Award Number:  W81XWH-10-1-0149

TITLE: Cytoprotection: Immune and Matrix Modulation of Tissue Repair

PRINCIPAL INVESTIGATOR: Dr. Gerald Nepom

CONTRACTING ORGANIZATION:  Benaroya Research Institute at Virginia Seattle, WA  96101

REPORT DATE:  April 2012

TYPE OF REPORT:  Annual

PREPARED FOR:  U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland  21702-5012

DISTRIBUTION STATEMENT:  Approved for public release; distribution unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
<table>
<thead>
<tr>
<th>1. REPORT DATE (DD-MM-YYYY)</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED (From - To)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-04-2012</td>
<td>Annual</td>
<td>15 Mar 2011 - 14 Mar 2012</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytoprotection: Immune and Matrix Modulation of Tissue Repair</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5a. CONTRACT NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>W81XWH-10-1-0149</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5d. PROJECT NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5e. TASK NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Gerald Nepom</td>
</tr>
</tbody>
</table>

| E-Mail: jnepom@benaroyaresearch.org |

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benaroya Research Institute at Virginia</td>
</tr>
<tr>
<td>Seattle, WA. 96101</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Army Medical Research and Materiel Command</td>
</tr>
<tr>
<td>Fort Detrick, Maryland 21702-5012</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION / AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for Public Release; Distribution Unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>We took on the challenge to create new therapies to regulate tissue reparative processes through the use of specific extracellular matrix (ECM) components, which play a significant role in regulating the inflammatory processes that follow injury, creating cytoprotective environments that promote healing. Focusing on aspects of tissue repair, we invented ECM scaffolds comprised of engineered proteoglycans and natural collagen, which emphasize enhancement of elasticity, strength, and cellular integration with the host. Subsequently, we refined our studies to address a key challenge to clinical application of this technology, the host inflammatory response. We have met the goals of our first multi-part aim to identify novel cytoprotective mediators associated with regulatory lymphocytes and innate immune activation. With an approved no-cost extension, we are continuing the work of the second aim by using cytoprotective ECM hydrogels to promote the development of function and host-integration of a novel skeletal muscle implant (referred to as a &quot;myobridge&quot;) designed to replace native skeletal muscle lost to traumatic injury.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflammation, tissue repair, extracellular matrix, collagen scaffolds, cytoprotection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT U</td>
</tr>
<tr>
<td>b. ABSTRACT U</td>
</tr>
<tr>
<td>c. THIS PAGE U</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. LIMITATION OF ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>UU</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>156</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>USAMRMC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19b. TELEPHONE NUMBER (include area code)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)  
Prescribed by ANSI Std. Z39.18
Table of Contents

Annual Report

Aim 1: Introduction ................................................................. 4
Body ......................................................................................... 5
Key Research Accomplishments .............................................. 31
Reportable Outcomes ........................................................... 34
Conclusion ............................................................................... 37
Appendices ............................................................................. 41

Aim 2: Introduction ................................................................. 124
Body ......................................................................................... 125
Key Research Accomplishments .............................................. 144
Reportable Outcomes ........................................................... 146
Conclusion ............................................................................... 148
References ............................................................................... 151
Appendices ............................................................................. 152
1. INTRODUCTION

1.1 Subject, Purpose, and Scope of the Research

Recent advances in molecular and cellular biology offer an opportunity to create new therapies to regulate tissue reparative processes through the use of specific extracellular matrix (ECM) components, which play a significant role in regulating the inflammatory processes that follow injury, creating cytoprotective environments that promote healing. Prior to the current project, the Benaroya Research Institute’s Center for Inflammation and Tissue Repair (CITR) developed a number of tissue repair strategies that utilized engineered ECM scaffolds comprised of proteoglycans and natural collagen, which emphasized enhancement of elasticity, strength, cellular survival and orientation, and optimal integration with host tissue. The current research program expands on this prior work to address a key challenge to clinical application of our engineered tissue repair technology—the host inflammatory response. This new program in cytoprotection addresses a major barrier to effective cell-based therapies, namely, that, after treatment with regenerating or reconstituted cells or stem cells, the viability of those therapeutic cells is often threatened by the noxious microenvironment of inflamed tissue.

The research program consists of a coordinated set of projects that address two Specific Aims (listed below). The goal of projects in Aim 1 is to develop and evaluate specific cytoprotective modulators of tissue-immune interactions. The goal of Aim 2 is to develop an engineered tissue model (a “myobridge” for replacement of skeletal muscle) and use it as a test-bed to evaluate promising cytoprotective strategies identified in Aim 1 for their capacity to control inflammation, improve cell survival, and promote healing.

1.2 Specific Aims

**Aim 1** To develop ECM hydrogels with cytoprotective properties, including mechanical resistance to shear, binding sites for specific bioactive molecules, and sites for retention of regulatory lymphocytes. Novel cytoprotective mediators associated with regulatory lymphocytes and innate immune activation will be identified using siRNA (human and mouse) and knockout animal models, and potential biomarkers for monitoring efficacy in humans will be evaluated in a pilot clinical research study.

**Aim 2** To use cytoprotective ECM hydrogels in customized skeletal muscle implants to evaluate a novel engineered tissue, referred to as a “myobridge,” designed to enable rapid reconstruction of extensive skeletal muscle wounds. Cytoprotection from inflammation-mediated damage, vascularization, and myocyte differentiation within the graft will be evaluated.

1.3 Scope of this Report

This Annual Report includes all work performed under **Aim 1**, which was organized into **Tasks 1–8**. All work under Tasks 1–8 was completed as of 3/14/12. **Aim 2**, which is organized into **Tasks 9–15**, is continuing as a no-cost extension through 3/14/13.
2. BODY

2.1. Statement of Work

The research program is two years in duration and is organized into 15 specific Tasks, which are indicated below. *Work performed under Tasks 1–8 during Years 1 and 2 is the subject of this part of the report.*

**Specific Aim 1: Cytoprotective Mechanisms of Immune Regulation**

**Task 1** *(Months 1 – 9)* Develop and test stable, shear-resistant HMW-HA/fibrillar collagen hydrogels on dye-cut 2.9 mm nylon mesh rings.

**Task 2** *(Months 2 – 12)* Validate microwell plate assay for expression using murine T cells and hydrogel rings at collagen:HMW:HA ratios of 8:1, 4:1, 2:1, 1:1, 1:2, 1:4, and 1:8.

**Task 3** *(Months 6 – 18)* Supplement hydrogel microwell GFP-FOXP3 assay with rapamycin, IL-10, and TGF-β, with and without gelatin sponge component.

**Task 4** *(Months 1 – 12)* Perform flow cytometry assays for lineage deviation with 11 siRNA constructs (listed in the proposal) using human naïve CD4+ T cells.

**Task 5** *(Months 12 – 24)* Evaluate *in vivo* candidate siRNA using DO11.10-Treg transfection.

**Task 6** *(Months 1 – 8)* Evaluate siRNA for TREM-2 and DAP12 for inhibition of TNF production by THP-1 cells.

**Task 7** *(Months 6 – 24)* Measure TLR activation by cytokine production and phospho-specific antibodies in CD18 and BCAP KO mice, and map BCAP domains as potential therapeutic targets.

**Task 8** *(Months 6 – 24)* Measure serum biomarkers in 20 human subjects treated with IL1RA after inflammatory stimulus.

**Specific Aim 2: The CITR Cytoprotective Implant (CI) and Myobridge**

**Task 9** *(Months 3 – 12)* Production of the three-layer CI “sandwich”.

**Task 10** *(Months 6 – 16)* Evaluation of prototype CI in rat dermal pockets for histological monitoring of biodegradation and in mouse dermal pockets for evaluation of regulatory T cell responses.

**Task 11** *(Months 1 – 12)* Development of myobridges using uniaxial supports and collagen gels populated with myoblastic cells. Histological evaluation of cultured myobridges for cell survival, new muscle cell generation, proliferation and differentiation.

**Task 12** *(Months 12 – 24)* Implantation of cell-seeded myobridge into female F344 rat anterior tibialis, with histological analysis after 3 weeks.

**Task 13** *(Months 12 – 24)* Supplementation of myobridge with CoPP and regulatory modulators from Aim 1, prior to implantation.

**Task 14** *(Months 16 – 24)* Co-transplantation of myobridge and CI to evaluate effects of CI-mediated immunomodulation on integration of the myobridge with host tissues.

**Task 15** *(Months 18 – 24)* *In vitro* seeding of myobridge prototypes with human MDSC for evaluation of human cell compatibility with hydrogel components.

2.2. Annual Report for Aim 1 (Tasks 1–8)

**Tasks 1, 2, and 3**

Tasks 1, 2, and 3 were components of Aims 1A and 1B, which focused on development of high molecular weight hyaluronan (HMW-HA)-based hydrogels as a delivery system for controlled release of growth factors and cytokines. HMW-HA is a polysaccharide glycosaminoglycan (GAG) found in many tissues, which has natural cytoprotective and wound repair-promoting properties. HMW-HA is associated with tissue repair as a consequence of its unique mechano-chemical properties (e.g., a hygroscopic character, viscoelasticity, and high negative charge) and its ability to modulate cell behavior by interacting with other ECM molecules or with specific cell surface receptors. Early response to tissue injury includes the formation of a provisional ECM rich
in HMW-HA and fibrin, which supports fibroblastic invasion and penetration of new blood vessels into the wound site. In the past two years, our researchers have uncovered a novel anti-inflammatory mechanism for HA, in which HMW-HA acts as a co-stimulator of regulatory T cell (Treg) activation through binding of CD44v6, resulting in persistence of FOXP3 gene expression, a transcriptional regulator, which promotes maintenance of the regulatory phenotype. In Aim 1, we evaluated different approaches to retain HMW-HA in the wound or graft site for ultimate inclusion in our Cytoprotective Implant (Aim 2).

**Task 1**

**Develop and test stable, shear-resistant HMW-HA/fibrillar collagen hydrogels on dye-cut 2.9 mm nylon mesh rings (Robert Vernon, PhD).**

Task 1 evaluated the capacity of HMW-HA/fibrillar collagen hydrogels to adhere to nylon mesh rings as a basis for the microwell plate assay described in Task 2. The rings chosen were dye-cut from nylon (Nitex) mesh with a mesh weave of 100 micron square spacing providing an open space of 44% per unit area of mesh. This material is wettable by the hydrogel prior to crosslinking, meaning that the hydrogel will intercalate into the open spaces of the mesh to provide stable mechanical attachment. We observed that hydrogels with relatively high ratios of collagen adhered better than hydrogels with relatively high ratios of HMW-HA. In addition to Nitex nylon mesh, we also evaluated open-pore polyvinyl alcohol (PVA) sponge materials of various pore sizes. The 3-dimensional labyrinth of pores within these materials provided a significantly larger area for attachment of ECM hydrogels than standard nylon mesh, but without the associated problem of physical instability. We determined that PVA sponge with an average 90 micron pore diameter supported HMW-HA and other ECM (e.g., collagen) hydrogels adequately.

**Conclusion, Task 1**

It was determined in Task 2 (see below) that the microwell plate assay did not provide the sensitivity needed to evaluate GFP/FOXP3 expression in T cells, and the analytical approach was shifted from the microwell assay to more conventional flow cytometry methods. Notably, however, the use of PVA sponge as a support for ECM hydrogels was successfully translated into an *in vivo* model of immunomodulation, described in Tasks 3 and 10.

**Task 2**

**Validate microwell plate assay for expression using murine T cells and hydrogel rings at collagen: HMW:HA ratios of 8:1, 4:1, 2:1, 1:1, 1:2, 1:4, and 1:8 (Gerald Nepom, MD, PhD).**

Task 2 tested a microwell plate assay system for evaluating effects on GFP/FOXP3 induction in murine T cells. We first evaluated the Wallace Victor plate reader and the Packard Fusion fluorescence imager for their ability to discriminate levels of fluorescence seen with titrations of CD4+GFP/FOXP3+ sorted Treg or CFSE-labeled CD4+ T cells. The Packard fluorescence imager had by far greater sensitivity. Using this apparatus, we evaluated a variety of clear plastic cell culture systems. We found that only specifically-designed fluorescence analysis plates had low enough backgrounds to allow us to discriminate levels of fluorescence seen with titrations of CD4+GFP/FOXP3+ sorted Treg or fluorescently (CFSE)-labeled CD4+ T cells. The Packard fluorescence imager had by far greater sensitivity. Using this apparatus, we evaluated a variety of clear plastic cell culture systems. We found that only specifically-designed fluorescence analysis plates had low enough backgrounds to allow us to discriminate levels of fluorescence seen with titrations of CD4+GFP/FOXP3+ sorted Treg or fluorescently (CFSE)-labeled CD4+ T cells. Within this system, using fixed CFSE-labeled CD4+ T cells, we found no difference in the ability to detect fluorescence by cells a) embedded within hydrogels, b) plated on top of hydrogels, or c) plated on plastic alone without hydrogels present. Notably, however, the fluorescence analysis plates adversely affected the viability of CD4+GFP/FOXP3+ sorted Treg as well as CFSE-labeled CD4+ T cells such that all cells cultured with these plates were dead (as indicated by 7AAD/Annexin V positivity) within 48 hrs. This effect on cell viability indicated that use of this system as a high-throughput assay for GFP/FOXP3 expression was not working adequately. Accordingly, we shifted our analytical approach towards conventional flow cytometry methods, with which we have extensive experience.

In order to use conventional flow cytometry to measure expression of GFP/FOXP3 by T cells cultured in 3-dimensional ECM hydrogels, the cells must be rapidly released from the gels for assay. To facilitate cell
release, evaluated Extracel-SST™ — a HMW-HA hydrogel available from Glycosan Biosystems (Salt Lake City, UT) that incorporates a novel PEGSSDA crosslinker. PEGSSDA can be cleaved with low concentrations of disulfide bond reducing agent, thereby permitting liquefaction of the hydrogel for cell release while avoiding damage to the cells. In all other respects, this hydrogel biomaterial is identical to the HMW-HA formulation described in the original application. Using Extracel-SS as a support medium in combination with conventional flow cytometry, we established that a 2:2:1 ratio of HMW-HA:collagen (gelatin):PEGSSDA crosslinker induces the highest levels of GFP/FOXP3 expression by cultured Treg. This ratio is the same as that recommended for lymphocyte work by the manufacturer.

**Conclusion, Task 2**

We determined that the microplate assay was problematic with respect to signal sensitivity and T cell viability; therefore, we shifted our analytical approach to conventional flow cytometry, adapting an existing HMW-HA hydrogel formulation to this form of readout. This hydrogel became the basic support medium for our studies performed in Task 3.

**Task 3 Supplement hydrogel microwell GFP-FOXP3 assay with rapamycin, IL-10, and TGF-β, with and without gelatin sponge component (Gerald Nepom, MD, PhD).**

As mentioned in the narrative for Task 2 above, we found it was not possible to use the microwell format to analyze GFP/FOXP3 induction results and, therefore, we switched to flow-cytometry-based analysis. Using this approach, we evaluated the effects of gelatin sponge inclusion on FOXP3 induction. We found that the gelatin sponge added structural integrity to the gel such that it can be manipulated for assay. However, upon the inclusion of T cells in the hydrogel, the gelatin sponge is degraded within 3-4 days, indicating that these cells produce collagenases. The gelatin sponge appears to have no discernable impact on FOXP3 induction, perhaps because there is already gelatin in the Extracel HA hydrogel preparation. In sum, these data suggest to us that the gelatin sponge adds structural integrity to hydrogels polymerized *in vitro* and that there is no functional disadvantage vis-à-vis FOXP3 induction to having the gelatin sponge present.

Subsequently, we developed methods to evaluate the capacity of hydrogels to incorporate cytokines to stimulate FOXP3 expression by T cells. For these experiments, we used Extracel-HP™ HMW-HA hydrogel, which contains heparin that can bind to a variety of heparin-binding growth factors, including the ILs and TGF-β. We began this work looking at IL-2 and evaluated the capacity of our hydrogel preparation to retain this cytokine over 14 days. We found that for gels of 200 µl volume incubated in media containing 20,000 pg of IL-2, the average total IL-2 stored by the gel at the end of 14 days for three experiments was 12,742 pg with a standard deviation of 8%. This was equivalent to a retention rate of at least 63% of the original IL-2 loaded into the gel. Importantly, at the end of 14 days the gels were still releasing IL-2 over baseline, indicating that there is potential for long-term bioactivity. The kinetics of release of IL-2 are shown in Figure 1.

In follow-on experiments, we performed analogous work examining the kinetics of IL-10 release. We found that for gels of 200 µl volume incubated in media containing 20,000 pg of IL-10, the average total IL-10 stored by the gel at the end of 8 days was 13,341 pg with a standard deviation of ~ 6%. This was equivalent to a retention rate of at least 67% of the original IL-10 loaded into the gel. As with IL-2, after 14 days the gels were
still releasing IL-10 over baseline (Figure 2). These data indicate that the hydrogels can be used as a depot for IL-10 storage and release for biological applications.

In addition to the work to incorporate cytokines like IL-2, and IL-10 into HMW-HA hydrogels, we also devised a method to deliver a TCR ligation using the same hydrogel platform. Streptavidin added to the gel mixture allows for incorporation of biotinylated anti-CD3 antibodies (Ab). The streptavidin/Ab complex provides a stimulatory signal through the TCR complex necessary for TR1 induction. These agents, along with IL-2 and TGF-β, are added to the HMW-HA hydrogel prior to crosslinking the hydrogel. The complete hydrogel platform can deliver all of the necessary signals to induce FOXP3+ regulatory T cells. A schematic of this design is shown in Figure 3A. This combination of bioactive agents appears to be an exceptionally efficient and innovative system for FOXP3 induction in vitro.

We adapted the hydrogel system described above to induce FOXP3+ Treg from CD4+ GFP/FOXP3-precursors in vivo. For these experiments, we injected an un-crosslinked gel mixture comprised of thiol-complexed HMW-HA / heparin (HS) / collagen (COL) with TGF-β (50 ng/ml) and IL-2 (200 IU/ml), along with a crosslinking agent, polyethylene glycol, into the peritoneal space of recipient mice carrying the marker CD45.1. CD4+GFP/FOXP3- precursors taken from CD45.2 mice (donors) were embedded within this gel and injected IP into CD45.1 mice not carrying the GFP marker (recipients). This gel or a control gel lacking the HA/HS component was injected IP following surgical implantation of islets. After 4 days splenocytes were isolated from recipient animals and evaluated for expression of CD45.2 (B) as well as GFP/FoxP3 (C). The islet implant was also retrieved and sections were stained for GLUT2 to identify embedded islets. (D and E) Representative images are shown for implants retrieved from an animal which received the collagen-only control gel (D) or the tolerizing gel containing HA and HS (E). The white arrow in marks neovascularization. Data are representative of two independent experiments.

![Figure 3. An injectable HA-based gel promotes GFP/FOXP3 induction in vivo and attenuates destruction of transplanted allogeneic islets.](image)

Figure 2. Extracel-HP hydrogels release IL-10 over time. Extracel-HP gels of 200 μl volume were polymerized and then incubated overnight in 200 μl of RPMI containing 20,000 pg of IL-10. The gel was then washed once in RPMI and incubated in 200 μl of fresh RPMI. The RPMI was removed after 24 hrs and stored for subsequent analysis of IL-10 content by ELISA. This process was repeated every 24 hrs for 8 days. The experiment was performed two times. One representative experiment is shown.

To assess the functionality of this system in inducing tolerance, we used an allogeneic islet transplant model. Here, 300 BALB/c islets were transplanted into CD45.1 C57Bl/6 mice within a 6 mm polyvinyl alcohol
(PVA)/collagen sponge (developed in Task 2) that was placed through an abdominal incision onto the omentum of recipient mice. Our hydrogels, along with CD45.2 CD4+GFP/FOXP3 depleted T cells, were injected IP 6 hours after surgery. Four days later animals were sacrificed, splenocytes were isolated and the islet implants were harvested. We found that animals that received a control gel where extra collagen was substituted for the HA/HS component had extensive infiltration of the transplanted sponge and destruction of the resident islets (Figure 3D). In contrast, animals that received our gels had attenuated remodeling and minimal islet destruction (Figure 3E). Notably, the gel still permitted neovascularization (marked with a white arrow in Figure 3E) of the PVA/collagen sponge implant that contained the allogeneic islets, indicating that our hydrogel promoted immune tolerance while not interfering with neovascularization of engrafted tissue.

Collectively, the data summarized in Figs 1–3 indicated that (1) we could induce FOXP3+ T cells in vivo from FOXP3- cells exposed to our extracellular matrix hydrogel formulation, and (2) this hydrogel appears to have some utility in mitigating destruction of allogeneic islets in a transplant model. Our desired application for this platform would be to use it to induce FOXP3+ Treg in vivo for therapeutic purposes, which, for human patients, would require induction of Treg in situ, without the T cell transfer that we used in our mouse models. In subsequent experiments, however, we observed that HA/HS hydrogels loaded with IL-2 and TGF-β were unable to induce FOXP3+ Treg in situ, apparently because they did not interact with T cells or other lymphocytes in vivo. This phenomenon was a likely consequence of the intrinsic biocompatibility of HA and HS, which appeared to preclude a local inflammatory response. In subsequent experiments, however, we tried a novel approach to tolerance induction, using the same hydrogel materials and cytokines that efficiently induced regulatory T cells in vitro, but administering them in an intra-nasal solution in conjunction with an antigen-specific mouse model of airway hypersensitivity.

In parallel studies, we found that high molecular weight hyaluronan (HMW-HA) promotes the induction of functional type 1 Tregs (TR1 cells) from memory T cell precursors. The TR1 progenitor cells in this system are CD4+CD62L-FOXP3- effector memory cells, suggesting that these cells have previously encountered their cognate antigens and assume a regulatory phenotype when they do so again in the context of intact HA. Exposure to HMW-HA engendered a regulatory phenotype in these cells, which persisted even after they were withdrawn from contact with HA. Consistent with this finding, we generated TR1 in vitro using HMW-HA and transferred these into an in vivo mouse model of colitis where they prevented disease. In addition, we demonstrated that CD44 crosslinking by HMW-HA in the setting of a low-dose T cell receptor (TCR) signal resulted in production of the immunomodulatory cytokine, interleukin-10 (IL-10). Collectively, our data suggest that HMW-HA promotes immune tolerance through effects on regulatory T cells and IL-10.

Notably, our HMW-HA data suggested a potential therapeutic opportunity for using HMW-HA in the induction of IL-10-based immune tolerance. Consistent with this, HMW-HA treatment is anti-inflammatory in several settings. However, HMW-HA can also degrade into low molecular weight (LMW)-HA and induce inflammation. Consequently, the therapeutic use of HA requires strategies to maintain HA integrity in vivo. One way to maintain the integrity of HA is through chemical crosslinking. Accordingly, we used a commercial, clinical-grade, crosslinked HA preparation (Extracel®, from Glycosan Biosystems, Inc.) that is marketed for stem-cell culture. Extracel contains thiol-modified HA, as well as a thiol-reactive crosslinker, polyethylene glycol diacrylate. Extracel also contains collagen and/or fibronectin, but we omitted these molecules and referred to this modified formulation of chemically-crosslinked HA alone as XHA. Crosslinking helps ensure...
that HA does not biodegrade into smaller fragments. Thiol-mediated chemical crosslinking mimics the crosslinking of HA in vivo by native crosslinkers such as IzI and TSG-6. In this context, XHA is a synthetic bio-mimetic of provisional wound matrix.

We recently found that XHA is an exceptionally efficient and innovative system for TR1 induction. Using a 1% XHA preparation, along with conventional T cell precursors, we observed substantial IL-10 production in vitro (Figure 4). Our data indicate that HMW-HA only induces TR1 expression in the setting of TCR ligation. To provide this activation for our in vitro work, we added biotinylated anti-CD3 and anti-CD28 antibodies and streptavidin to the HMW-HA prior to crosslinking. For our in vivo work, however, we rely on endogenous antigen-presenting cells to activate the T cells.

**Figure 5.** Airway treatment with 0.1% XHA ameliorates inflammation in a mouse model of airway hypersensitivity (AHS). A) AHS protocol schematic. To evaluate the pro-tolerogenic attributes of HA, we have used an established mouse model of AHS where ovalbumin (OVA), a chicken egg protein, serves as an antigenic trigger. Mice are sensitized with OVA and the adjuvant alum on Days 1 and 7. They are then re-challenged with OVA administered intra-nasally on Days 21–25 with or without 0.1% XHA. B) Total leukocyte and eosinophil counts in bronchoalveolar lavage (BAL) fluid obtained at the end of the experiment. Total cell numbers and eosinophilia are the readouts for airway inflammation in this model. N = 6 mice per group. Data are representative of 2 experiments.

For the work in vivo, we sought to evaluate whether XHA can prevent disease in a well-characterized mouse model of airway hypersensitivity (AHS) where ovalbumin (OVA), a chicken egg protein, serves as the antigenic trigger (Figure 5A). In this model, mice are sensitized to OVA in adjuvant and subsequently challenged with OVA aerosols. AHS is then assessed using cellular, physiological, and histological assays. These include analysis of bronchoalveolar lavage (BAL) fluid for cytokines, cell counts and eosinophilia, and histological analysis of airway hyper-responsiveness and remodeling. Inflammation in this model is highly sensitive to treatment with transferred natural Treg (nTreg) or exogenous IL-10. A 0.1% XHA solution was found to reduce total leukocytes and eosinophils in BAL fluid (Figure 5B). These data indicate that XHA is able to ameliorate inflammatory disease in an antigen-specific model of airway hypersensitivity.

**Figure 6.** Intra-nasal treatment with 0.1% XHA promotes induction of antigen-specific, IL-10-producing T cells. We repeated the experimental protocol in Figure 2 in DO11.10/RAG−/− mice carrying a TCR specific for OVA. Upon the completion of the protocol, lymphocytes were isolated from these mice and stained for intracellular IL-10 and for the DO11.10 OVA-specific TCR (using a monoclonal antibody, clone KJI-26). Fluorescence-activated cell sorting (FACS) gating is shown for the CD4+ T cell subset.

To evaluate whether XHA could induce OVA-specific TR1 cells, we repeated the protocol of Figure 5 using DO11.10/RAG−/− mice, a strain that carries an OVA-specific TCR. We indeed found that a subset of CD4+, OVA-specific cells was induced to express IL-10 (Figure 6). This indicates that T cells that come into contact with their cognate antigen in the setting of XHA in vivo produce IL-10. Notably, an antigenic signal was...
required for this IL-10 induction: XHA alone did not induce IL-10+ cells (data not shown). This antigenic stimulus is presumably delivered by antigen-presenting cells that present OVA to T cells in the setting of XHA. In this protocol, XHA functions as an adjuvant that induces antigen-specific, IL-10 producing T cells. This is a highly novel approach to immune modulation and may prove useful for the management of inflammation in a variety of settings, including body wounds and inhalation injuries to the airway.

**Conclusion, Task 3**

Our original objective for Task 3 was to develop injectable hydrogels for use in induction of Tregs *in vivo*. This approach appeared to be problematic after we found that immune cells do not easily traffic to the thiol-crosslinked HMW-HA-based hydrogels *in vivo* because this material is immunologically silent. A contributing factor to this silence may be the resistance of the hydrogel to penetration by immune cells—a consequence of its hydrogel character that requires high concentrations of HMW-HA and a high degree of thiol-crosslinking. An alternative approach, under development in Aim 2 (Tasks 9 and 10), involves sustained delivery of soluble HA via an implantable, controlled (time) release device. In this system, the HA is not in the form an impenetrable hydrogel (it is not crosslinked), yet, because it is released slowly into the surrounding tissue, it may be available locally for a time sufficient enough to promote tolerance. In this context, but in a different application, experiments in Task 3 have had success with tolerance induction by delivering a dilute solution of HMW-HA together with antigen via the intra-nasal route. Using this approach, we have been able to ameliorate the development of inflammation in a mouse model of antigen-specific airway hypersensitivity. This is a promising tool for tolerance induction that could lead to better treatments for allergy and asthma. We have filed a pair of patents on this technology and have received a fundable score on an R01 grant proposal to pursue this research further.

**Task 4**

Perform flow cytometry assays for lineage deviation with 11 siRNA constructs (listed in the proposal) using human naïve CD4+ T cells (Jane Buckner, MD).

Task 4 is a component of Aim 1C which is derived from the finding that the lineage of a naïve CD4+ T cell is determined by the cytokine milieu in which it is activated. Recent studies have not only identified multiple CD4+ T cell lineages, but have also established that the phenotype of previously committed CD4+ T cells can be altered in response to factors in the local environment. Task 4 took advantage of this information to enhance Treg activation, development, and persistence in engineered ECM hydrogels.

Identification of specific environmental factors that regulate key genetic pathways which, in turn, control T cell behavior may prove to be an effective means to control inflammation and improve wound repair, in conjunction with the HA modulation explored in this project. Aim 1C focused on a set of 11 genes that we believe are likely to influence T cell function. These target genes code for the cytokines IL-6, IL-23R and IL-21, the signal transduction factors Stat-1, -3 and -5, PTPN-2 and -22, and the transcription factors FOXP3, RORγt and T-bet.

Task 4 focused on introducing small interfering (si)RNAs into naïve human CD4+ T cells to inhibit expression of the target genes with the goal of identifying pathways for lineage deviation that skew T cell maturation toward regulatory (i.e., Treg)
commitment, survival, and function. siRNA inhibition of the target genes is predicted either to affect the generation of T cells with regulatory properties or to stabilize a regulatory phenotype in existing Tregs. Key experiments to determine an efficient method for introducing siRNAs into lymphocytes revealed that Amixa nucleofection was the most efficient and least damaging to cells (Figure 7). Using 100 pmol of an Alexa 488-conjugated siRNA, we found 97% of cells were transfected using the Amixa system (Figure 7B) without significant cell death, as shown by exclusion of the Viaprobe dye (Figure 7A). Given the high efficiency of transfection achieved with Amixa nucleofection, we predicted that sorting of siRNA transfected cells would not be required prior to functional analysis of siRNA knockdown.

We selected siRNAs for targeting 6 of the 11 genes proposed in Task 4 (Table I). Since siRNAs are known to cause off-target effects related to their primary sequence, we performed all functional analyses using a minimum of two unique sequence siRNAs per target gene. A total of five MISSION siRNAs (Sigma) were to be tested for each target gene in order to identify at least two siRNAs that could successfully inhibit gene expression. These siRNAs were designed using the Rosetta siRNA design algorithm that maximizes specificity and minimizes off-target effects. Universal negative controls were included in each experiment, as well as two siRNA knockdown positive controls specific for GAPDH and cyclophilin B. Target gene expression was to be assessed by qPCR and Western blot.

We adapted and optimized the transfection protocol indicated above for primary lymphocytes and confirmed that it resulted in highly efficient transfection, and high viability, in both T cells and B cells isolated from human PBMCs (data not shown). Importantly, the entire population of T or B cells took up siRNA after transfection, precluding, as we predicted, the need for cell sorting of transfected lymphocytes prior to functional assays. We established that a siRNA concentration of 50-100 pmol was optimal to test individual siRNAs for knockdown efficiency in T cells. Higher siRNA concentrations did not result in further knockdown, but did increase off-target effects. We developed qPCR assays to assess gene expression using either SYBR green chemistry or Taqman probes. Expression of siRNA targeted genes was compared relative to expression of the same gene in cells transfected with a negative control siRNA (siRNA that does not recognize human transcripts). A validated siRNA for Lamin A/C was used as a positive control to confirm transfection efficiency and specificity for each experiment. Using this optimized protocol, we found that Lamin A/C expression was reduced by 60-70% in T cells transfected with 100 pmol Lamin siRNA (not shown).

Subsequently, we tested the knockdown efficiency of a number of gene-specific siRNAs for use in functional experiments, with the goal of identifying two highly-effective siRNAs per knockdown target in order to be able to control for off-target effects. This was accomplished for the PTPN22 phosphatase in T cells. We
found 3 siRNAs that target PTPN22 and result in knockdown greater than 80% by 24 hrs post-transfection, and greater than 70% knockdown after 48 hrs (Figure 8). We identified at least 1 siRNA for the PTPN2 phosphatase that results in 62% knockdown of PTPN2 mRNA in T cells (Figure 9).

We performed additional experiments to validate the time course of siRNA target gene knockdown and quantitate protein reduction. Figure 10 shows a time course for PTPN22 knockdown at the level of RNA. We found that knockdown of PTPN22 RNA persists through 3 days but by day 4 RNA levels were returning to untransfected cell levels. Similar results were observed for PTPN2 knockdown. We observed that protein knockdown of PTPN2 lags behind RNA knockdown by ~ 48 hrs, with detectable knockdown at the protein level observed at 3 days after siRNA transfection (Figure 11).

We also evaluated the phenotypic effects of PTPN22 and PTPN2 knockdown in T cells. We examined T cell receptor (TCR) signaling in PTPN22 siRNA transfected T cells since PTPN22 is known to modulate TCR signal strength. Using calcium flux as a readout of TCR signaling, we observed that PTPN22 siRNA #1 increased the peak calcium flux in T cells compared to mock or universal negative control siRNA transfected T cells (Figure 12). An increase in calcium flux is the expected result since PTPN22 normally functions to dephosphorylate an activating tyrosine in the active site of the TCR-associated kinase Lck. When we analyzed whether this effect was present in the naïve or memory T-cell subset, we found that the memory, but not naïve, T-cells displayed increased calcium

Figure 9. PTPN2 siRNA transfection results in 60% knockdown of PTPN2 expression in T cells. Naïve CD4+ T cells transfected with siRNAs using Amaxa Human T Cell Nucleofector Kit and assayed by qPCR for PTPN2 expression after 48 hrs. siRNA #1 transfection at 50 and 100 pmol results in approximately 60% knockdown (57% and 63%, respectively) of PTPN2 mRNA compared to a negative control siRNA.

Figure 12. siRNA knockdown of PTPN2 RNA and protein expression in T cells. Primary CD4+ T cells were transfected by Amaxa nucleofection with 100 pmol of the indicated PTPN2 siRNAs or the universal negative control siRNA. Cells were maintained in 10 IU/ml IL-2 and harvested each day for 3 days. RNA and protein were isolated and assayed by Taqman qPCR to assess PTPN2 RNA levels, or assayed by western blotting using a PTPN2-specific polyclonal antibody to evaluate protein levels. Protein was quantitated by densitometry. RNA and protein levels were expressed relative to the levels detected in the universal negative control siRNA-transfected cells.
flux. These findings are consistent with our previous results showing that control T cells, carrying a gain of function mutation in PTPN22, have altered calcium flux in the memory T-cell compartment.

PTPN2 functions to modulate cytokine signaling, including the response to IL-2. To assess the phenotypic effect of PTPN2 knockdown, we examined the phosphorylation of the STAT5 transcription factor (pSTAT5) in the IL-2 pathway after treatment of siRNA-transfected T cells with IL-2 (Figure 13). We observed a reduction in the percentage of pSTAT5 positive cells with both PTPN2 siRNAs, consistent with our previous findings in control subjects carrying a sequence variant that reduces PTPN2 expression. This effect was most evident in the CD25-high fraction of T cells, which are the most responsive to IL-2.

In parallel studies, we expanded our evaluation of siRNAs to new target genes, including STAT3 and the IL-6 receptor. Figure 14 shows knockdown of RNA levels of the transcription factor STAT3 after transfection of three unique STAT3 siRNAs. One of the STAT3 siRNAs, siRNA #1, was validated as a functional STAT3 siRNA, and it displayed the greatest reduction in STAT3 RNA. STAT3 is a transcription factor that functions in several cytokine pathways including the IL-6 pathway, which is important in the generation of pro-inflammatory Th17 cells.
Collectively, our results for Year 1 (illustrated in Figures 7–14) showed that: 1) our protocol to introduce siRNAs into naïve human CD4+ T-cells works and successful transfection of siRNA can result in efficient RNA knockdown, and 2) that specific consequences arise from RNA knockdown, which include reduced expression of the cognate protein and effects on cell function that correspond to inhibition of the target genes (e.g., PTPN22, PTPN2).

We found that siRNA knockdown of target gene (i.e., PTPN2 and PTPN2) RNA persisted through 3–4 days in human CD4+ T cells and protein knockdown lagged behind RNA knockdown by ~48 hr. The phenotypic consequences of knockdown of PTPN22 and PTPN2 were modest changes in TCR signaling and IL-2 signaling, respectively.

In Year 2, we repeated and extended phenotypic analyses of knockdown of PTPN22. We replicated calcium flux following TCR stimulation in PTPN22 siRNA transfected T cells. Similar to our previous results, we observed that PTPN22 siRNA increased the peak calcium flux in memory T cells, but not naïve T cells, compared with a negative control siRNA (Figure 15). An increase in calcium flux is the expected result since PTPN22 normally functions to dephosphorylate an activating tyrosine in the active site of the TCR-associated kinase Lck, down-regulating TCR signaling, and this phenotype is more evident in memory T cells. However, the effect was modest. As a second measure of the effect of PTPN22 siRNA on TCR activation, we measured...
phosphorylation of several key signaling molecules in the TCR signaling cascade, including PLC-γ1, Akt, and CD3-ζ. As shown in Figure 16, we were not able to detect reproducible differences in phosphorylation of PLC-γ1, Akt, or CD3-ζ between PTPN22 siRNA transfected CD4+ T cells versus cells transfected with a negative control siRNA at 2 or 3 days post transfection, despite a 70-80% knockdown of PTPN22 RNA in these cells.

