ABSTRACT
Optical-based approaches have the advantage of being noninvasive and nondestructive, and can usually be performed without modification to the sample. We propose to merge two ultrafast spectroscopy methods, pump-probe spectroscopy and time-domain THz spectroscopy (TDTS), to realize a femtosecond-resolution double-pump-probe spectroscopy technique tunable from the visible through long-wave infrared (LWIR) wavelength range. Our approach allows us to examine not only the transient concentration due to an appropriate pump pulse, but also the time-resolved THz radiation induced by the probe pulse. By analyzing the resulting kinetic profiles, one can obtain...
ABSTRACT

Optical-based approaches have the advantage of being noninvasive and nondestructive, and can usually be performed without modification to the sample. We propose to merge two ultrafast spectroscopy methods, pump-probe spectroscopy and time-domain THz spectroscopy (TDTs), to realize a femtosecond-resolution double-pump-probe spectroscopy technique tunable from the visible through long-wave infrared (LWIR) wavelength range. Our approach allows us to examine not only the transient concentration due to an appropriate pump pulse, but also the time-resolved THz radiation induced by the probe pulse. By analyzing the resulting kinetic profiles, one can obtain critical information about the internal electric fields, radiative and non-radiative recombination rates, carrier drift and diffusion times, and electron and hole velocities.
TITLE: Ultrafast Spectroscopic Noninvasive Probe of Vertical Carrier Transport in Heterostructure Devices (Second year of three year proposal)

PRINCIPAL INVESTIGATORS: Drs. Blair Connelly (RDRL-SEE-I), Grace Metcalfe (RDRL-SE), Stefan Svensson (RDRL-SEE-I)

OBJECTIVE: To investigate the vertical carrier transport properties in Army-relevant semiconductor materials and optoelectronic (OE) devices by developing and applying ultrafast optical spectroscopy techniques.

APPROACH: Optical-based approaches have the advantage of being noninvasive and nondestructive, and can usually be performed without modification to the sample. We propose to merge two ultrafast spectroscopy methods, pump-probe spectroscopy and time-domain THz spectroscopy (TDTS), to realize a femtosecond-resolution double-pump-probe spectroscopy technique tunable from the visible through long-wave infrared (LWIR) wavelength range. Our approach allows us to examine not only the transient concentration due to an appropriate pump pulse, but also the time-resolved THz radiation induced by the probe pulse. By analyzing the resulting kinetic profiles, one can obtain critical information about the internal electric fields, radiative and non-radiative recombination rates, carrier drift and diffusion times, and electron and hole velocities.

RESULTS: In the second year, we successfully met our Q6 through Q8 goals of incorporating electrical testing capabilities into our system, investigating OE devices under operating conditions, extending the capabilities of our system into the IR range, and investigating new OE devices. We have made significant progress towards our Q5 goal of realizing a double-pump-probe system by designing and demonstrating a real-time THz acquisition scheme and optimizing our spectroscopy technique to enhance the detection sensitivity of THz generated by the probe beam. We expect completion of this milestone in Q9. We have also already made significant progress towards realizing third year goals of extending our capabilities into the IR range through experimental verification of our near infrared (NIR) pump-probe system and construction, initial testing and redesigning components of our optically-gated IR PL up-conversion setup, and of redesigning and growing IR transport measurement structures.

To analyze and improve our ultrafast spectroscopy technique to characterize increasingly complex heterostructures under operating conditions, we investigated the carrier dynamics in multiple quantum well (MQW) p-GaN/i-InGaN/GaN MQW layer/n-GaN solar cell structures (50 2.2-nm thick In$_{0.2}$Ga$_{0.8}$N wells and 4.9-nm thick GaN barriers). Transport was studied across numerous GaN/InGaN interfaces where the conduction and valence bands across the wells present a “sawtooth” potential resulting from large polarizations at the InGaN/GaN hetero-interfaces. Measurements in the MQW sample were made as a function of probe wavelength (above and below the well band edge), pump intensity and electrical bias (Fig. 1). Our 2nd year accomplishment of incorporating electrical testing capabilities required both successful integration into the complex geometry of our experimental setup and fabrication of more advanced InGaN/GaN devices.

When we probed the MQW InGaN sample above the bandgap energy of GaN, we observed a significant change in the reflectance spectrum, indicating the presence of photogenerated carriers. This change is more pronounced at higher pump intensities and lower electrical biases, suggesting a combination of carrier density and internal fields.

Figure 1: Differential reflection on MQW InGaN/GaN double heterostructure vs. bias.
the band gap, the curves demonstrated a rise to a peak followed by a slow decay. The data showed a clear dependence of the signal on electrical bias voltage (varied between +2 V and -10 V) with the peak location occurring at an earlier time when the reverse bias was increased, increasing the electric field across the i-layer and therefore carrier drift velocity. By modeling screening effects on the pump-probe signal detailed in studies of similar structures (InGaAs/GaAs and Ge/SiGe MQW $p-i-n$ structures) [1, 2], we estimated a fast ~1-ps cumulative escape time from the wells, followed by a ~10-ps drift time for electrons and >500-ps drift time for holes across the i-InGaN/GaN MQW layer under -10 V bias. These slow time scales (relative to transport times in bulk InGaN [3]) demonstrate that the quantum wells and “sawtooth” potential significantly slow the carrier transport. Additional modeling efforts of the physical transport processes are in progress.

To study vertical transport properties in the IR, we are investigating two time-of-flight approaches by optically injecting carriers near the surface of an InAsSb nBn detector structure and detecting the arrival of carriers a known distance from the surface using (1) an optical probe of a ~2-µm bandgap GaInSb buffer layer below the detector structure and (2) photoluminescence (PL) from a “marker” well, with a narrower bandgap than the bulk material, embedded in the absorber layer. For approach (1), the visible pump-probe setup was expanded to operate in the NIR range, and we have demonstrated the operability of the system with a differential reflection result on the GaInSb buffer layer with ~200-fs temporal resolution. Optical probing from the backside of the sample necessitated considerable changes to the sample design. In the previously-used GaInSb graded layer, significant absorption of the ~40-nm bandwidth probe beam would occur in the graded layer, which obscured the differential absorption in the targeted buffer layer. We therefore modified the sample design to utilize an Al-containing AlInSb grading to widen the bandgap of the graded layer and provide optical access to the buffer layer from the backside of the sample (Fig. 2). This test structure has been successfully grown.

Observation of up-conversion of the 6-µm PL to ~1.03 µm for approach (2) has been complicated by a large background noise level at our InGaAs detector, but we are implementing several approaches to mitigate this challenge. The spatial overlap of the PL and gating pulse on the non-linear AgGaS$_2$ crystal has been improved by moving to a co-linear geometry. Further improvements to the spatial overlap consist of utilizing a longer focal length/smaller numerical aperture mirror(s) to focus the PL on the AgGaS$_2$ crystal at a smaller angle (telescoping the beam similar to a Cassegrain design), trying toroidal mirrors in the place of the off-axis parabolic to achieve a tighter focus of the PL, and acquiring a new cooled low-noise InGaAs PMT.

REFERENCES:
TRANSITIONS:

