIF1 and thus transcription of key glycolytic enzymes, thereby enhancing the glycolytic metabolic profile [71, 73]. Moreover, PKM2 is in turn a target of HIF1, indicating a positive feed forward loop between PKM2 and HIF1 signaling [74]. A recent study by the O’Neill lab has further advanced our understanding of the role of PKM2 in regulation of metabolic adaptation and inflammatory activation of macrophages. This study shows that LPS promotes phosphorylation of PKM2 [4]. This event has also been shown to be important for the Warburg effect in hypoxia and cancer [72]. The LPS mediated phosphorylation event prevents tetramerization and also promotes formation of a PKM2/HIF1 complex within the nucleus. This PKM2/HIF1 complex can directly bind to the IL1β promoter and drive IL1β expression. Importantly, in isoform-specific Pkm2 knockout macrophages, LPS failed to promote HIF1 stabilization and IL1β transcription. Highly specific small-molecule activators that force PKM2 tetramer formation also impaired LPS-induced PKM2/HIF1 complex formation and IL1β transcription. Importantly, enhancing tetramer formation attenuated S. typhimurium-induced IL-1β and boosted IL-10 in vivo, associated with impaired clearance of infection [4]. These results are largely consistent with an earlier study by Yang et al., who demonstrated that inhibition of PKM2 prevented lethality in a mouse model of septic shock [75]. Intriguingly, dimeric PKM2 that localizes to the nucleus can also facilitate nuclear localization of STAT3 and act as a protein kinase that directly phosphorylates (on tyrosine 705) and activates nuclear STAT3 [76]. Importantly, it has been shown that constitutively active STAT3 induces chronically enhanced HIF1 protein levels and promotes aerobic glycolysis [77, 78].

\[\text{Semin Immunol. Author manuscript; available in PMC 2016 October 09.} \]
This is consistent with Hif1 being a known STAT3 target gene [11], and also demonstrates that STAT3 is sufficient to induce metabolic reprogramming in macrophages. Considering that un-phosphorylated STAT3 is continuously shuttling between the cytoplasm generating a nuclear reservoir of STAT3 available for activation [79], PKM2 mediated STAT3 activation could contribute to macrophage activation upon metabolic reprogramming [76, 80]. Because IL-6 is an external signal that induces phosphorylation of STAT3 [81], increased tissue IL-6 levels, as observed in chronic inflammatory conditions, and certain forms of fibrosis, and vascular remodeling associated with pulmonary hypertension [11, 82, 83] may be sufficient to promote metabolic reprogramming in tissue macrophages and thus initiate and maintain macrophage activation [11]. Intriguingly, Arginase1 is a known STAT3 and HIF1 target gene [9, 11, 29, 44, 45, 65] and genetic absence of Hif1 or STAT3 prevents Arginase1 induction in response to IL-6 and paracrine lactate [9, 11]. We have previously reported that fibroblasts isolated from the perivascular space of animals with hypoxic pulmonary hypertension display an activated phenotype (high proliferation rate and ability to activate macrophages) [11]. Macrophages are activated by these fibroblasts by paracrine IL6 signaling. Fibroblast-activated macrophages have increased phosphorylated STAT3 and increased HIF1 signaling and increased Arginase1 expression. This Arginase1 expression is dependent on both STAT3 and HIF [11]. Thus, a hypothetical PKM2-STAT3-HIF1-Arginase1 signaling axis could be a critical regulator of metabolic reprogramming in macrophages in certain environmental conditions [77]. Specifically, intercellular signaling between fibroblasts and macrophages in the context of metabolic reprogramming to aerobic glycolysis in association with STAT3, HIF1 and Arginase1 activation can be an important component of chronic inflammatory processes [11].

Considering that coordinated increases in glycolysis and PPP alter the redox status of the cell and increase the NADH/NAD ratio [33], one question that arises is if transcription factor activity involved in metabolic reprogramming, macrophage activation, or macrophage deactivation (e.g. NFκB, STAT1, STAT3) is regulated by the redox status of the cell (i.e. NADH/NAD ratio). Indeed, certain transcriptional repressors (e.g. CtBP1) can “sense” the NADH/NAD ratio in cancer cells and affect expression of genes involved in cellular proliferation [84]. If an altered NADH/NAD ratio in inflammatory cells, including macrophages and fibroblasts with reprogrammed metabolism, regulates expression of pro-inflammatory genes through altering CtBP1 activity is currently being investigated in our laboratory. In addition, it was recently reported that in TLR activated macrophages, certain histone deacetylases (HDACs) can promote inflammatory signaling and that this ability depended on direct cooperation with HIF1 [85, 86]. Moreover, interactions of HDACs with CtBP1 prevented pro-inflammatory activation, which is in keeping with the hypothesis that in macrophages the NADH/NAD ratio can be sensed and directly relayed to the regulation of pro-inflammatory macrophage activation [85]. These findings are also consistent with the emerging literature on the ability of histone modifying enzymes to affect macrophage function and polarization [85]. Considering that metabolites derived from the TCA cycle, such as acetyl-CoA (derived from citrate) and alpha-ketoglutarate, can affect a host of epigenetic mechanisms, including jmjd3, a histone demethylase, which has been shown to promote macrophage responses to LPS but also to be important for alternative macrophage activation in response to IL-4 [87], metabolic reprogramming might co-operate directly with
epigenetic mechanisms to regulate macrophage plasticity[88]. Moreover, as reviewed previously by us, metabolic pathways could emerge as a critical regulator of epigenetic mechanisms that underlie cellular cross-talk between macrophages and fibroblasts in chronic inflammatory vascular remodeling and possibly other conditions associated with chronic inflammatory activation [20].