To target the generation of Th17 cells, we tested siRNAs specific for the IL-6 receptor (IL-6R) and STAT3, the transcription factor that functions in IL-6 signaling. Transfection of human CD4+ T cells with an IL-6R siRNA resulted in ~40% reduction of IL-6R RNA over 3 days (Figure 17). Flow cytometry detected a two-fold reduction in IL-6R protein on the surface of the transfected T cells and a reduction in phosphorylated STAT3 after IL-6 treatment (Figure 18). However, subsequent experiments have not replicated the reduction in IL-6 signaling in IL-6R siRNA transfected T cells.

Transfection of human CD4+ T cells with siRNAs for STAT3 resulted in 40-60% reduction of STAT3 RNA (Figure 17). Analysis of total STAT3 levels by intracellular staining and flow cytometry revealed a 30% reduction in STAT3 protein at day 5 after transfection (Figure 19). To determine if STAT3 knockdown interfered with cytokine signaling, we treated siRNA transfected cells with IL-21, which signals via STAT3, and analyzed phospho-STAT3 levels. As shown in Figure 19, the mean fluorescence intensity of phosphoSTAT3 was reduced in STAT3 siRNA transfected cells, as compared with cells transfected with the negative control siRNA. However, we did not observe a reproducible reduction in phospho-STAT3 following treatment of siRNA transfected T cells with IL-6, suggesting that

Figure 16. Phosphorylation of TCR signaling molecules in siRNA transfected CD4+ T cells following TCR stimulation. CD4+ T cells were purified by negative selection and transfected with 200 pmol of the indicated siRNAs. 48h after transfection, cells were stimulated with anti-CD3 and cross linker and fixed and permeabilized at the indicated time points. Cells were stained with phospho-specific antibodies for PLC-γ1 (A), Akt (B), or CD3ζ (C) and were analyzed by flow cytometry. Graphs show mean fluorescence intensity (MFI).

Figure 17. (Left). RNA knockdown following transfection of CD4+ T cells with IL-6 receptor or STAT3 siRNAs. Primary CD4+ T cells were isolated by negative selection and transfected with 200 pmol of the indicated siRNAs. Cells were harvested at the indicated days after transfection. RNA purified, and IL-6R (A) or STAT3 (B) RNA levels were assessed by qPCR using Taqman probes. RNA levels are expressed relative to the levels detected in T cells transfected with a negative control siRNA.
the knockdown achieved was suboptimal. Taken together, the results of the functional experiments demonstrated modest or undetectable phenotypes, despite achieving reproducible knockdown of target RNA with siRNA transfection. Given these results, we investigated two alternative methods of RNA interference (RNAi): lentiviral transduction of short hairpin (sh)RNAs and siRNA introduction into T cells using a CD7 single chain antibody.

Lentiviral encoded shRNAs have recently been used successfully by others for RNAi knockdown in primary human T cells. To establish lentiviral shRNA knockdown in our hands, we purchased a pLKO.1 turboGFP lentiviral construct and a paired pLKO.1 shGFP construct. The plasmids were packaged by co-transfection of HEK293T cells along with envelope and packaging plasmids, and viral supernatants were collected for 48h and concentrated. Viral supernatants and shRNA knockdown were validated by infecting HEK293T cells. As shown in Figure 20, over 90% of 293T cells expressed GFP on day 5 after infection with GFP viral particles, whereas only ~20% of 293T cells

Figure 18. IL-6R siRNA reduces IL-6R expression and signaling. CD4+ T cells purified by negative selection were transfected with 200 pmol of a negative control siRNA (UC), STAT3 siRNA #1, STAT3 siRNA #4, or an IL-6R siRNA and were placed into culture with 10 IU/ml IL-2. On days 2-5 after transfection, cells were stained for IL-6R surface expression (A) or were treated +/- IL-6, fixed, and permeabilized and stained with an antibody specific for phosphorylated STAT3 Y705 (B). Cells were analyzed by flow cytometry and mean fluorescence intensity was determined.

Figure 19. STAT3 siRNA reduces STAT3 expression and phosphorylation. CD4+ T cells purified by negative selection were transfected with 200 pmol of a negative control siRNA (UC), STAT3 siRNA #1, STAT3 siRNA #4, or an IL-6R siRNA and were placed into culture with 10 IU/ml IL-2. On days 2-5 after transfection, cells were treated +/- IL-21, fixed, and permeabilized and stained with an antibody specific for total STAT3 protein (A) or an antibody specific for phosphorylated STAT3 Y705 (B). Cells were analyzed by flow cytometry and mean fluorescence intensity was determined.

Figure 20. Validation of lentiviral shRNA knockdown in HEK293T cells. Lentiviruses encoding GFP or an shRNA specific for GFP (shGFP) were used to infect HEK293T cells. On day 4 after infection, puromycin was added to cultures to select for infected cells. GFP expression was assessed at the indicated times by flow cytometry of live cells and is expressed in the graph as the percent GFP positive of total live cells.
infected with both GFP and shGFP viral particles expressed GFP. Knockdown of GFP expression was maintained through day 8 by adding puromycin to the cultures, since a puromycin resistance gene is encoded on the lentiviral plasmid. GFP expression in shRNA transduced cells increased to 40% in 293T cells grown without puromycin. These results confirmed functional lentivirus production and infection, and demonstrated an 80% knockdown of GFP protein expression by day 5 after infection with shRNA.

We performed lentiviral infection of primary human CD4+ T cells using the GFP and shGFP plasmids. We did not detect significant infection of unstimulated CD4+ T cells. Lentiviral infection of stimulated T cells resulted in ~10% of cells expressing GFP on day 4, which increased with puromycin selection to >80% of T cells on day 8. Co-transduction of GFP and shGFP viral particles reduced GFP expression to <10% of cells (Figure 21).

As an alternative approach for achieving siRNA delivery and knockdown in primary T cells, we utilized an anti-CD7 single chain antibody-protamine fusion protein that has been shown to deliver siRNAs in vitro and in vivo to human and mouse T cells (Kumar et al., Cell 134: 577-586, 2008). CD7 is expressed on all mouse and human T cells and is rapidly internalized, making it a useful vehicle for introducing molecules into cells. A positively charged protamine peptide coupled to the C-terminus of the single chain anti-CD7 (scFvCD7) enables binding of siRNA molecules (~6 siRNAs/scFvCD7) via charge interactions. The siRNA-decorated scFvCD7 molecules are then mixed with T cells, where CD7 is bound by the scFvCD7/siRNA complex, and is internalized. To test this reagent, received in collaboration with Dr. Premlata Shankar, we bound an Alexa Fluor 488-coupled siRNA to the scFvCD7 reagent and tested for transduction of Jurkat T cells (human), which express CD7. As shown in Figure 22, we observed 100% of Jurkat cells took up the fluorescently labeled siRNA at 3 hr post-treatment, with a concomitant decrease in CD7 expression. At 24 hr post-treatment, Jurkat cells were still fluorescent, indicating the siRNA was internalized and CD7 was re-expressed on the cell surface. The scFvCD7/siRNA was not toxic to the cells, with only 9% dead cells at the highest concentration used. Using a siRNA that targets the PTPN2 phosphatase we observed 80% knockdown of PTPN2 RNA at 48 hr and 30% knockdown of PTPN2 protein at 72 hr in Jurkat T cells.

In subsequent studies, we tested the anti-CD7 single-chain antibody in primary human CD4+ T cells and in the alginate sphere delivery system (developed as part of Task 9) as a means of delivering siRNAs in vivo in wound repair settings. To adapt the scFvCD7 reagent for in vivo delivery, we performed experiments in collaboration with Dr. Vernon to determine if the scFvCD7/siRNA complexes could be delivered via alginate-poly-L-lysine (PLL) spheres. For these experiments, alginate spheres were constructed containing 1.5 µg (approximately 50 pmol) of the
scFvCD7 reagent alone, or pre-complexed with 50 pmol of the Alexa Fluor 488-coupled siRNA. This concentration of scFvCD7 and siRNA are suboptimal for knockdown purposes, but the goal of this experiment was to demonstrate delivery. The spheres were then placed in culture with Jurkat T cells in a 96-well plate, and CD7 expression and Alexa Fluor 488 fluorescence were measured on the Jurkat cells by flow cytometry over several days to monitor scFvCD7/siRNA delivery (Figure 23). Based on previous experiments in Task 9 with delivery of fluoresceinated immunoglobulin, we expected the CD7 reagent to be delivered slowly over 3–5 days. Our results showed a modest diminution of CD7 expression at 24 hr in the Jurkat cells cultured with the scFvCD7 loaded spheres, with no accompanying fluorescence. By 72 hr, CD7 expression had returned to pretreatment levels. We did not detect any fluorescence in the Jurkat cells cultured with the scFvCD7/siRNA-loaded spheres and no fluorescence was detected in the spheres when the experiment was terminated. We believe that the negative charges of the alginate may have disrupted the scFvCD7 interaction with the fluoresceinated siRNA, which then freely diffused out of the spheres. The scFvCD7 reagent may have also diffused out of the spheres rather quickly since it has a relatively low molecular weight (32 kDa), and the reduced expression we observed at 24 hr may have been CD7 returning to pretreatment levels. Importantly, the spheres were not toxic to the T cells. Based on our results, we plan, in future projects, to reformulate our controlled delivery system to preserve the association between the scFvCD7 construct and the siRNA. Some of these experiments will be conducted under Task 9, which, as a part of Aim 2, is extended into 2013.

Final studies for Task 4 were focused on achieving more robust functional phenotypes following siRNA knockdown of stimulated CD4+ T cells than were observed in our previous experiments, which used unstimulated T cells. Primary CD4+ T cells were stimulated in vitro with plate bound anti-CD3 antibody and soluble anti-CD28 for 3 days and were then transfected with 100 pmol of Lamin or PTPN2 siRNA using Amaxa transfection optimized for stimulated human T cells. As shown in Figure 24, stimulated CD4+ T cells were efficiently transfected, with nearly 100% of cells taking up fluoresceinated siRNA. There was only 10% cell death 1 hr after transfection, which did not increase after 48 hr. RNA was harvested from the cells at 48 hr, 72 hr, and 96 hr after transfection, and Lamin and PTPN2 RNA levels were assessed by qPCR. We found RNA levels were reduced by 60% at 48 hr, 44% at 72 hr and 29% at

Figure 23. Delivery of scFvCD7/Alexa Fluor 488 siRNA complexes into Jurkat T cells via alginate-PLL spheres. Top: Jurkat T cells were incubated in the presence of a 1:1 complex of scFvCD7+ Alexa Fluor 488-labeled siRNA (100 pmol each) for the indicated time and CD7 expression and uptake of Alexa Fluor 488-labeled siRNA were monitored by flow cytometry. Middle, Bottom: Jurkat cells were incubated in the presence of alginate-PLL spheres loaded with 50 pmol of scFvCD7 or a complex of scFvCD7/Alexa Fluor 488-siRNA (50 pmol each) for the indicated time and assayed as above to monitor diffusion of the scFvCD7/siRNA from the spheres.

Figure 24. SiRNA gene specific knockdown in stimulated CD4+ T cells. CD4+ T cells were isolated from frozen PBMC by negative selection and were stimulated in vitro with plate bound anti-CD3 and soluble anti-CD28. After 3d, cells were Amaxa transfected with 100 pmol of the indicated siRNA. A) Transfection and viability was assessed by flow cytometry 1 and 48h after transfection. B) RNA expression was analyzed by qPCR at the indicated times, and was expressed relative to an irrelevant siRNA.
96 hr. This level of PTPN2 RNA knockdown is comparable to the reduction in PTPN2 RNA levels observed with the \textit{PTPN2} rs1893217 autoimmune risk allele, which correlates with decreased cytokine signaling in T cells. Future experiments will evaluate the functional phenotypes associated with siRNA-mediated knockdown in stimulated CD4+ T cells.

\textbf{Conclusion, Task 4}

In Task 4, we developed protocols for efficient transfection of siRNAs into unstimulated primary T and B cells, which resulted in gene-specific knockdown. siRNAs for PTPN22, PTPN2, STAT3, and IL-6R were validated, and were shown to elicit a 40–80% reduction in gene-specific RNA for 3–4 days following transfection. We also showed that RNA knockdown was associated with a reduction in corresponding protein synthesis that lagged behind the RNA knockdown by 24–48 hr. Functionally, siRNA-mediated knockdown of the above gene targets in unstimulated CD4+ T cells was associated with modest phenotypes, which included: 1) increased TCR signaling in PTPN22 siRNA-transfected cells, as measured by calcium flux, which was consistent with the role of PTPN22 in dampening TCR signal strength; 2) decreased IL-2 signaling in PTPN2 siRNA-transfected cells, which copies the phenotype induced by a genetic variant in PTPN2 that reduces PTPN2 expression; and 3) decreased IL-6 signaling in cells transfected with either IL-6R or STAT3 siRNAs.

We have developed a variety of approaches improve the efficiency of siRNA-mediated gene knockdown in order to increase in the magnitude of functional phenotypes. These include shRNA delivery via lentiviral infection of stimulated CD4+ T cells, siRNA delivery into unstimulated or stimulated CD4+ T cells by single-chain anti-CD7 antibody, and transfection of siRNA into stimulated CD4+ T cells. All three of these methods successfully deliver shRNA/siRNA into T cells. Future projects will refine these methods with an objective of maximizing the duration and magnitude of functional T cell phenotypes that suppress inflammation and improve wound repair.

Collectively, the findings made under Task 4 have important implications for our future research. The PTPN22 siRNAs are an invaluable tool to reverse the immune phenotypes resulting from the 1858T genetic variant in PTPN22 that causes susceptibility to various autoimmune diseases. The PTPN2, STAT3, and IL-6R siRNAs can modulate IL-6 signaling which drives Th17 cell differentiation, which we are currently testing. In summary, we have made good progress in towards the goal of modulating CD4+ T cell development using shRNA/siRNAs.

\textbf{Task 5}

\textbf{Evaluate \textit{in vivo} candidate siRNA using DO11.10-Treg transfection (Steven Ziegler, PhD).}

Task 5 is the \textit{in vivo} arm of Aim 1 C (begun in Year 2), which extended the studies described in Task 4 to \textit{in vivo} models of Treg function, using the DO11.10 mouse model. We and others have shown that transfer of activated DO11.10 effector cells into lymphopenic (Rag-deficient) mice that express ovalbumin in the pancreas (RIP-mOVA mice) results in the rapid onset of diabetes. However, co-transfer of DO11.10-derived Tregs can block disease onset (Figure 25). To test the genes identified in the siRNA knockdown screen described in Task 4, we transfected DO11.10-Tregs with the specific siRNAs and tested the ability of those cells to protect in the co-transfer disease model. Essentially, the immune system attack against ovalbumin in the pancreas in this model is a surrogate for immunologically-mediated tissue injury, and therefore is a model for the types of tissue injury and repair under study in the CITR, which can occur in many different tissue contexts. The advantage of using this particular mouse is that, when the RIP-mOVA pancreas is injured, there is a very direct and simple biomarker for tissue damage, namely loss of insulin and resultant hyperglycemia, which makes this an ideal model system for our studies.

After transfer into the RIP-mOVA/Rag-/- host mice (referred to as RO mice), the naïve DO11.10+ T cells begin to express FOXP3 and take on a Treg-type phenotype (these cells are referred to as \textit{induced Tregs}, or iTregs), resulting in durable tolerance in the mice. To understand the pathways involved in this process, we eliminated, through genetic ablation, specific genes suggested to be involved in this process. These include cytokine genes IL-6 (tested in Task 4), IL-17, IL-21, IFNγ, and transcription factors STAT1, STAT4, and T-bet.
To understand the pathways involved in these processes, we generated DO mice that lacked specific cytokine or transcription factor genes already shown to be involved in CD4+ T cell function. We tested the role of signature cytokines for the Th1 (IFN-γ) and Th17 (IL-17A) lineages in our model system. As shown in Figure 26, IL-17A-deficient DO/RAG T cells were similar to wild-type DO/RAG T cells following transfer. The mice receiving these cells developed tolerance when left untreated, and developed disease when either immunized or injected with poly I:C. In contrast, RO/RAG mice that received DO/RAG T cells lacking IFN-γ developed tolerance normally in the absence of inflammatory stimulation, but also maintained tolerance in the presence of inflammation. These data suggest that expression of IFN-γ by the transferred T cells following inflammatory stimulation inhibits the ability of the cells to induce FOXP3 and become iTregs.

Figure 26. IFN-γ, but not IL-17A, is involved in the inhibition of iTreg generation following transfer of naïve CD4+ T cells. CD4+ T cells were isolated from DO/RAG mice that also lacked IFN-γ (left panel) or IL-17A (right panel) and transferred into RO/RAG hosts. One day after transfer the mice were treated with PBS (no treatment), poly I:C (pIC) or ovalbumin in IFA (OVA/IFA). Disease development was then monitored by measuring blood glucose levels (BGL). Data are presented as % mice with normal blood glucose. Disease is defined as 2 consecutive BGL measurements of >250 mg/dL.

Figure 27. Prior exposure to non-specific inflammation does not effect iTreg generation in vivo. CD4 T cells were isolated from either control mice or mice treated with polyI:C on days -2 and -1 before isolation (poly IC pre). T cells were transferred into RO/RAG hosts and disease progression measured by blood glucose levels. ctrl: no-pretreatment and no post-treatment; poly I:C with: no pretreatment and poly I:C given on day 1 and 2 post-transfer.
In subsequent studies, we focused on the events that take place prior to transfer, asking whether the effect of polyI:C-mediated inflammation was directly on the naïve T cells, or on another cell population. DO/RAG mice were given polyI:C on days -2 and -1, and then CD4+ T cells were isolated on day 0 and transferred into RO/RAG mice. As controls, T cells from untreated DO/RAG mice were transferred into RO/RAG and either left untreated, or given polyI:C one day after transfer. As shown in Figure 27, T cells from the mice pre-treated with polyI:C protected as well as those from untreated mice, suggesting that inflammation alone is not enough to drive disease development.

We next performed a similar experiment, isolating spleen and lymph nodes from from polyI:C-treated or untreated DO/RAG mice. However, instead of isolating CD4+ T cells for transfer into RO/RAG hosts, we cultured them in vitro with antigen (OVA peptide) in the presence or absence of TGF-β to assess their ability to develop into iTregs. To our surprise, the T cells from the polyI:C-treated mice displayed a marked increase in FOXP3+ cells (Figure 28). These data suggests that the exposure of the naïve T cells to non-specific inflammatory stimuli “primes” them to differentiate into iTregs when they encounter their cognate antigen. We are now using both genetic and antibody blockade techniques to identify the factors involved in this phenomenon.

**Conclusion, Task 5**

Using a genetic approach we have characterized the pathways involved in the in vivo conversion of naïve CD4+ T cells to induced regulatory T cells (iTregs). We have also uncovered a novel mechanism for generating iTregs involving the pre-exposure of naïve CD4+ T cells to non-specific inflammatory stimuli. In future studies, we will test whether a similar phenomenon exists for human T cells.

**Task 6**

**Evaluate siRNA for TREM-2 and DAP12 for inhibition of TNF production by THP-1 cells (Jessica Hamerman, PhD).**

Task 6 was a component of Aim 1D (Part 1). While Aims 1B and 1C targeted the adaptive immune response through control of Treg maturation and function, Aim 1D evaluated innate immune regulators as potential targets for anti-inflammatory intervention during wound repair. Specifically, Aim 1D assessed several endogenous inhibitors of the macrophage inflammatory response, TREM-2, BCAP and β2 integrins, with the goal of developing strategies to downmodulate the macrophage inflammatory response as one of the multi-faceted approaches for cytoprotection examined in this project.

The macrophage inflammatory response is potently activated by pattern recognition receptors which include the TLR family, which, when ligated, results in the secretion of pro-inflammatory cytokines, such as tumor necrosis factor, IL-12, and IL-6, as well as chemokines that attract other immune cells. One mechanism by which the inflammatory response is controlled is through endogenous inhibitors or negative regulators of TLR signaling. In Aim 1D, we proposed to investigate several inhibitors of TLR signaling, with the long-term goal to develop strategies for turning on these inhibitory pathways with either small molecules or soluble proteins that can be incorporated into the Cytoprotective Implant hydrogels to modulate the macrophage inflammatory response during wound repair.
We have spent several years investigating the anti-inflammatory receptor complex made up of the triggering receptor expressed on myeloid cells (TREM)-2 receptor and its dialkyl phosphate (DAP)12 signaling chain. Using mouse models, we have shown that TREM-2/DAP12 inhibits macrophage TLR responses both in vitro and in vivo. Accordingly, for the initial part of this project (Task 6), we investigated whether TREM-2 and DAP12 might serve as innate immune regulators by dampening inflammatory responses in human macrophages. To accomplish this, we performed experiments to knock down TREM-2 and DAP12 in human monocytes and monocyte-derived macrophages, using a set of corresponding siRNAs that targeted human TREM-2 and DAP12. We began our experiments by testing the effectiveness of the siRNAs in THP-1 cells, a monocyte-like cell line; however, we encountered difficulty in measuring the efficacy of knockdown when we used a flow cytometry-based method to detect of TREM-2 and DAP12 protein. As an alternative approach, we established a qPCR assay for measuring TREM-2 and DAP12 mRNA. Figure 29 shows that we can measure TREM-2 mRNA in THP-1 cells and in cultured monocytes. Using the qPCR assay, we demonstrated that TREM-2 expression is induced on human monocytes after differentiation into macrophages in the presence of macrophage colony stimulating factor.

Conclusion, Task 6

We conclude from our studies on Task 6 that the TREM-2 inhibitory receptor is not expressed on circulating monocytes, but that its expression is induced upon differentiation into macrophages in vitro. This finding suggests that the function of TREM-2 is to inhibit macrophage function in tissues, not to inhibit monocyte function in the blood. We were not able to achieve efficient knockdown of TREM-2 and DAP12 in human monocyte-derived macrophages during these studies. Future studies will focus on human macrophage cell lines, which may be more amenable to transduction with siRNAs.

Task 7

Measure TLR activation by cytokine production and phospho-specific antibodies in CD18 and BCAP KO mice, and map BCAP domains as potential therapeutic targets (Jessica Hamerman, PhD).

For Aim 1D, Parts 2 and 3 (addressed under Task 7), we investigated two novel inhibitors of TLR signaling, β2 integrins and BCAP, using knockout mice. We began experiments to analyze TLR responses in CD18 (β2 integrin)-deficient mice. Wild-type or CD18-deficient mice were injected with 100 μg of LPS and serum collected at 1, 2, 4 and 6 hr after injection. The amount of TNF, IL-6 and IL-12 p40 in the serum was then measured by using ELISA. As shown in Figure 30, CD18-deficient mice produced more TNF and IL-12 p40 than wild-type mice, though the kinetics of induction was identical between wild-type and CD18-deficient mice. These data showed that CD18 inhibits TLR responses in vivo as well as in vitro in macrophages.
We then compared cytokine production on a per cell basis from peritoneal macrophages from wild-type (WT) and CD18-deficient mice. We found that peritoneal macrophages from CD18-deficient mice produced more IL-6 and IL-12 p40 than those from WT mice, whereas the production of TNF was similar between the two genotypes (Figure 31). These data are similar to our findings with bone marrow-derived macrophages and further strengthen our conclusion that β2 integrins inhibit TLR signaling in a variety of macrophage populations.

We next expanded our studies beyond the inhibition of TLR responses by β2 integrins to investigate how BCAP inhibits TLR responses. This was done by comparing TLR-induced signal transduction in WT and BCAP-deficient macrophages. We treated WT and BCAP-deficient macrophages with LPS and prepared cytoplasmic extracts at different times after treatment. We then used SDS-PAGE and Western blot to examine the activation of the 3 MAPK signaling pathways and the activation of the NF-κB pathway. As shown in Figure 32, there was a slight enhancement of p38 MAPK and ERK phosphorylation after LPS treatment in BCAP-deficient macrophages in comparison with wild-type macrophages. In contrast, there was no change in the degradation of IκBα protein, the cytoplasmic inhibitor of NF-κB translocation to the nucleus (Figure 33). This led us to conclude that BCAP-deficiency subtly affects the activation of MAPK pathways, but does not affect NF-κB activation.

Our subsequent experiments examined how BCAP-deficiency affects activation of the PI3-kinase pathway downstream of LPS. To measure PI3K activity, we measured the phosphorylation of Akt after LPS treatment of...
WT and BCAP-deficient macrophages. As shown in Figure 34A, BCAP-deficient macrophages had significantly reduced Akt phosphorylation after LPS treatment compared to WT macrophages. To confirm that the BCAP-deficient macrophages had less PI3K activity than WT macrophages, we treated both types of macrophages with the PI3K inhibitor wortmannin. PI3K inhibition is known to increase TLR responses in WT macrophages, and we reasoned that if there was less PI3K activation in BCAP-deficient macrophages, then wortmannin would have a reduced effect on these cells compared to its effect on WT macrophages. As shown in Figure 34B, WT macrophages increased TLR-induced IL-6 and IL-12 p40 after treatment with wortmannin, but there was little increase in BCAP-deficient macrophages. Therefore, we concluded that PI3K activation after TLR ligation is reduced in the absence of BCAP.

We have shown by retroviral reconstitution that reintroduction of BCAP into BCAP-deficient macrophages can reduce TLR responses to a level similar to that seen in WT macrophages. To determine if the ability of BCAP to inhibit TLR responses depends upon its ability to bind to PI3K, we transduced BCAP-deficient macrophages with a retrovirus either encoding a mutant of BCAP that cannot associate with PI3K due to mutation of the tyrosines within the 4 YxxM motifs to phenylalanine...
(Y4F), or with the un-mutated (control) protein. We then compared the ability of the transduced macrophages to inhibit TLR responses. As shown in Figure 35, the ability of BCAP to inhibit TLR responses depended upon these 4 tyrosine residues and therefore upon PI3K binding. Collectively, our data showed that the ability of BCAP to inhibit TLR responses is through its binding and activation of the PI3K pathway.

The next series of studies focused on β2 integrin-mediated inhibition of TLR responses. We have previously shown that macrophages lacking β2 integrins (CD18 KO) have increased IL-12 p40 and IL-6 secretion when compared to wild-type macrophages. As a follow up to these observations, we asked whether direct ligation of β2 integrins could inhibit TLR-induced cytokine production in wild-type macrophages. We performed these experiments in two ways. First, we took advantage of the fact that the adherence of macrophages to non-tissue-culture-treated plastic plates depends upon β2 integrin ligation. Therefore, we maintained macrophages in suspension in tubes with gentle rotation or plated them on dishes for 2 hr before activating with CpG DNA. TNF production was measured by intracellular cytokine staining. As shown in Figure 36A, macrophages that adhered to dishes through β2 integrins produced less TNF than macrophages maintained in suspension. We also adhered wild-type macrophages to plates coated with the β2 integrin ligand ICAM-1 or control protein and compared cytokine secretion after treatment with LPS by using ELISA. As shown in Figure 36B, cells plated on ICAM-1 Fc produced less TNF than those plated on uncoated wells (PBS) or wells coated with control Fc fusion protein (IgG1 Fc). These data were consistent with our data generated with CD18-deficient macrophages showing that β2 integrins

Figure 35. BCAP requires PI3K binding to inhibit TLR responses. BCAP-deficient bone marrow-derived macrophages were transduced with empty retrovirus (control) or retroviruses encoding the wild-type BCAP protein (BCAP WT) or a mutated version of BCAP that cannot bind to PI3K (BCAP Y4F). Transduced macrophages were treated with CpG DNA (25 nM) and Brefeldin A for 6 hrs and then TNF and IL-12 p40 production was measured by flow cytometry.

Figure 36. Direct ligation of β2 integrins inhibits TLR-induced pro-inflammatory cytokine production. A) Wild-type macrophages were maintained in suspension with gentle rotation or plated on non-tissue culture treated plates for 2 hr and then treated with 10 nM CpG DNA for 2 hr in the presence of Brefeldin A. Cells were then stained intracellularly for TNF and analyzed by flow cytometry. B) Wild-type macrophages were plated on uncoated wells (PBS) or wells coated with control Fc fusion protein (IgG1 Fc) or ICAM-1 Fc fusion protein for 1 hr and then treated with 0.5 ng/ml LPS overnight. Supernatants were then collected and TNF and IL-6 secretion measured by ELISA.
serve to inhibit TLR responses.

Having finished our experiments investigating β2 integrins, we performed our last set of experiments investigating BCAP. We had previously showed that lipopolysaccharide (LPS)-induced MAPK activation and IκBα degradation were similar between wild-type and BCAP-deficient macrophages (IκBα is one member of a family of cellular proteins that function to inhibit the NF-κB transcription factor). Moving forward from this finding, we examined an additional readout of the NF-κB pathway: nuclear translocation of the NF-κB subunits c-rel and p65 in response to LPS. As shown in Figure 37, the nuclear translocation of c-rel and p65 was greatly reduced in BCAP-deficient macrophages in comparison to wild-type macrophages. This was a surprising finding given that the upstream degradation of IκBα was identical in the presence and absence of BCAP. This result was also surprising given that the BCAP-deficient macrophages produce more cytokines after TLR stimulation, even in the presence of the low levels of nuclear NF-κB subunits that we find. These data showed that BCAP is a pleiotropic signaling adapter downstream of TLR signaling and we plan future grant applications to further investigate this interesting molecule.

Figure 37. Reduced c-rel and p65 accumulation in the nucleus in the absence of BCAP. A) Bone marrow-derived macrophages from wild-type (WT) or BCAP-deficient (BCAP KO) mice were incubated with LPS for the indicated times, separated into cytosolic and membrane fractions, and blotted as indicated. B) Macrophages were incubated with LPS, then fixed, permeabilized and stained for c-rel.

Conclusion, Task 7

In Task 7, we have confirmed that β2 integrins inhibit TLR responses not only in bone marrow-derived macrophages, but also in inflammatory macrophage populations directly ex vivo and in vivo in mice. This finding supports the hypothesis that targeting β2 integrins may be a viable strategy for reducing inflammation during wound healing. We have also identified the mechanism by which BCAP inhibits macrophage inflammatory responses, which gives us valuable information for designing strategies to promote BCAP-mediated inhibition. Future studies will identify small molecule or protein agonists of the β2 integrin and BCAP pathways that could be incorporated into hydrogel constructs for treatment of injury to reduce inflammation during wound healing.

Task 8

Measure serum biomarkers in 20 human subjects treated with IL1RA after inflammatory stimulus (Srinath Sanda, MD).

This Task was a component of Aim 1E. Cytokines mediate tissue injury and cellular dysfunction across a broad range of diseases. Specific cytokines, such as IL-6 and IL-8, are emerging as important mediators in sepsis and as prognostic indicators of systemic inflammation in patients with traumatic injury. Our conceptual understanding of wound healing has evolved to include a complex interaction of inflammatory cytokines. Over the past decade, numerous agents have been developed to block the action of specific cytokines. These therapies
have revolutionized the treatment of autoimmune conditions, such as rheumatoid arthritis and inflammatory bowel disease. However, given the broad range of inflammatory mediated diseases, cytokine modulating agents may have utility in other areas of medicine, as has recently been observed with the beneficial effect of the administration of TGF-β3 in wound healing.

Aim 1E tested the protective role of inflammatory cytokine blockade in humans prior to an inflammatory stimulus. After receipt of Human Subjects approval, we began to test the protective role of inflammatory cytokine blockade in humans prior to an inflammatory stimulus (induced hyperglycemia). The study design involved a total of 10 patients and use of a 3-day course of anti-cytokine blockade after the first study visit and prior to repeating the induced hyperglycemia. Each patient presented to the clinical research center (CRC) and received an octreotide infusion to temporarily halt endogenous insulin secretion. They then received an IV bolus of glucose and had serum and peripheral blood mononuclear cells (PBMCs) collected for the next two hours. Each patient then received a daily dose of an IL-1 receptor antagonist, anakinra, for 3 days and returned to the CRC for a repeat of the octreotide/glucose combination. No significant adverse events occurred during the course of the study. Our major focus was the measurement of serum IL-8, a major inflammatory cytokine that is easily and reliably measured in serum following induced hyperglycemia.

In our analysis of all 10 patients, we did not see a significant difference in serum cytokines with hyperglycemia, which suggests that this model may be inadequate to induce significant levels of inflammation. We have tested serum for IL-1β, IL-6, TNF-α, and IL-8. The IL-1β and IL-6 levels were too low to accurately quantify. Graphs of the IL-8 and TNF-α data during the first visit (before exposure to the IL-1 receptor antagonist anakinra) are shown in Figure 38. There was no difference in correlations between glucose and either IL-8 or TNF-α before or after anakinra. Correlations for IL-8 with glucose are shown in Figure 39.
We next performed assays on the frozen PBMCs and analyzed changes in intracellular signaling molecules and surface markers on the monocytes and T cell populations. Given our prior experience with anti-IL-1 therapy, we assessed whether hyperglycemia in the presence or absence of IL-1 blockade would result in changes in monocyte surface markers and IL-17 expression in CD4+ T cells. After analyses of the 10 subjects, we did not observe statistically significant differences in any of these phenotypic markers before and after glucose, regardless of the presence or absence of the IL-1 receptor antagonist anakinra.

We hypothesized that acute hyperglycemia may have an early effect on T cell activation, since several signaling molecules are common to both the T cell receptor and the insulin receptor. We analyzed changes in phosphorylation of AKT and ERK, two signaling molecules downstream of the T cell receptor and the insulin receptor in subjects 4–10, given the lack of additional PBMCs for these analyses in subjects 1–3. No changes in AKT phosphorylation by flow cytometry were detected. Interestingly, we detected consistent and significant changes in phosphorylation of ERK by both MFI and fold-differences with hyperglycemia during visit 1 (pre-anakinra) (Figure 40A). However, when the patients were made hyperglycemic in the presence of anakinra, the differences in phosphorylation of ERK were gone (Figure 40B). These findings suggested that hyperglycemia may serve as a stimulus for early T cell activation and that such a stimulus may be mediated by IL-1β.

Subsequently, we preformed RNA-sequence analysis on whole blood RNA collected at the baseline visit, +60 minutes, and +120 minutes, pre- and post-glucose glucose/anakinra. Expression data on the 81 differentially expressed genes and genes related to immune function from all 10 subjects were averaged and presented as a heat map (Figure 41) (fold changes ranged from +2 to -2). It was clear that even a modest degree of hyperglycemia (see average glucose excursion for both pre-and post-anakinra visits below the heat map) significantly altered the expression of multiple genes. The most intriguing findings were related to induction of genes in the IL-1 pathway, such as caspase 4. IL-1 blockade with anakinra reversed these changes in inflammation-
associated genes. The degree and rapidity of IL-1 gene expression with a modest stimulus is novel. These data supported our initial hypothesis that hyperglycemia is an inflammatory stimulus and that cytokine blockade can prevent hyperglycemia induced inflammation.

**Conclusion, Task 8**

We conducted a novel clinical research study investigating the effects of IL-1 blockade on a generic inflammatory stimulus, hyperglycemia. Our study suggests that the inflammatory changes induced by hyperglycemia are mild, as neither our cellular analysis nor serum analysis demonstrated any significant difference in markers before or after hyperglycemia or any impact of IL-1 blockade. However, we were able to detect clear changes in certain inflammatory genes induced by hyperglycemia, such as caspase 4. More importantly, we showed that expression of these genes was inhibited by the use of drug that blocks the activity of IL-1 (the IL-1 receptor antagonist anakinra). Collectively, our data have established the proof-of-principle that inflammatory stimuli rapidly induce gene expression and that pre-emptive treatment with anti-inflammatory drugs prevents this gene expression. Future studies will focus on directly addressing the functions of hyperglycemia-induced genes, which may have implications for treatment of a variety of diseases, including diabetes.
3. KEY RESEARCH ACCOMPLISHMENTS FOR AIM 1 (Tasks 1–8)

**Task 1**
- Established the use of nylon (Nitex) meshes to provide a stable mechanical attachment for extracellular matrix hydrogels in microwell plate assays. Determined that 100 micron mesh/44% open space nylon (Nitex) mesh works adequately for the microwell plate assay application.
- Identified new polyvinyl alcohol (PVA) sponge materials (90 micron pore diameter) that will support HMW-HA hydrogels. These materials may offer improved gel adhesion over nylon mesh.
- Determined that the nylon (Nitex) mesh material can be used for a new application in this project—as suture anchors for the myobridge constructs (Task 11). Also, the use of PVA sponge as a support for ECM hydrogels was successfully translated into *in vivo* model of immunomodulation, which was applied to work in Tasks 3 and 10.

**Task 2**
- Performed and finished evaluations of microwell plate assay system for evaluating expression of GFP/FOXP3 in murine T cells. Established that the Packard fluorescence imager had the necessary sensitivity, but found that fluorescence signal from the cells was difficult to separate from backgrounds and that fluorescence analysis plates had cytotoxic properties. Our results indicated that an alternative, flow cytometry-based assay would more effective at measuring the influence of HMW-HA hydrogels on GFP/FOXP3 expression by this cell type.
- The HMW-HA hydrogel formulation evaluated in Task 2 became the basic support medium for studies performed in Task 3.