6. Metabolic pathways in macrophage de-activation

Our understanding of metabolic mechanisms that deactivate macrophages and contribute to resolution of inflammation is still very limited [20]. IL-10 is considered a master signal to promote deactivation of macrophages [89, 90]. All of IL-10’s anti-inflammatory properties depend on STAT3 signaling [89, 91]. Through the activation of STAT3, IL-10 suppresses a subset of LPS induced genes, including pro-inflammatory cytokines, such as Il12, Tnfa, and Il6 [89, 91]. An open question has been how IL-10 and STAT3 down-regulate a huge variety of inflammatory targets [89, 91, 92], especially in light of the above findings that suggest HIF1, STAT3, and PKM2 interactions in inflammation.

Considering that OXPHOS metabolism has been proposed to be a feature of resting macrophages and considering that prevention of transitioning towards increased aerobic glycolysis is associated with attenuation or even prevention of inflammatory activation of macrophages [89, 91, 92], one hypothesis is that anti-inflammatory IL-10 deactivates macrophages through suppression of the metabolic adaptation to aerobic glycolysis. Alternatively, anti-inflammatory IL-10 might deactivate macrophages only once the macrophage has transitioned back to OXPHOS (e.g. upon substrate depletion and inability to maintain aerobic glycolysis). In dendritic cells, TLR-initiated glycolytic metabolism was inhibited in the presence of concomitant IL-10, suggesting that IL-10 negatively regulates glycolytic metabolism in dendritic cells and that IL-10 generated a metabolic profile that was incompatible with pro-inflammatory activation [4, 41]. These findings indicate that IL-10 deactivates macrophages at least in part through enhancing OXPHOS metabolism in the presence of LPS. On the other hand, when PKM2 was enforced into a tetramer in LPS activated macrophages cellular metabolism exhibited increased OXPHOS, together with attenuated Il1b transcription and increased Il10 transcription [4]. This finding suggests that OXPHOS metabolism enables generation of anti-inflammatory IL-10 in the presence of LPS [4]. Of note, in dendritic cells activated through TLR signaling by LPS, the metabolic adaptation to increased aerobic glycolysis is promoted by PI3K/Akt signaling and is inhibited by the adenosine monophosphate (AMP)–activated protein kinase (AMPK), and by the anti-inflammatory cytokine IL-10, when given concomitantly with LPS [41]. The hypothesis that IL-10 induced STAT3 can only exert anti-inflammatory properties when LPS is concomitantly present needs to be investigated; in favor of this hypothesis is the observation that PKM2 (LPS induced) can cooperate with STAT3 (IL-10 induced) [76, 77].

How IL-10 induced STAT3 would execute metabolic reprogramming towards OXPHOS in inflammatory macrophages remains unclear. Interestingly, macrophage autocrine IL-10 has been shown to induce Arginase1 expression in infected macrophages and this correlated with attenuated antimicrobial effector mechanisms in macrophages [4]. If IL-10 can affect metabolic adaptations to attenuate macrophage activation through induction of Arginase1
requires further investigation. Intriguingly, PKM2 has also been shown to bind and activate (phosphorylate) STAT3 [76, 77]. Thus, STAT3 availability or size of phosphorylated pool of nuclear STAT3 might determine responsiveness of LPS activated macrophages to anti-inflammatory IL-10. Alternatively, IL-10 might selectively block the ability of macrophages to adapt their metabolism to aerobic glycolysis by driving expression of genes that antagonize metabolic reprogramming to aerobic glycolysis or by inducing genes that contribute to depletion of essential substrates, such as glutamine or arginine. Precisely how PKM2, HIF1, and aerobic glycolysis affect both IL-10 production and IL-10 responsiveness requires further analysis.