**Task 3**
- Evaluated the effects of gelatin sponge inclusion on FOXP3 induction and found that the gelatin sponge adds structural integrity to hydrogels polymerized *in vitro* and that there is no functional disadvantage vis-à-vis FOXP3 induction to having the gelatin sponge present.
- Established methods to evaluate the capacity of HMW-HA to incorporate cytokines that stimulate FOXP3 expression by T cells. Showed that HMW-HA thiol-crosslinked hydrogels can bind IL-2 and IL-10 and can release these important immunomodulatory cytokines in a controlled manner, thereby indicating that HMW-HA hydrogels might be used as a means for local control of immune responses within wound and graft sites.
- Developed a new approach to incorporation of anti-CD3 and anti-CD28 antibodies in crosslinked HMW-HA hydrogels using biotinylated antibodies in conjunction with streptavidin. This new capability may provide a strong stimulus (via attachment of the antibodies to cell surface CD3 and CD28) that promotes the expansion and persistence of immunomodulatory regulatory T cells within wound and graft sites. The presence of CD3 and CD28 signaling within the HMW-HA hydrogel could substantially enhance the immunomodulatory effects of IL-2 and IL-10 that are co-delivered within the same HMW-HA hydrogel.
- Demonstrated a significant effect of heparan sulfate (HS) on amplifying the influence of TGF-β and IL-2 on induction of FOXP3 by T cell precursors. From these results, new HMW-HA hydrogel formulations were created that incorporated HS, anti-CD3 and anti-CD28 antibodies, IL-2, and TGF-β. These formulations stimulated a significant production of IL-10 from T cell precursors and induced the formation of FOXP3+ regulatory T cells from the precursor population.
- Evaluated the capacity of our immunomodulator-supplemented HMW-HA hydrogel system to induce FoxP3+ Treg from CD4+ GFP/Foxp3- precursors *in vivo*. Demonstrated that the implanted hydrogel was able to mitigate the destruction of allogeneic islets in a model of islet transplantation.
Demonstrated that thiol-crosslinked HMW-HA lacking collagen/fibronectin (XHA) is an effective inducer of IL-10-producing regulatory T cells \textit{in vitro}.

Progressed to an \textit{in vivo} mouse model of inflammation (airway hypersensitivity) induced by OVA protein to show that XHA instillation is able to promote the induction of antigen-specific, IL-10-producing regulatory T cells and reduce airway inflammation.

\textbf{Task 4}

- Established an optimized siRNA transfection method for unstimulated primary human T and B cells.
- Determined RNA and protein siRNA knockdown time course.
- Validated gene-specific knockdown of RNA expression (40-80\%) for PTPN22, PTPN2, STAT3, and IL-6 receptor siRNAs.
- Determined that gene-specific siRNA knockdown was associated with modest functional phenotypes in unstimulated T cells, including:
  1. PTPN22- increased calcium flux in CD4+ T cells upon TCR cross-linking.
  2. PTPN2- decreased IL-2 signaling in CD4+CD25hi T cells.
  3. IL-6R- decreased IL-6 signaling in CD4+ T cells.
  4. STAT3- decreased IL-6 signaling in CD4+ T cells.
- Established gene-specific siRNA knockdown in stimulated CD4+ T cells.
- Established two alternative methods to obtain specific knockdown of gene expression in primary T cells, including:
  1. Lentiviral infection of stimulated CD4+ T cells with plasmid encoded shRNAs.
  2. Delivery of siRNAs into unstimulated CD4+ T cells with a single chain anti-CD7 antibody.
- Combined the single chain anti-CD7 siRNA delivery with alginate bead delivery to deliver siRNAs \textit{in vivo}.

\textbf{Task 5}

- Shown, using the RO/DO11.10 mouse model of autoimmunity \textit{in vivo}, that ablation of the IL-17 cytokine gene does not affect generation of induced Tregs, whereas ablation of the IFN\textgamma cytokine gene results in a reduction of induced Tregs.
- Discovered that exposure of naïve CD4+ T cells to non-specific inflammatory stimuli “primes” them to differentiate into induced Tregs when they encounter their cognate antigen.

\textbf{Task 6}

- Identified relevant siRNA sequences, received a set of siRNAs that target human TREM-2 and DAP12, and tested them in THP-1 cells, a monocyte-like cell line
- Initiated tests of additional antibodies for detection of TREM-2 and DAP12 so that we can measure knockdown at the protein level.
- Developed a qPCR assay for measuring TREM-2 and DAP12 mRNA that we can use to evaluate the efficacy of knockdown in THP-1 cells and cultured monocytes.
- Demonstrated that TREM-2 expression is induced on human monocytes after differentiation into macrophages in the presence of macrophage colony stimulating factor.

\textbf{Task 7}

- Showed that β2 integrins inhibit TLR responses \textit{in vivo} after LPS injection of mice, evidenced by the
higher inflammatory cytokine levels in the serum of CD18-deficient mice than wild-type mice.

- Demonstrated that β2 integrins inhibit TLR responses directly *ex vivo* in thioglycollate-elicited peritoneal macrophages, an inflammatory macrophage population in mice.
- Found that direct ligation of β2 integrins by plating cells on tissue culture plastic or on plates coated with the β2 integrins ligand ICAM-1 causes inhibition of TLR responses.
- Demonstrated that BCAP-deficiency has a mild effect on MAPK activation and no effect on IkBa-degradation after LPS treatment of mouse macrophages. Surprisingly, BCAP delays the entry into the nucleus of the NF-kB subunits c-rel and p65.
- Showed that the in the absence of BCAP, macrophages have dramatically reduced activation of the PI3K pathway after LPS treatment.
- Discovered that the ability of BCAP to bind to PI3K is required for BCAP to inhibit TLR responses.

**Task 8**

- Collected whole blood RNA from 10 patients at the baseline visit and at 60 and 120 min after induction of hyperglycemia via administered glucose. Performed gene expression analysis on the RNA and showed that even a modest degree of hyperglycemia significantly increased expression of multiple genes in the IL-1 pathway. These genes were not induced by hyperglycemia after treatment with the IL-1 receptor antagonist, anakinra. These data support our initial hypothesis that hyperglycemia is an inflammatory stimulus and that cytokine blockade can prevent hyperglycemia-induced inflammation.
4. REPORTABLE OUTCOMES

**Awarded Grants**

1. 1R01HL113294-01A1* (Bollyky, P) 07/01/2012 – 06/30/2017
   NIH/NHLBI $250,000 direct costs, per annum
   **ECM Costimulation of Immunoregulatory Pathways in Airway Inflammation**
   The goals of this project are to define how high molecular weight hyaluronan promotes the induction of IL-10 producing regulatory T-cells and to develop HA-based tools to induce TR1 *in vivo* using a mouse model of airway hypersensitivity.
   *This grant was scored in the 7*th* percentile. As of 3/4/2012, JIT notification has been received but not a funding letter. Concepts from Tasks 2 and 3 contributed to this grant.

2. 1R01 DK096087-01* (Bollyky, P) 07/01/2012 – 06/30/2017
   NIH/NHLBI $250,000 direct costs, per annum
   **Extracellular Matrix and the Function and Stability of FoxP3+ Regulatory T-cells**
   The goals of this project are to define how the extracellular matrix and the inflammatory milieu govern the stability and function of FoxP3+ regulatory T-cells in mouse models of autoimmune diabetes.
   *This grant was scored in the 5*th* percentile. As of 3/4/2012, JIT notification has been received but not a funding letter. Concepts from Tasks 2 and 3 contributed to this grant.

**Pending Grants**

1. Alliance for Lupus Research Pilot Grant, “The Impact of CSK and PTPN22 Genetic Variants on T and B Cell Signaling in SLE” (K. Cerosaletti, Benaroya Research Institute, PI). Funding Amount (total costs) $75,000. This proposal incorporated siRNA technology developed as part of Task 4.

2. NIH R01DK072457 Competitive Renewal, (J. Buckner, Benaroya Research Institute, PI) “Multiple Mechanisms of Impaired T Cell Regulation in T1D” Funding Amount (total costs) $2,248,750. This proposal incorporated siRNA technology developed as part of Task 4.

3. NIAMS Small Grant Program for New Investigators, R03 PAR-12-045, “The Effect of Genetic Variants on B Cell Development and Function in RA” (K. Cerosaletti, Benaroya Research Institute, PI), March 2012. This proposal incorporated siRNA technology developed as part of Task 4.

4. NIH R01 Application, “Regulation of Inflammatory Signaling” (J. Hamerman, Benaroya Research Institute, PI). This proposal incorporated data generated from Task 7.

5. NIH R01 Application, (Dual submission NIDDK/NIBIB) “In vivo Islet Survival and Tolerance Induction in Non-Encapsulated Islet Transplants” (J. Gebe, Benaroya Research Institute, PI), February, 2012. This proposal incorporated data generated from Task 3.

6. American Diabetes Association Basic Science Award, "Islet Survival and Tolerance Induction in Non-Encapsulated Islet Transplants" (J. Gebe, Benaroya Research Institute, PI), March, 2012. This proposal incorporated data generated from Task 3.

**Abstracts**


**Publications and Manuscripts**


**Presentations**


6. PL Bollyky. *Hyaluronan and immune modulation*. Department of Pathobiology, 2011, Cleveland Clinic, Cleveland, OH.


13. JA Hamerman, MB Buechler, X Sun, T Teal, KB Elkon. *Type I IFN dependent alterations in myelopoiesis in mice overexpressing TLR7.* 51st Midwinter Conference of Immunologists, January 2012, Monterey, CA.

**Patents and Licenses (applications)**


5. CONCLUSION

5.1. Task Summaries

Tasks 1, 2, and 3

Tasks 1, 2, and 3 focused on the development of high molecular weight hyaluronan (HMW-HA)-based hydrogels engineered for controlled release of growth factors and cytokines. Tasks 1 and 2 were concerned with the creation of a microwell-based plate fluorescence assay to assess the effects of HMW-HA/collagen gel formulations on the induction of regulatory T cell (Treg) function, as measured by expression of fluorescent GFP/FOXP3 gene product. Task 1 was successful, in that a miniaturized nylon mesh ring-supported hydrogel format to support dispersed T cells for the microwell-based assay was developed. Task 2 evaluated the overall effectiveness of the microwell assay approach. From the Task 2 studies, it was determined that the assay was not effective in that it could not easily discriminate the GFP signal from the background. Also the plastic plates used in the assay were found to be cytotoxic to the T-cells. Follow-on studies under Task 2 resulted in the development of an alternative, flow cytometry-based assay for GFP/FOXP3 expression in T cells. This cytometric assay was critical to the generation of the Task 3 results. In a broader perspective, the assay will be a very useful tool for future studies of T cell responses to specific extracellular matrix environments.

Using the cytometric assay for GFP/FOXP3 expression reported above, Task 3 results showed that HMW-HA hydrogels could act as depots for release of IL-2 and IL-10—cytokines that are capable of stimulating the expansion and activity of Tregs, thereby supporting the hypothesis that HMW-HA hydrogels might be used as a means for local control of immune responses within wound and graft sites. Moreover, additional work under Task 3 resulted in the development of a method to couple anti-CD3 and anti-CD28 antibodies into the HMW-HA hydrogels (using biotinylated forms of the antibodies in conjunction with streptavidin). This capability allows the HMW-HA hydrogel to provide interacting T cells with specific TCR signals that could act as potent stimulators of Treg expansion and persistence. These TCR signals would act in synergy with the signals provided by IL-2 and IL-10. The concept of providing multiple signals for Treg stimulation was further expanded by adding the extracellular matrix component heparan sulfate and the cytokine TGF-β to HMW-HA hydrogels. These bioactive molecules also promoted expansion of the Treg population. Collectively, these results indicate that extracellular matrix hydrogels can be produced that incorporate a number of molecular species, which may act in concert to provide potent signals for induction of Treg persistence and function.

We did find, however, that crosslinked HMW-HA hydrogels are problematic in that they are not easily penetrated by migratory T cells. This problem has led us to explore the use of soluble (non-crosslinked) HMW-HA delivered via a controlled (time)-release device. In this approach, the HMW-HA would persist locally at wounds or sites of inflammation for an extended time, due to the presence of a depot of HMW-HA that is released into the tissue gradually. Importantly, the non-crosslinked HMW-HA is unlikely to form a hydrogel that would impede Treg migration, which is required for Tregs to encounter the HMW-HA and respond to its signals. The use of soluble HMW-HA in settings of controlled release is being evaluated in Tasks 9 and 10. In addition, we have used soluble HMW-HA in Task 3 to induce tolerance in a mouse model of antigen-specific airway hypersensitivity (for this application, the HMW-HA was delivered intra-nasally as a dilute solution). The use of soluble forms of HMW-HA, in association with other Treg-activating factors (e.g., anti-CD3/CD28 antibodies), may prove to be a highly effective means of inducing local tissue- and organ-specific immunomodulation.

Task 4

Task 4 used small, interfering (si)RNAs introduced into naïve human CD4+ T-cells to inhibit expression of target genes predicted to affect the generation or stability of Tregs, or alternatively, prevent the generation of inflammatory T-cells of the Th17 lineage. Under this Task, we established methods to achieve an efficient transfection of siRNAs into primary T and B cells, resulting in gene-specific knockdown. Functionally, siRNA-mediated knockdown of the genes PTPN22, PTPN2, STAT3, and IL-6R in unstimulated CD4+ T cells was associated with changes in cell phenotype. Functionally, siRNA-mediated knockdown of PTPN22 expression
was associated with increased TCR signaling in CD4+ T cells, which is consistent with the role of PTPN22 in dampening TCR signal strength. Knockdown of PTPN2 expression correlated with decreased IL-2 signaling, which phenocopies the effect of a genetic variant in PTPN2 that reduces PTPN2 expression. These findings have important implications: the PTPN22 siRNAs are an invaluable tool to reverse the immune phenotypes resulting from the 1858T genetic variant in PTPN22 that causes susceptibility to various autoimmune diseases. The PTPN2, STAT3, and IL-6R siRNAs that we evaluated can modulate IL-6 signaling which drives Th17 cell differentiation.

Importantly, we have developed a variety of approaches to improve the efficiency of siRNA-mediated gene knockdown in order to increase in the magnitude of functional phenotypes. These include short hairpin (sh)RNA delivery via lentiviral infection of stimulated CD4+ T cells, siRNA delivery into unstimulated or stimulated CD4+ T cells by single-chain anti-CD7 antibody, and transfection of siRNA into stimulated CD4+ T cells. All three of these methods successfully deliver siRNAs and shRNAs into T cells. In summary, good progress has been made towards the goal of modulating CD4+ T cell development using si/shRNAs. Future projects will refine these methods with an objective of maximizing the duration and magnitude of functional T cell phenotypes that suppress inflammation and improve wound repair.

**Task 5**

Task 5 utilized a model of induced regulatory T cell (iTreg) generation mediated by transfer of naïve DO11.10+ T cells into RIP-mOVA/Rag-deficient mice. Alteration of tolerogenic pathways was achieved by ablation of specific genes, which included IL-6, IL-7, IL-21, and IFNγ. Notably, DO11.10 T cells (DO T cells) lacking IFNγ developed tolerance not only in the absence inflammation (as wild-type DO T cells do), but also in the presence of inflammation, suggesting that expression of IFNγ by T cells in an inflammatory environment inhibits the ability of the T cells to adopt a regulatory (iTreg) phenotype. This result underscores the effectiveness of combining the RIP-mOVA host (a readout for autoimmune dysregulation) with DO11.10 T cell transfer (the source of T cell-mediated regulation that can be modulated by genetic manipulation) as a means to dissect the mechanisms that mediate induction of tolerance. Task 5 has validated this approach, which, in future studies, will be applied to an expanded repertoire of gene sets.

**Task 6**

Task 6 assessed two endogenous inhibitors of the macrophage inflammatory response, the TREM-2 receptor and its dialkyl phosphate (DAP)12 signaling chain, with the goal of developing strategies to downmodulate the macrophage inflammatory response as one of the multi-faceted approaches for cytoprotection examined in this project. Initially, these studies encountered difficulties with flow cytometry-based detection of TREM-2 and DAP12 to evaluate the efficacy of the knockdown. Therefore, efforts were shifted to set up a qPCR assay for measuring TREM-2 and DAP12 mRNA to evaluate the knockdown efficacy. This approach was successful; however, we were not able to achieve efficient knockdown of TREM-2 and DAP12 in human monocyte-derived macrophages using a set of corresponding siRNAs that targeted human TREM-2 and DAP12. Future studies will focus on human macrophage cell lines, which may be more amenable to transduction with siRNAs.

**Task 7**

The macrophage inflammatory response is potently activated by pattern recognition receptors which include the TLR family, which, when ligated, results in the secretion of pro-inflammatory cytokines, such as tumor necrosis factor, IL-12, and IL-6, as well as chemokines that attract other immune cells. One mechanism by which the inflammatory response is controlled is through endogenous inhibitors or negative regulators of TLR signaling, which include TREM-2 and DAP12, studied in Task 6. Additional inhibitors of TLR signaling include CD18 (β2 integrin) and BCAP, which were the subject of Task 7. In Task 7, we confirmed that β2 integrins inhibit TLR responses not only in bone marrow-derived macrophages, but also in inflammatory macrophage populations directly **ex vivo** and **in vivo** in mice. This finding supports the hypothesis that targeting β2 integrins may be a viable strategy for reducing inflammation during wound healing. We have also identified the mechanism by which BCAP inhibits macrophage inflammatory responses, which gives us valuable
information for designing strategies to promote BCAP-mediated inhibition. Future studies will identify small molecule or protein agonists of the β2 integrin and BCAP pathways that could be incorporated into hydrogel constructs for treatment of injury to reduce inflammation during wound healing.

**Task 8**

Cytokines mediate tissue injury and cellular dysfunction across a broad range of diseases. Specific cytokines, such as IL-6 and IL-8, are emerging as important mediators in sepsis and as prognostic indicators of systemic inflammation in patients with traumatic injury. Task 8 evaluated the protective role of inflammatory cytokine blockade in humans (induced by administration of an IL-1 receptor antagonist, anakinra) prior to an inflammatory stimulus (induced hyperglycemia). Notably, this study found neither significant differences in levels of the serum cytokines IL-1β, IL-6, TNF-α, or IL-8 before or after hyperglycemia, nor any impact of IL-1 blockade with anakinra. However, we were able to detect significant changes in certain inflammatory genes induced by hyperglycemia, such as caspase 4. More importantly, we showed that expression of these genes was inhibited by IL-1 blockade with anakinra. Collectively, our data have established the proof of principle that inflammatory stimuli rapidly induce gene expression and that pre-emptive treatment with anti-inflammatory drugs prevents this gene expression. Future studies will focus on directly addressing the functions of hyperglycemia-induced genes, which may have implications for treatment of a variety of diseases, including diabetes.

5.2. “So What Section” – Evaluation of the Knowledge as a Scientific or Medical Product

**Contribution of Aim 1 (Tasks 1–8) to the Project**

This research program has a strongly translational focus—the primary objective being to develop a means to control the process of wound repair to achieve an optimal outcome, where inflammation is controlled in a fashion that promotes healing and minimizes scarring. To achieve this objective, the problem has been addressed using a number of novel approaches (represented by Tasks 1–15) that are constituted to yield results that can be combined into a single device (medical product) that we refer to as the Cytoprotective Implant (CI). The overarching “theme” of each of these approaches—and of the CI as a whole—is that they make use of natural cellular processes and materials to achieve the desired result. These approaches include: 1) stimulation of the expansion, persistence, and activity of Tregs to make use of their native capacity to control the inflammatory process (cytoprotection), 2) the use of natural extracellular matrix (ECM) hydrogels, of specific formulations, as key stimulators of Treg-mediated cytoprotection, 3) the incorporation of strategies for local, controlled release of natural cytokines and ECM components from within the CI that will accelerate vascularization, provide long-lasting stimulation of Treg activity, and inhibit scar formation, and 4) the use of mechanically-strong natural, biodegradable ECMs as a supportive scaffold for the ECM hydrogel components. We believe that use of natural cellular processes and materials to promote cytoprotection, combined with strategies of local delivery of bioactive agents, will optimize healing and minimize undesirable systemic side effects.

Tasks 1–8 of Aim 1 include basic science studies to identify specific genes that control both the generation and functional phenotype of Tregs (Tasks 4 and 5), to characterize cell surface molecules that influence macrophage inflammatory responses (Tasks 6 and 7), and to evaluate the protective effects of inflammatory cytokine blockade (Task 8). The basic science studies are contributory to the development of the CI in that their results identify specific molecules that control immune cell behavior that could be targeted by bioactive agents incorporated within the CI. In addition to the basic science studies, there are elements of applied science and engineering, which include the development of assays (Tasks 1, 2, and 6) and the design of ECM-based materials that provide mechanical support, bioactivity, and controlled release functions for the CI (Task 3). Some of the results generated by Aim 1 (notably, from Task 3) have been incorporated directly into the current designs for the CI (the processes of design, fabrication, and in vivo testing of the CI will continue under Tasks 9–15 of Aim 2, which will be active for an additional year as a no cost extension). Other results produced by Aim 1, such as validation of the use of siRNAs to inhibit target genes in Tregs (Task 4), study of TLR inhibitors to control macrophage responses (Tasks 6 and 7), and use of in vivo autoimmune models to
characterize the genes that control Treg generation and activation (Task 5) have the potential to identify molecular factors (which could be specific si/shRNAs, gene products, and/or drugs) that could be incorporated into later versions of the CI to improve its capacity to control inflammation and promote healing.
6. APPENDICES

Abstracts


Publications and Manuscripts


M Ni¹, AW MacFarlane IV², KS Campbell², and JA Hamerman¹. BCAP mediated negative regulation of TLR signaling. Presented at the Regulatory Networks in Immunology and Inflammation Conference, June, 2010, Napa, CA.

¹Benaroya Research Institute, Seattle, WA
²Fox Chase Cancer Center, Division of Basic Science, Institute for Cancer Research, Philadelphia, PA

B cell adaptor for phosphoinositide 3-kinase (BCAP) was originally identified as an adaptor molecule that binds to the p85 subunit of phosphatidylinositol 3-kinase (PI3K). BCAP-deficient mice have decreased numbers of mature B cells and attenuated B cell function. Here we investigated the responses of BCAP deficient mice to stimulation through Toll-like receptors (TLRs). BCAP-deficient macrophages produced higher concentrations of inflammatory cytokines in response to a variety of pathogenic stimuli in vitro. BCAP-deficient mice produced more IL-12 in response to LPS in vivo. The PI3K inhibitor wortmannin enhanced TLR mediated proinflammatory cytokine production in wild type macrophages but not in BCAP-deficient macrophages. Our findings suggest that BCAP negatively regulates TLR mediated signaling in macrophages.
Inhibition of TLR Responses by β2 Integrins.


Early responses to microbes are mediated by the activation of Toll-like receptors (TLR) on macrophages and dendritic cells (DCs). Upon engagement of TLRs, macrophages and DCs produce proinflammatory cytokines, leading to activation of the immune system and microbial clearance. We have identified a novel role for β2 integrins in inhibiting TLR responses in macrophages and DCs. β2 integrins, which are best characterized as adhesion molecules mediating the firm adhesion of traveling leukocytes, are heterodimeric receptors consisting of the β2 subunit (CD18) bound to a member of the CD11 family of molecules. β2 integrin-deficient (CD18−/−) DCs display increased IL-12 p70, IL-6 and TNF production and cellular maturation in comparison with wild-type (WT) DCs following treatment with TLR agonists. CD18−/− macrophages produce increased IL-12 p40 upon TLR stimulation in comparison with WT macrophages. Direct ligation of β2 integrins via ICAM-1 reduces the stimulatory effects of LPS and CpG in WT macrophages and DCs. In addition, serum levels of pro-inflammatory cytokines are increased in CD18−/− mice following LPS injection in comparison with WT mice, demonstrating that β2 integrins are capable of inhibiting TLR activation in vivo.

Macrophages and DCs share in common the expression of LFA-1 (CD11a/CD18) and Mac-1 (CD11b/CD18), however, CD11a−/− and CD11b−/− macrophages and DCs produce similar amounts of of pro-inflammatory cytokines following TLR stimulation as those from WT mice, arguing that LFA-1 and Mac-1 may share redundant functions in inhibiting TLR responses. These results demonstrate that signaling downstream of β2 integrins negatively regulate TLR activation in macrophages and DCs.
Minjian Ni¹, Alexander W MacFarlane², Kerry S Campbell², Clifford A Lowell³, Jessica A Hamerman¹. BCAP negatively regulates Toll-like receptor signaling in macrophages. Presented at Immunology 2011, San Francisco, CA, May 2011.

¹Immunology, Benaroya Research Institute, Seattle, WA, United States.
²Institute for Cancer Research, Philadelphia, PA, United States.
³Department of Laboratory Medicine, San Francisco, CA, United States.

B cell adaptor for phosphoinositide 3-kinase (BCAP) was originally identified as an adaptor molecule that binds to the p85 subunit of phosphatidylinositol 3-kinase (PI3K). BCAP-deficient mice have decreased numbers of mature B cells and attenuated B cell function due to defects in B cell receptor signaling. BCAP is also expressed in macrophages, which activate PI3K downstream of Toll-like receptor (TLR) ligation. Here we investigated the responses of BCAP-deficient mice to stimulation through TLRs. BCAP-deficient macrophages produced higher concentrations of inflammatory cytokines in response to a variety of pathogenic stimuli in vitro. Additionally, BCAP-deficient mice produced more IL-12 in response to LPS in vivo. The TLR mediated Akt activation is impaired in BCAP-deficient macrophages. Furthermore, the PI3K inhibitor wortmannin enhanced TLR mediated proinflammatory cytokine production in wild type macrophages but not in BCAP-deficient macrophages. In B cells, YXXM motifs of BCAP are required for BCR induced PI3K activation. Surprisingly, we found that YXXM motifs of BCAP are only partially responsible for the BCAP mediated negative regulation of TLR signaling in macrophages. BCAP is constitutively phosphorylated and associated with PI3K in resting macrophages, and, unlike in B cells, does not require Syk for its phosphorylation. Taken together, our findings show that BCAP negatively regulates TLR signaling in macrophages partly through regulation of TLR-mediated PI3K activation.
Low-Dose Antigen Promotes Induction of FOXP3 in Human CD4+ T Cells

S. Alice Long, Mary Riek, Megan Tatum, Paul L. Bollyky, Rebecca P. Wu, Isabelle Muller, Jhon-Chun Ho, Heather G. Shilling, and Jane H. Buckner

Low Ag dose promotes induction and persistence of regulatory T cells (Tregs) in mice, yet few studies have addressed the role of Ag dose in the induction of adaptive CD4+FOXP3+ Tregs in humans. To this end, we examined the level of FOXP3 expression in human CD4+CD25+ T cells upon activation with autologous APCs and varying doses of peptide. Ag-specific T cells expressing FOXP3 were identified by flow cytometry using MHC class II tetramer (Tmr). We found an inverse relationship between Ag dose and the frequency of FOXP3+ cells for both foreign Ag-specific and self Ag-specific T cells. Through studies of FOXP3 locus demethylation and helios expression, we determined that variation in the frequency of Tmr+FOXP3+ T cells was not due to expansion of natural Tregs, but instead, we found that induction, proliferation, and persistence of FOXP3+ cells was similar in high- and low-dose cultures, whereas proliferation of FOXP3+ T cells was favored in high Ag dose cultures. The frequency of FOXP3+ cells positively correlated with suppressive function, indicative of adaptive Treg generation. The frequency of FOXP3+ cells was maintained with IL-2, but not upon restimulation with Ag. Together, these data suggest that low Ag dose favors the transient generation of human Ag-specific adaptive Tregs over the proliferation of Ag-specific FOXP3- effector T cells. These adaptive Tregs could function to reduce ongoing inflammatory responses and promote low-dose tolerance in humans, especially when Ag exposure and tolerance is transient. The Journal of Immunology, 2011, 187: 3511–3520.

F

OXP3+ regulatory T cells play a key role in peripheral tolerance to self Ags and control the magnitude of immune responses to foreign Ags. There are two major types of CD4+FOXP3+ regulatory T cells: those that are derived in the thymus (natural regulatory T cell; nTreg) and others that are generated in the periphery from CD25+FOXP3+ T cells (adaptive regulatory T cell; aTreg) (1, 2). nTregs and aTregs are phenotypically and functionally similar in that they express CD25hi, GITR, and CTLA-4 (the Center for Translational Research at Benaroya Research Institute and the Center for Collaborative Cellular Therapy). This work was supported by grants from the National Institutes of Health (DK07245 to J.H.B. and DK080178 to P.L.B.) and the Juvenile Diabetes Research Foundation (the Center for Translational Research at Benaroya Research Institute and the Center for Collaborative Cellular Therapy).

Address correspondence and reprint requests to Dr. Jane H. Buckner, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101. E-mail address: jhbuckner@benaroyaresearch.org

The online version of this article contains supplemental material.

Abbreviations used in this article: aTreg, adaptive regulatory T cell; GAD, glutamic acid decarboxylase; HA, hemagglutinin; IGRP, islet-specific glucose-6-phosphate catalytic subunit-related protein; MFI, mean fluorescence intensity; nTreg, natural regulatory T cell; Tg, transgenic; Tmr, tetramer; Treg, regulatory T cell; TSDR, Treg-specific demethylated region; TT, tetanus toxin.

Copyright © 2011 by The American Association of Immunologists, Inc. 0022-1767/11/S16.00

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1003880
in vitro induction and persistence of FOXP3 in foreign Ag-specific and self Ag-specific CD4 T cell populations using HLA class II tetramers. We found that Ag dose, as opposed to TGF-β or bystander activation, had a dominant impact on the generation of functional human Ag-specific aTregs. However, the frequency of FOXP3+ cells was reduced upon restimulation. This dose effect was observed with both foreign Ag-specific and self Ag-specific T cells. Together, these data suggest that low Ag dose favors the induction and proliferation of human Ag-specific FOXP3+ aTregs as opposed to FOXP3− effector T cells. Determining factors that promote the generation and persistence of self Ag-specific FOXP3+ aTregs while reducing FOXP3− T cell proliferation may lead to development of Ag-specific therapies that result in reduced immunogenicity and/or tolerance induction.

Materials and Methods

Human subjects and mice

PBMCs were derived from subjects participating in studies under the auspices of the Benaroya Research Institute-Juvenile Diabetes Research Foundation Center for Translational Research registry. Informed consent was obtained from all subjects according to institutional review board-approved protocols at Benaroya Research Institute (Seattle, WA). Control participants were selected based on lack of personal or family history of autoimmunity or asthma. Foxp3-GFP C57BL/6 mice were a gift from Dr. A. Rudensky. All mice were maintained in a specific pathogen-free Am佩 Mheiroon center with the Accreditation of Laboratory Animal Care-accredited animal facility at the Benaroya Research Institute and handled in accordance with institutional guidelines.

Cell preparation, culture, and phenotyping

Fresh PBMCs were prepared by centrifugation over Ficoll-Hypaque gradients. CD4+ T cells were purified with a CD4+ non-touc h T cell enrichment kit (Miltenyi) followed by negative selection with Miltenyi CD25 microbeads. Autologous APCs were obtained from the positive fraction of the CD4+ non-touch selection. FOXP3 expression in CD4+CD25− cells was 0.1–1.2%. CD4+CD25+ T cells were activated with peptide in the presence of irradiated (5000 rad) APCs at a 1:2 ratio with 6×10⁵ total cells/well in a 24-well plate. In some experiments, CD4+ T cell subsets were sorted based on CCR7 and CD45RA expression from negatively sorted total CD4+ T cells prior to culture with irradiated APCs and peptide. HLA DRb*0401 sample-graded, influenza hemagglutinin (HA) Ag (306–318), islet-specific glutamic acid decarboxylase (GAD) (555–567), glucose-6-phosphate catalytic subunit-related protein (IGRP) (247–259), Proinsulin (76–92(88K)), and tetanus toxin (TT) (674–693) peptides were used as a Tmr loaded with 555–567I was used for detection as described previously (31). Positive Tmr staining was determined to be responses at least 0.2% and 4-fold greater than those of irrelevant control Tmr stains. FOXP3 isotype in conjunction with CD25 expression served in the presence of cytokines that promote FOXP3 expression of FOXP3 in mice, and the impact of Ag dose can be observed. A greater percentage of murine GFP+ aTregs was generated from GFP+ T cells when stimulated with CD4+CD25− Tmr loaded with 555–567I was used for detection as described previously (31). Positive Tmr staining was determined to be responses at least 0.2% and 4-fold greater than those of irrelevant control Tmr stains. FOXP3 isotype in conjunction with CD25 expression on activated T cells was used as FOXP3 staining controls as described previously (32) and shown in Supplemental Fig. 1. Containing for BrdU and FOXAP3 was performed as described previously (14). Briefly, after overnight incubation with BrdU, cells were fixed and permeabilized using the BioLegend FOXP3 fixation buffer and then the BD Cytofix/Cytoperm and BD Cytoperm Plus buffers. Permeabilized cells were treated with DNase for 1 h at 37°C prior to staining with FITC anti-BrdU Ab. Containing for intracellular IL-10 was performed with BD CytoFix/Perm reagents per the manufacturer’s instructions after 5-h stimulation with PMA (50 ng/ml) and ionomycin (1 μg/ml) in the presence of 1 μM GolgiStop. All phenotype data were acquired on a FACScaliber and analyzed using FlowJo 7.6 software.

Methylation analysis

All methylation analysis was performed on cells isolated from male donors. Genomic DNA was isolated by DNeasy Blood and Tissue Kit (Qiagen) and bisulfite converted using the EpicTect Bisulfite Kit (Qiagen) according to the manufacturer’s instructions. The Treg-specific demethylated region (TSDR) was amplified using bisulfite forward and reverse primers: Amp5A1 forward, 5′-TTTGGGTGGATAGGATTTAGG-3′; Amp5A1 reverse, 5′-CCACCTAACCAAACTACTAAA-3′ (modified from Baron et al. (33)). The region of the FOXP3 promoter immediately upstream of the transcription start site was amplified using bisulfite forward and reverse primers: PROM forward, 5′-GTGAAGTGGATTGATAGAAAAGGATTA-3′; PROM reverse, 5′-TTTAAATCTCATAATCAAAAAAAA-3′ (modified from Baron et al. (33)). The region of the FOXP3 promoter immediately upstream of the transcription start site was amplified using bisulfite forward and reverse primers: PROM forward, 5′-GTGAAGTGGATTGATAGAAAAGGATTA-3′; PROM reverse, 5′-TTTAAATCTCATAATCAAAAAAAA-3′ (modified from Baron et al. (33)). The region of the FOXP3 promoter immediately upstream of the transcription start site was amplified using bisulfite forward and reverse primers: PROM forward, 5′-GTGAAGTGGATTGATAGAAAAGGATTA-3′; PROM reverse, 5′-TTTAAATCTCATAATCAAAAAAAA-3′ (modified from Baron et al. (33)).

Results

Both level of TCR stimulation and TGF-β contribute to induction of FOXP3 expression

To dissect the relative contribution of Ag dose and cytokines on FOXP3 induction, we measured Foxp3 expression upon activation in the presence or absence of cytokines that promote Foxp3 expression in a well-defined murine system where Foxp3 and GFP are genetically linked. As shown in this study and by others (36), in the absence of costimulation, TGF-β and IL-2 are required for Foxp3 expression in mice regardless of the level of TCR activation (Fig. 1A). In the presence of TGF-β and IL-2, a greater percentage of murine GFP+ FOXP3+ T cells were generated from GFP+ T cells when stimulated with low concentrations of anti-CD3 Ab. Thus, both cytokines and the level of TCR engagement contribute to the expression of Foxp3 in mice, and the impact of Ag dose can be observed in the presence of cytokines that promote FOXP3 expression suggesting a dominant effect of Ag dose, consistent with two very recent reports (15, 16).

In humans, addition of IL-2 and TGF-β augmented induction of polyclonal FOXP3+ cells through stimulation with anti-CD3/anti-CD28–coated beads in the absence of APC (Ref. 37 and data not shown). However, in cultures containing APC and soluble anti-CD3, addition of exogenous TGF-β did not alter the frequency of aTregs (Fig. 1B) most likely due to TGF-β produced by or

For polyclonal assays, experiments were performed as described previously (34). In brief, autologous CD4+CD25− responder T cells were thawed, CFSE labeled, and cultured in a round-bottom 96-well plate with or without CD25+ sorted Tregs at a 1:4 ratio (Tregs/responders) Cells were stimulated with M-280 Toslactivated Dynabeads (Invitrogen), which were preincubated with anti-CD3 (5 μg/ml) and anti-CD28 (5 μg/ml). Beads were used at a ratio of 2:1 (beads/responder cells). Analysis was performed on day 4 by flow cytometry.