Conclusions

Metabolic reprogramming with increased glycolysis and a coordinately re-arranged TCA cycle together with reduced mitochondrial oxidative phosphorylation promotes generation of intermediates (e.g. succinate, citrate) and ROS/NO that fulfill specific functions in terms of increasing the ability of the macrophage to mount the inflammatory response and to engage in paracrine signaling. In addition to increasing glycolysis and reprogramming the TCA cycle, cooperation between a modified malate-aspartate, an upregulated argininosuccinate-citrulline-arginine cycle appears to be critical for enabling inflammatory macrophage activation. Competence for increased aerobic glycolysis also appears to be a critical prerequisite to maintain mitochondrial membrane potential (Δψₘ) and thereby prevents apoptosis and allow for continuous generation of ROS/NO, succinate and other metabolites. It is therefore intriguing to speculate that in a manner analogous to cytochrome c release from the mitochondria in apoptosis, and analogous to the role of mitochondrial nucleotides in induction of inflammation [15], reprogramming of mitochondrial metabolism is yet another critical mitochondrial feature that has evolved to regulate macrophage activation and plasticity. An increased understanding of how flexibility in metabolic programs in macrophages is controlled and how external (i.e. microenvironmental) and internal signals regulate inducible and reversible metabolic programs and how metabolism and transcriptional networks are linked in macrophages in the course of inflammatory activation and resolution of inflammation is critical for a better understanding of macrophage plasticity and macrophage biology. If phenotypic conversion/re-education of macrophages from pro-inflammatory to a less inflammatory or even reparative macrophage phenotype can be achieved by manipulating metabolic sensors, such as CtBP1, or regulators such as PKM2 or CARKL awaits further studies.

Acknowledgements

This work was supported by National Institutes of Health Grants 1R01 HL125827, 1R01HL114887, and 5P01 HL014985. The authors would like to thank the members of their laboratories and other collaborators for work discussed in this review.

Figures were designed and prepared by Karen E. Rawlinson.

References

<table>
<thead>
<tr>
<th>Highlights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellular metabolism links sensing of microenvironment with macrophage plasticity</td>
</tr>
<tr>
<td>Metabolic adaptation towards aerobic glycolysis is a hallmark of inflammatory macrophage activation</td>
</tr>
<tr>
<td>TCA cycle reprogramming and inhibition of mitochondrial respiration promote macrophage activation</td>
</tr>
<tr>
<td>Argininosuccinate cycle is critical for sustaining macrophage activation</td>
</tr>
<tr>
<td>Mitochondria are important in macrophage activation and deactivation</td>
</tr>
</tbody>
</table>
Figure 1. Integration of glycolysis with TCA cycle and mitochondrial oxidative phosphorylation
Shown are the glycolytic pathway and the mitochondrial TCA cycle. Also show is the mitochondrial respiratory chain when operating in oxphos. Electron transport (yellow line) enables proton gradient, which is used to generate ATP by ATP synthase after oxygen has served as the terminal electron acceptor at complex 4.
G6P: glucose-6-phosphate; FBP: Fructose bisphosphatase; G3P: Glyceraldehyde 3-phosphate; PGLY: 3-phosphoglycerolphosphate; Trnasort chin complexes (C-C4).
Figure 2. Metabolic adaptations in the inflammatory macrophage

Metabolic reprogramming of the inflammatory (LPS/IFN-γ activated) macrophage involves increased expression of HIF1 and PKM2 protein, which increases glycolysis. Concomitant suppression of CARKL increases the pentose phosphate pathway (PPP), providing antioxidants reducing equivalents (NADPH). ATP generated by glycolysis is used to maintain energy demands in the face of concomitantly reduced mitochondrial respiration (reduced oxphos), which occurs secondary to inhibition of SDH (which is complex II, C2). Glycolysis derived ATP is also used to fuel “in reverse” operating ATP synthase in the mitochondria in order to maintain membrane potential and mitochondrial integrity. The inhibition of SDH promotes accumulation of succinate, which inhibits cytosolic prolylhydroxylases (PHDs) which usually mediate HIF1 degradation, thus increasing HIF1 stabilization and thus increased transcription of Il1b and glycolytic enzymes, and Arginase1. Succinate also inhibits complex I in the mitochondria which promotes ROS generation, which in turn enhances PHD inhibition and cytokine generation through stabilization of HIF1. In addition, expression of IDH is suppressed, resulting in citrate accumulation. To maintain anerplerosis of TCA cycle intermediates, inflammatory macrophages upregulate the arginosuccinate and citrulline-arginine cycle (orange), modify the malate aspartate shuttle (green) towards utilization of the arginosuccinate cycle (red). This maintains fumarate anerplerosis and regenerates arginine for NO synthesis by iNOS. Furthermore, Arginine can be used for glutamate synthesis to replenish the TCA cycle in order to maintain succinate generation. Upregulation of the arginosuccinate and citrulline-arginine cycle also makes cells less sensitive to extracellular arginine limitation. NO also inhibits the respiratory chain further enhancing ROS production and succinate accumulation (not...
depicted). In the mitochondria, disruption of electron transport chain (inhibition of SDH that is Complex 2, and production of NO) promotes reverse electron transport on complex 1 (yellow line), which increase ROS formation. Reduced proton gradient reduced membrane potential (not shown), which is prevented from breaking down completely by ATP synthase operating in reverse.

ASS: Argininosuccinate synthase; ASL: Argininosuccinate lyase; α-KG: α-ketoglutarate; C1–C4: complexes of the mitochondrial respiratory electron transport chain 1–4. PHDs: prolyl hydroxylases; iNOS: inducible nitric oxide synthase; OXPHOS: oxidative phosphorylation; NO: nitric oxide; Glut1: glucose transporter 1; HIF: hypoxia inducible factor; IDH: isocitrate dehydrogenase; SDH: succinate dehydrogenase; CARKL: carbohydrate kinase-like protein