For Ag-specific assays, thawed Tmr+CD28+ cells (2.5×10⁶), thawed CD4+CD25− cells (2.5×10⁶) isolated from autologous PBMCs, or both were incubated with irradiated APCs (2.5×10⁵), TT, and 5 μg/ml peptide Ag in a 96-well round-bottom plate as described previously (32, 35). [3H]thymidine (1 μCi) was added during the final 16 h of a 6- to 7-d assay, and proliferation was measured by a scintillation counter. All culture conditions were performed in triplicate. Percent inhibition was determined based on the percentage of dividing responders in the coculture compared with that when cultured alone.

Statistics

For analysis of experiments comparing a single variable, statistical significance was analyzed using a two-sample Student t test unless otherwise noted. For analysis of multiple variables, a one-way ANOVA was performed or linear regression as noted in the legends to figures that accompany this article. Comparisons required a p value <0.05 for the data to be significantly different.

For analysis of experiments comparing a single variable, statistical significance was analyzed using a two-sample Student t test unless otherwise noted. For analysis of multiple variables, a one-way ANOVA was performed or linear regression as noted in the legends to figures that accompany this article. Comparisons required a p value <0.05 for the data to be significantly different.

For analysis of experiments comparing a single variable, statistical significance was analyzed using a two-sample Student t test unless otherwise noted. For analysis of multiple variables, a one-way ANOVA was performed or linear regression as noted in the legends to figures that accompany this article. Comparisons required a p value <0.05 for the data to be significantly different.

For analysis of experiments comparing a single variable, statistical significance was analyzed using a two-sample Student t test unless otherwise noted. For analysis of multiple variables, a one-way ANOVA was performed or linear regression as noted in the legends to figures that accompany this article. Comparisons required a p value <0.05 for the data to be significantly different.

For analysis of experiments comparing a single variable, statistical significance was analyzed using a two-sample Student t test unless otherwise noted. For analysis of multiple variables, a one-way ANOVA was performed or linear regression as noted in the legends to figures that accompany this article. Comparisons required a p value <0.05 for the data to be significantly different.

For analysis of experiments comparing a single variable, statistical significance was analyzed using a two-sample Student t test unless otherwise noted. For analysis of multiple variables, a one-way ANOVA was performed or linear regression as noted in the legends to figures that accompany this article. Comparisons required a p value <0.05 for the data to be significantly different.

For analysis of experiments comparing a single variable, statistical significance was analyzed using a two-sample Student t test unless otherwise noted. For analysis of multiple variables, a one-way ANOVA was performed or linear regression as noted in the legends to figures that accompany this article. Comparisons required a p value <0.05 for the data to be significantly different.

For analysis of experiments comparing a single variable, statistical significance was analyzed using a two-sample Student t test unless otherwise noted. For analysis of multiple variables, a one-way ANOVA was performed or linear regression as noted in the legends to figures that accompany this article. Comparisons required a p value <0.05 for the data to be significantly different.

For analysis of experiments comparing a single variable, statistical significance was analyzed using a two-sample Student t test unless otherwise noted. For analysis of multiple variables, a one-way ANOVA was performed or linear regression as noted in the legends to figures that accompany this article. Comparisons required a p value <0.05 for the data to be significantly different.

For analysis of experiments comparing a single variable, statistical significance was analyzed using a two-sample Student t test unless otherwise noted. For analysis of multiple variables, a one-way ANOVA was performed or linear regression as noted in the legends to figures that accompany this article. Comparisons required a p value <0.05 for the data to be significantly different.
FIGURE 1. TGF-β and TCR both contribute to FOXP3 expression upon activation of CD4 T cells. A, GFP + FOXP3 + murine splenic CD4 T cells were isolated and activated with different doses of anti-CD3 in the absence or presence of IL-2 (100 IU/ml) and TGF-β (10 ng/ml). GFP + FOXP3 + T cells were enumerated by flow cytometry 48 h after activation. One representative experiment of three is shown. B, Human CD4 +CD25 + T cells from control subjects (n = 8) were activated with irradiated APCs and soluble anti-CD3 (5 µg/ml) in the presence of IL-2 (100 IU/ml) and TGF-β (10 ng/ml) for 6 d. *p < 0.05 (significant difference from media alone as measured by a Student t test). C, For comparison, human CD25 + (nTreg) and CD25 − (effector) T cells were sorted from male donors prior to initiation of culture and assessed for methylation at the FOXP3 locus. Human male CD4 +CD25 + T cells were activated with anti-CD3/anti-CD28 beads (1:1 bead/T cell ratio) or irradiated APCs and 5 µg/ml soluble anti-CD3 with 100 IU/ml IL-2. Nine days after activation, CD25 + sorted cells were snap frozen for methylation analysis at the FOXP3 locus as described in Materials and Methods. FOXP3 expression in each CD25 + sorted population was assessed by flow cytometry and is noted in the graph. Bars represent means ± SEM of three independent experiments. *p < 0.05 (significant difference in promoter methylation from anti-CD3/anti-CD28 beads as measured by a Student t test). D, CD25 + sorted cells isolated from day 9 cultures of two subjects assessed for methylation in C were assayed for suppressive function by measuring inhibition of proliferation of CFSE-labeled CD4 + CD25 − responder cells in the presence of CD25 + sorted cells (1:4 CD25 +/responder ratio).

FOXP3 expression on day 14. When analyzing the frequency of FOXP3 + T cells within the HLA DRB*0401 HA Tmr + population on day 14, the highest frequency of influenza Ag-specific FOXP3 + cells was observed in the low HA Ag dose (0.1 µg/ml) culture as opposed to the high HA Ag dose (10 µg/ml) culture (Fig. 2B). This increased frequency in FOXP3 + cells at lower Ag doses was consistently observed in multiple HLA DRB*0401 subjects stimulated with HA peptide (n = 8) (Fig. 2C). Comparable results were observed in HLA DRB*0301 and DRB*0404 subjects with influenza-specific peptide stimulation (data not shown) demonstrating that the percentage of FOXP3-expressing cells 14 d after activation is enhanced with low Ag dose. These data show that Ag dose can influence the relative frequency of in vitro induction and the persistence of FOXP3 + cells within the HA-specific human CD4 T cell population.

nTreg expansion does not contribute to the increased frequency of Tmr − FOXP3 + cells in low-dose cultures

Both nTregs and aTregs are characterized by expression of FOXP3 yet differ in their affinity, expression of helios, and demethylation (1, 2). We used independent measures to determine whether low Ag dose promoted selective expansion of nTregs that cross-react and bind HLA DRB*0401 HA Tmr with a high affinity. Using Tmr mean fluorescence intensity (MFI), a surrogate marker of TCR affinity, we found that FOXP3 + and FOXP3 − T cells from low Ag dose cultures express similar levels of Tmr (Fig. 3A) suggesting that the FOXP3 + T cells are not contained within a high-affinity

bound to the APC (38). To determine whether the FOXP3 + T cell populations induced in these cultures resemble aTregs or nTregs, we measured methylation of the FOXP3 locus and function of the sorted CD25 + populations. Demethylation at the promoter and TSDR of the FOXP3 locus marks stable FOXP3 + nTregs, whereas human TGF-β–induced aTregs are only demethylated at the promoter region (33, 39, 40). Culture of CD4 +CD25 − T cells using anti-CD3/anti-CD28 beads resulted in effector cells that expressed little FOXP3 protein, whereas culture of the same cells with irradiated APCs and soluble anti-CD3 Ab increased FOXP3 expression with a concomitant decrease in promoter methylation (Fig. 1C). This pattern of FOXP3 protein expression and promoter demethylation are characteristic of aTregs (39). In fact, CD25 + cells sorted from the APC plus soluble anti-CD3 cultures were functionally suppressive, whereas CD25 − cells from bead-activated cultures were not (Fig. 1D). Thus, we established an in vitro culture system using APC in which we can generate functional human CD4 +CD25 − FOXP3 + T cells and address the effects of Ag dose on the generation of this population.

Low Ag dose promotes an increased frequency of FOXP3 + cells in human influenza-specific CD4 T cells

CD4 +CD25 − T cells were stimulated with autologous irradiated APCs and varying doses of peptide Ag of known affinity (28, 29) as shown in Fig. 2A. IL-2 was added on day 7 of culture to support T cell survival and proliferation. Induction of Ag-specific FOXP3 + T cells was measured by flow cytometry for Tmr, CD25, and
FIGURE 2. Lower doses of Ag promote an increased frequency of FOXP3+ cells in influenza-specific T cell populations. A, CD4+CD25- T cells were activated in the presence of irradiated APCs and HA peptide Ag. IL-2 (200 IU/ml) was added on day 7, and Ag-specific cells were detected using Tmr and FOXP3 staining. B and C, One representative HLA DRB*0401 sample (B) of eight (C) that were activated with different doses of HA peptide and assayed on day 14. Percent FOXP3 of Tmr is shown in bold on the dot plot and graphed in C. Statistical significance was determined using a paired Student t test.

Treg subpopulation. In addition, the frequency of bystander FOXP3+ Tmr- T cells, a population likely to contain self-reactive nTregs, did not differ between cultures (Fig. 3B). Last, we used molecular signatures of nTregs to confirm whether low Ag dose promoted selective expansion of nTregs in our culture system. Where enough cells could be obtained, we observed >75% methylation of the TSDR in Tmr+CD25hi sorted populations regardless of Ag dose (n = 2, data not shown), suggesting an absence of nTregs that are demethylated at the TSDR. Recently, helios expression was shown to be selectively expressed in FOXP3+ nTregs, but not in aTregs or effector CD4+ T cells (41). CD4+CD25- T cells were cultured as shown in Fig. 2A, and single-cell analysis was performed by flow cytometry for Tmr, FOXP3, and Helios expression on day 14. Consistent with data in Fig. 2, activation of CD4+CD25- T cells with low-dose peptide resulted in a higher frequency of FOXP3+ cells in the Tmr+ population compared with that in high-dose cultures (Fig. 3C). The level of FOXP3 expression in the low Ag dose aTregs was less than that of nTregs in freshly isolated PBMCs but higher than that of Tmr+FOPX3+ cells from high-dose cultures (Supplemental Fig. 2). However, helios expression was detected in neither the low- nor high-dose cultures, whereas FOXP3helios+ cells were detected in CD4+ T cells of PBMCs prior to activation and when CD25+ enriched T cells were activated in a similar manner with peptide and irradiated APCs (Fig. 3D), as shown previously by others (41, 42). Together, these data support the hypothesis that activation with low Ag dose leads to induction of aTregs via de novo expression of FOXP3 in this in vitro culture system and not via selective outgrowth of nTregs.

Tmr+FOXP3+ cells arise upon activation of naive and memory cells with high and low doses of Ag, whereas high Ag dose selectively promotes FOXP3+ T cell expansion

To address whether differences in the kinetics of activation explain dose-related variation in the frequency of FOXP3 expression in our culture system, we measured the frequency of FOXP3 in the Tmr+ population at earlier time points in cultures where Tmr could be detected. Similar to analysis at day 14, we observed a decrease in the frequency of FOXP3+ T cells within the Tmr+ population (Fig. 4A). This is consistent with our previous observation that the frequency of FOXP3+ cells in the Tmr+ population for a single Ag dose was similar between day 10 and day 14 (32). We directly assessed the proliferation rate of FOXP3+ cells, a population containing Tmr- cells, by measuring BrdU incorporation. Comparing the rate of proliferation of FOXP3+ T cells in low and high Ag dose cultures, we found no difference in the kinetics of FOXP3+ T cell proliferation (Fig. 4B). Thus, increased frequency of FOXP3+ cells with low Ag dose was not due to delayed kinetics of FOXP3 expression upon activation.

Equivalent proliferation rates of FOXP3+ cells in low and high Ag dose cultures suggest that differences in the frequency of FOXP3+ cells may occur through variation in FOXP3+ T cell proliferation or death. To address this hypothesis, equal numbers of sorted naive (CCR7+, CD45RO-), central memory (CCR7+, CD45RO-), and effector memory (CCR7-, CD45RO+) cells were stimulated with low (0.1 µg/ml) and high (10 µg/ml) doses of HA peptide. Universally, high-dose cultures resulted in a greater absolute number of Tmr+ cells (Fig. 4C) reflecting both the relative frequency and proliferative capacity of Ag-specific cells in each sorted population. When stratified by FOXP3 expression, the absolute number of FOXP3+ cells did not increase with Ag dose, consistent with equivalent rates of proliferation observed with BrdU incorporation (Fig. 4D). In contrast, the absolute number of FOXP3- T cells increased in high Ag dose cultures resulting in a lower frequency of Tmr+FOXP3+ T cells. Together, these data suggest that FOXP3+ cells originate primarily from memory cells after activation with all doses of Ag tested, and a decreased frequency of HA-specific FOXP3+ T cells with high Ag dose results from increased proliferation of FOXP3- T cells.

Increased frequency of influenza-specific FOXP3hi T cells in low Ag dose cultures correlates with suppressive function

Transient FOXP3 expression occurs upon activation of human CD4+CD25+ T cells. After transient activation, a subset of T cells retains FOXP3 expression and function as Tregs (43). Previously, we demonstrated that stimulation of CD4+CD25- T cells for 14 d with a single dose of Ag resulted in an Ag-specific Tmr+CD25hi population that stably expressed FOXP3 while not coexpressing IFN-γ. These cells functioned in an Ag-specific manner, and the potency of suppression correlated directly with the frequency of FOXP3+ T cells in the sorted Tmr+CD25hi population (32). We tested whether FOXP3+ cells induced by stimulation with either low or high Ag dose function as Tregs. We activated CD4+CD25-
FIGURE 3. Low Ag dose does not preferentially expand human aTregs from CD4⁺CD25⁻ T cells in vitro. A, MFI of Tmr in the Tmr⁺FOXP3⁺ and Tmr⁺FOXP3⁻ T cells was determined by flow cytometry on day 14 for CD4⁺CD25⁻ T cells activated in low-dose cultures. Statistical significance was determined using a Student paired t test. B, Bystander activation was determined for samples where responses were detected at all Ag doses tested by measuring the frequency of Tmr⁺FOXP3⁺ T cells of CD4 T cells on day 14. Statistical significance was determined by a one-way ANOVA. C, CD4⁺CD25⁻ T cells were activated with high- and low-dose HA peptide as in Fig. 2. On day 14, cells were stained for Tmr, FOXP3, and helios. The frequency of helios⁺ and FOXP3⁺ cells of the Tmr gated population is shown for each culture. D, Total CD4 T cells were stained on day 0 for CD4, CD25, FOXP3, and helios. A representative helios by FOXP3 dot plot of total CD4 cells is shown. Cells enriched for CD25⁺ cells, containing the helios⁺ population, were cultured with low and high doses of HA peptide, and total CD4 T cells were stained on day 7 for FOXP3 and helios expression. One representative experiment of three is shown in C and D.

T cells isolated from the same subject with different doses of Ag, assessed FOXP3 and Tmr content on day 14, sorted Tmr⁺CD25⁻ T cells, and then measured inhibition of proliferation in an Ag-specific manner as done previously (32, 35). HA-specific Tmr⁺ CD25⁺ T cells were isolated from low (0.1 μg/ml) and high (10 μg/ml) Ag dose cultures and assessed for FOXP3 content as shown in Fig. 5A. Sorted Tmr⁺CD25⁺ T cells were coincubated with thawed, autologous CD4⁺CD25⁻ T cells and activated with TT alone or in combination with HA, the Ag for which the CD25⁺ Tmr⁺ cells were specific. In the absence of HA (TT alone cultures), addition of CD25⁺Tmr⁺ cells had no significant effect on proliferation, regardless of the dose of HA used to generated the sorted cells (Fig. 5B). Addition of HA-specific Tmr⁺CD25⁺ cells generated from both doses of Ag led to suppression of CD4⁺CD25⁻ T cell proliferation in response to TT when HA was also present (TT plus HA). As has been observed previously (32, 35), Tmr⁺ CD25⁻ T cells sorted from the same cultures failed to suppress proliferation of autologous CD4⁺CD25⁻ T cells stimulated with either TT alone or TT plus HA, whereas Tmr⁺CD25⁺ cells suppressed proliferation in response to both TT and TT plus HA responses (data not shown). By titrating the concentration of aTregs relative to responders, we found that sorted CD25⁺ Tmr⁺ T cells generated with low Ag dose were more potent at all ratios tested (Fig. 5C).

Variation in function may be due to differences in the phenotype of Tmr⁺FOXP3⁺ cells generated with high and low doses of Ag and/or the FOXP3 content of CD4⁺Tmr⁺ cells. Comparing expression of known Treg markers in the Tmr⁺FOXP3⁺ population generated by stimulating CD4⁺CD25⁻ T cells from the same subject with either high or low Ag dose, we found a subtle yet significant increase in FOXP3 expression and increased CTLA-4 expression in three of the four subjects studied in the low Ag dose cultures (Fig. 5D). However, we found no difference in the expression levels of PD-1, CD39, or CD95 (Supplemental Fig. 3A). We also found no difference between Ag doses in TGF-β (as measured by LAP expression) and IL-10 secretion (Fig. 5D) consistent with the observation that sorted low-dose aTreg function was contact dependent and was not inhibited by blocking Abs against IL-10 and TGF-β (Supplemental Fig. 4) as was found previously with high Ag dose aTregs (32). To examine whether the composition of the CD25⁺Tmr⁺ population contributed to function, we correlated FOXP3 content with suppression. Similar to previous studies in humans with both polyclonal and Ag-specific stimulation of CD25⁺FOXP3⁺ T cells (14, 32), the frequency of FOXP3⁺ cells in the sorted population directly correlated with the degree of inhibition of proliferation (Fig. 5E). To determine whether culture with high and low Ag dose also altered the composition of cells as measured by cytokine profiles of Tmr⁺ cells as has been reported by others (44, 45), we measured cytokine secretion upon restimulation in the Tmr⁺ cells but found no significant differences in the frequency of IFN-γ, IL-17, or IL-5 secretion, representative cytokines secreted by Th1, Th17, and Th2 cells, respectively (Supplemental Fig. 3B). Thus, Ag dose influences the frequency of FOXP3⁺ cells in the CD25⁻ T cell population and expression of FOXP3. Both of these measures correlate with suppressive function of these Ag-specific aTregs.

**FOXP3 expression in human islet Ag-specific CD4 T cells is enhanced through stimulation with lower Ag dose**

Variation in the induction of FOXP3 may be due to intrinsic factors but also due to T cell extrinsic factors. To test whether the generation of Ag-specific aTregs was influenced by cytokines induced through bystander activation, we performed mixed cultures with multiple different peptides known to stimulate Tmr⁺ populations. We found no difference in the frequency of HA-specific FOXP3⁺
cells when comparing cultures in which cells of other specificities were activated (as monitored by Tmr+ cells) with cultures stimulated only with HA peptide (data not shown). To test whether intrinsic factors may influence the frequency of FOXP3+ cells, we analyzed responses to well-defined self Ag-specific peptides (27, 29). Self Ag-specific T cells are generally low-affinity cells and are less frequent in peripheral blood than foreign Ag-specific cells (46, 47). Thus, induction of FOXP3 expression with low doses of self Ag may differ from that of foreign Ag-specific T cells. On average, 1.13% (range 0.14–6.6%) islet Ag-specific T cells were detected in the CD4 T cell cultures (data not shown). Two representative HLA DRB*0404 islet-specific Tmr and FOXP3 stains are shown in Fig. 4A. When assessing multiple subjects (n = 12) with two islet Ags, we observed a significant increase in the frequency of islet-specific Tmr+FOXP3+ cells in low Ag dose (0.1 μg/ml) cultures compared with that in higher Ag dose (50 μg/ml) cultures (Fig. 6B). Together, these data suggest that lower Ag dose may promote an increased frequency of human Ag-specific FOXP3+ T cells regardless of TCR specificity.

Tmr+ FOXP3+ aTreg frequencies were maintained with IL-2, but not upon restimulation with Ag

Recently, there has been greater appreciation for the plasticity of FOXP3+ populations, which is influenced, in part, by the source of the FOXP3+ cells and the inflammatory milieu (48). To address the stability of Ag-specific aTreg populations, we assessed the change in FOXP3 content of sorted aTregs after restimulation with low and high doses of Ag and with anti-CD3/anti-CD28 stimulation in a functional assay. Sorted low-dose Tmr+CD25+ aTregs cultured with IL-2 alone maintained FOXP3 expression (Fig. 7A). However, FOXP3 expression was not maintained upon restimulation of the same sorted cells with irradiated autologous APCs and HA peptide, regardless of the dose of Ag used in the restimulation cultures. Polyclonal activation with anti-CD3/anti-CD28–coated beads also resulted in a loss of FOXP3+ cells (data not shown). Similarly, aTregs generated with either low (0.1 μg/ml) or high (10 μg/ml) doses of HA peptide lost FOXP3 expression when placed in a functional assay with autologous responder cells (Fig. 7B). This suggests that higher frequencies of aTregs are not maintained upon in vitro restimulation with Ag, whereas IL-2 alone maintains aTregs.

Discussion

Both effector T cells and FOXP3+ aTregs may be generated upon antigenic exposure. Thus, it is important to understand the mechanisms that promote aTreg generation as opposed to those that promote effector cell generation. We observed an inverse relationship between Ag dose and FOXP3 expression in human CD4 T cells activated with either foreign or self Ag, as has been shown recently in mice with foreign Ag (11, 15, 16). Using demethylation and helios expression, we established that low Ag dose did not preferentially expand nTregs in vitro from CD4+ CD25+ T cells, but instead induced generation of functional FOXP3+ aTregs in which the frequency of FOXP3-expressing cells positively correlated with suppressive function. These Tmr+FOXP3+ cells proliferated equivalently with both low and high Ag dose. Yet, with high Ag dose stimulation, FOXP3+ T cells proliferated to a greater extent resulting in a decreased frequency of FOXP3+ cells. Of note, the frequency of sorted HA-specific aTregs was maintained with IL-2 alone but not upon
restimulation with Ag. Thus, the frequency of human aTregs may be one consequence of exposure to low doses of Ag thereby promoting poor immunogenicity and transient tolerance.

The potency and duration of peptide–MHC–TCR interaction can influence the nature of the CD4 T cell response, as is well documented with high- and low-dose Ag driving Th1 and Th2 responses, respectively (reviewed in Refs. 44, 45), and low Ag dose promoting Th17 cells (49) from naive T cells. Less is known about the role of Ag dose on the induction, persistence, and stability of FOXP3 expression in human aTregs. In mice, it has been shown that TCR engagement, costimulation, and cytokines may impact the induction and persistence of FOXP3 expression, which is required for generation of aTregs (8, 11, 13, 15–17).

In this study, we established a culture system in which we limit the impact of costimulation and non-T cell-derived cytokines by holding the APC population constant for all doses of Ag tested for each subject. In addition, exogenous TGF-β was not required for FOXP3 expression and thus was not added to our cultures, as was also found by Turner et al. (17) using murine BDC2.5 TCR Tg T cells activated in the presence of dendritic cells. This lack of a requirement for TGF-β may be due to sufficient amounts of biologically active TGF-β produced by or bound to the APC (38, 50).

**FIGURE 5.** Increased frequency and expression of FOXP3 in low-dose cultures correlates with increased suppressive function. Fourteen days after activation with 0.1 μg/ml or 10 μg/ml HA peptide, CD25+ Tmr+ cells were sorted and assayed for specificity and function with 5 μg/ml HA and 1 μg/ml TT as described previously (32, 35) and in Materials and Methods. A. An aliquot of HLA DRB*0401 HA Tmr and CD25 stained cells were costained with FOXP3 to determine FOXP3 content. Percent FOXP3 of Tmr is shown in bold in representative dot plots. B. Function and specificity for high and low Ag dose sorted CD25+ Tmr+ cells generated from one representative sample of two is shown. Bars represent means ± SEM for triplicates within an experiment. *p < 0.05 (significant difference from CD4+CD25+ responder cells alone as measured by a two-sample Student t test). C. Potency of function was measured by titrating aTregs from low and high Ag dose sorted CD25+ Tmr+ cells generated from the same individual. Percent inhibition of proliferation with TT plus HA peptide stimulation was compared between aTregs. One representative sample of two is shown. D. Tmr+FOXP3+ T cells from low and high HA peptide cultures from the same individual were costained for CTLA-4 and LAF. MFI of these markers on Tmr+FOXP3+ cells is shown for four subjects. IL-10 was detected by intracellular flow cytometry after 5-h stimulation with PMA and ionomycin as described in Materials and Methods. Statistical significance was determined using a paired Student t test. E. Correlation between FOXP3 expression in the sorted CD25+ Tmr+ population and function was determined by linear regression for three subjects (circles = subject 1, squares = subject 2, triangles = subject 3) for which CD25+ Tmr+ cells from both 0.1 (closed symbols) and 10 μg/ml (open symbols) cultures were generated.

The Journal of Immunology 3517
preferential activation and proliferation of FOXP3− T cells with high Ag dose. Together, these data suggest that the quality of the TCR signal may contribute to the frequency of Ag-specific aTregs.

We and others (32, 52) have demonstrated that functional self Ag-specific aTregs can be generated from CD4+CD25− T cells in vitro. In this study, we further demonstrate that an increased frequency of islet-specific FOXP3+ T cells was generated in vitro with low Ag dose (1 μg/ml) compared with that for high Ag dose (50 μg/ml). This suggests that generation of a greater frequency of FOXP3+Tmr+ cells is an inherent consequence of all human CD4 T cells activated with lower concentrations of Ag, not just high-affinity foreign Ag-specific T cells. Notably, higher concentrations of self peptide compared with foreign peptide were required to detect low-affinity self Ag-specific aTregs (1 μg/ml GAD versus 0.1 μg/ml HA) consistent with both potency and density of peptide affecting the percentage of FOXP3+ cells in a population as has been shown by others in a mouse model (11). Together, these data demonstrate that exposure to limited, but detectable, foreign or self Ag may influence the frequency of FOXP3+ cells in human CD4 T cells.

In humans, the plasticity of some FOXP3+ populations is highlighted by the kinetics of FOXP3 expression in different cell subsets: FOXP3 expression is constitutively expressed in nTregs, is induced in aTregs, and is transiently expressed in activated T cells (2, 53). In our Ag-specific cultures, FOXP3 expression was induced and maintained with similar kinetics in low- and high-dose cultures indicative of an aTreg subset, and the frequency of FOXP3+ cells remained stable upon further exposure to IL-2 (Fig. 7)—both characteristics of aTreg. However, upon restimulation through the TCR, the frequency of aTregs decreased. Although some of the loss in FOXP3 content may occur through activation-induced cell death of FOXP3+ cells, in all experiments the number of cells recovered after activation far exceeded the number of FOXP3+ cells in the sorted populations (data not shown) suggesting that some FOXP3+ cells may have lost FOXP3 expression and represent a plastic cell population. In this experiment, FOXP3− T cells could have preferentially proliferated upon restimulation, thereby resulting in a decreased frequency of FOXP3+ cells on a population level. However, the frequency of FOXP3+ cells was similar after restimulation with low and high Ag doses. Whether restimulation in vitro with low-dose Ag is a potent enough stimuli to result in enhanced proliferation of FOXP3− cells observed upon primary stimulation

**FIGURE 6.** Lower doses of Ag favor an increased frequency of FOXP3+ cells in islet Ag-specific T cells. CD4+CD25− T cells were activated with different doses of islet Ag peptides as in Fig. 2. A, Tmr and FOXP3 staining is shown for one subject stimulated with different doses of GAD peptide. Frequency of FOXP3 in the Tmr+ population is noted in bold in each dot plot. B, Frequency of islet-specific FOXP3+ cells was determined by enumerating HLA DRB*0401 GAD and IGRP Tmr+FOXP3+ T cells as a percentage of total Tmr+ T cells. Analysis of GAD-specific T cells from nine subjects is noted by open squares, and analysis of IGRP-specific T cells from three subjects is noted by open circles. Horizontal lines show the means. Statistical significance was determined using a two-sample Student t test.

in which FOXP3 expression is induced upon activation with high and low Ag dose and this population persists. Decreased frequency of FOXP3+ cells in high Ag dose cultures occurred due to the kinetics of FOXP3 expression in different cell subsets: FOXP3 expression is constitutively expressed in nTregs, is induced in aTregs, and is transiently expressed in activated T cells (2, 53). In our Ag-specific cultures, FOXP3 expression was induced and maintained with similar kinetics in low- and high-dose cultures indicative of an aTreg subset, and the frequency of FOXP3+ cells remained stable upon further exposure to IL-2 (Fig. 7)—both characteristics of aTreg. However, upon restimulation through the TCR, the frequency of aTregs decreased. Although some of the loss in FOXP3 content may occur through activation-induced cell death of FOXP3+ cells, in all experiments the number of cells recovered after activation far exceeded the number of FOXP3+ cells in the sorted populations (data not shown) suggesting that some FOXP3+ cells may have lost FOXP3 expression and represent a plastic cell population. In this experiment, FOXP3− T cells could have preferentially proliferated upon restimulation, thereby resulting in a decreased frequency of FOXP3+ cells on a population level. However, the frequency of FOXP3+ cells was similar after restimulation with low and high Ag doses. Whether restimulation in vitro with low-dose Ag is a potent enough stimuli to result in enhanced proliferation of FOXP3− cells observed upon primary stimulation

**FIGURE 7.** The frequency of FOXP3+ cells in aTregs is not maintained upon restimulation. A, On day 14, CD25+Tmr+ T cells from low (0.1 μg/ml) Ag dose cultures were sorted and stained to assess FOXP3 content (black bars). Sorted Tmr+CD25− cells were then placed in culture with IL-2 alone (gray bars) or irradiated APCs and 0.1 or 10 μg/ml HA peptide. FOXP3 content of the Tmr+ population was assessed by flow cytometry 5 d after reactivation. Two control subjects with a high (>5%) frequency of Tmr staining, which allows for accurate analysis of restimulation cultures, are shown. B, CD25+Tmr+ T cells from low (0.1 μg/ml) and high (10 μg/ml) dose cultures were stained to assess FOXP3 content, sorted, and placed in a functional assay with CFSE-labeled CD4+CD25− responder cells stimulated with anti-CD3/anti-CD28 beads at a 4:1 responder to Treg ratio as described in Materials and Methods. FOXP3 content of CFSE-negative aTregs was assessed by flow cytometry on day 4 of the functional assay. FOXP3 content prior to placement in the functional assay and on day 4 was compared and plotted as Δ (day 4 − day 0) for each culture. Different subjects are noted by different symbols (circles = subject 1, squares = subject 2, upward triangles = subject 3, downward triangles = subject 4).

Downloaded from www.jimmunol.org on September 28, 2011
exclusively in the high Ag dose culture or other mechanisms are involved is not known to date. Lastly, addition of IL-2 to these restimulation cultures or ongoing production of high levels of IL-2 in vivo may result in maintenance of these aTregs even after TCR ligation, as shown in a murine adoptive transfer model (54). We clearly demonstrated that nTregs were not expanded in our culture system. Thus, although our data do not exclude the involvement of nTregs in low-dose tolerance in vivo, they do strongly suggest that Ag dose influences the frequency of aTreg generation in vitro and that human Ag-specific aTregs could play an effective role in low-dose tolerance. This may especially be evident clinically when low-dose tolerance is transient.

Persistent expression of FOXP3 is associated with suppressive function and increased demethylation of the FOXP3 promoter region (4, 10, 32, 55, 56), whereas transient and lower expression of FOXP3 upon activation is not (53). In our cultures, we found that the frequency of FOXP3+ cells in the Tmr+ population positively correlated with suppressive function, resulting in greater suppression by CD25hi Tmr+ cells sorted from low Ag dose cultures where FOXP3 content and level of expression was increased. Notably, the frequency of FOXP3+ cells correlated with function for both low- and high-dose aTregs even though the level of expression of FOXP3 was higher in the low Ag dose aTregs, a phenotype typical of more potent Tregs. Moreover, even though high Ag dose aTregs expressed lower levels of FOXP3, a phenotype associated with unstable FOXP3 expression in activated effector cells, cytokine production was similar between high and low Ag dose aTregs. Together, these data suggest that the level of expression of FOXP3 in Ag-specific human aTregs does not significantly impinge upon their suppressive function. This is in contrast to the culture systems of others in which cells were activated with anti-CD3 and anti-CD28 Abs and/or assayed earlier in culture for suppressive function, and a lack of suppression was observed (51, 57, 58). Together, these data suggest that stimulation with low Ag dose in APC-peptide cultures results in an increased frequency of functional Tmr aTregs in which FOXP3 expression persists and is associated with suppression.

Differentiation of FOXP3+ T cells from naive T cell subsets is well established. In this study, we demonstrate that FOXP3 Tmr+ cells can arise from naive, central memory, and effector memory CD4 T cell subsets. This may be particularly important in providing a mechanism to control the magnitude of memory responses when Ag is limited. We propose a model in which a high frequency of FOXP3+ cells induced with low Ag limits perpetuation of immune responses by transiently suppressing proliferation of other cells responding to the same Ag. In contrast, activation with high Ag dose results in a greater frequency of FOXP3+ cells that could overwhelm the suppressive effects of the FOXP3+ cells resulting in immunogenic responses to Ag. Hence, FOXP3 expression upon activation may function to place a transient brake on low Ag dose immune responses while not limiting the magnitude of future immune responses to higher doses of the same Ag. These studies further suggest that aTregs could play a role in low-dose tolerance in vivo.

Acknowledgments

We thank Dr. John Gebe and Dr. Michael Turner for insightful discussions and critical reading of the manuscript and the investigators and staff of the Benaroya Research Institute-Juvenile Diabetes Research Foundation Center for Translational Research, the Children’s Hospital and Regional Medical Center, Seattle, and the Benaroya Research Institute Diabetes Clinical Research Program for subject recruitment as well as the Benaroya Research Institute Translational Research Clinical Core for sample processing and handling.

Disclosures

The authors have no financial conflicts of interest.

References


Downloaded from www.jimmunol.org on September 28, 2011


ECM components guide IL-10 producing regulatory T-cell (TR1) induction from effector memory T-cell precursors


*Benaroya Research Institute at Virginia Mason, Seattle, WA 98101; †Division of Allergy and Infectious Diseases, University of Washington Medical Center, Seattle, WA 98195; ‡Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami, Miami, FL 33136; and §Clinical Immunology, Amgen, Seattle, WA 98119-3105

Edited by Ron Germain, National Institute of Allergy and Infectious Diseases, and accepted by the Editorial Board March 31, 2011 (received for review November 18, 2010)

We describe a role for ECM as a biosensor for inflammatory microenvironments that plays a critical role in peripheral immune tolerance. We show that hyaluronan (HA) promotes induction of Foxp3+ IL-10–producing regulatory T cells (TR1) from conventional T-cell precursors in both murine and human systems. This is, to our knowledge, the first description of an ECM component inducing regulatory T cells. Intact HA, characteristic of healing tissues, promotes induction of TR1 capable of abrogating disease in an IL-10–dependent mouse colitis model whereas fragmentary HA, typical of inflamed tissues, does not, indicating a decisive role for tissue integrity in this system. The TR1 precursor cells in this system are CD4+CD62L−Foxp3−, suggesting that effector memory cells assume a regulatory phenotype when they encounter their cognate antigen in the context of intact HA. Matrix integrity cues might thereby play a central role in maintaining peripheral tolerance. This TR1 induction is mediated by CD44 cross-linking and signaling through p38 and ERK1/2. This induction is suppressed, also in a CD44-dependent manner, by osteopontin, a component of chronically inflamed ECM, indicating that CD44 signaling serves as a nexus for fate decisions regarding TR1 induction. Finally, we demonstrate that TR1 induction signals can be recapitulated using synthetic matrices. These results reveal important roles for the matrix microenvironment in immune regulation and suggest unique strategies for immunomodulation.

The tissue microenvironment undergoes major changes during inflammation and its resolution. We have studied the role of the ECM as a communications bridge to the adaptive immune system, informing infiltrating lymphocytes regarding the tissue status and guiding subsequent responses. In particular we have examined the interplay between the TR1 regulatory T cell subset and hyaluronan (HA), a component of ECM.

TR1 cells are CD4+Foxp3+ regulatory cells that play a crucial role in resolving inflammation and maintaining peripheral immune tolerance (1). TR1 mediate contact-independent immune tolerance through the secretion of substantial amounts of IL-10 (2). Although diverse experimental conditions have been used in TR1 induction (1–3), the specific progenitor population and governing factors in vivo are unclear (1).

HA is a long, highly charged disaccharide with prominent roles in structural biology, wound healing, and immunology. The size of HA in a wound environment is known to correlate with the stage of injury and its resolution (9). Low molecular weight HA (LMW-HA; <15 saccharides; <3 kDa) predominate during acute and persistent inflammation and have been demonstrated to be proinflammatory and proangiogenic. Conversely, intact high molecular weight HA (HMW-HA) predominates in noninflamed or healing tissues and is thought to be inert or anti-inflammatory (9) We previously identified a role for HMW-HA in promoting the persistence and function of established Foxp3+ natural T regulatory cells (nTregs) (10–12). nTregs are another regulatory T cell subset that are thought to primarily arise in the thymus (13). HA was recently reported to promote IL-10 production in intestinal biopsies upon oral administration (14). However, to our knowledge, ECM components have not been implicated in the induction of regulatory T cells and there are no described roles for HA or CD44, the primary HA receptor, in TR1 biology.

Given that TR1 cells are induced in peripheral tissues, presumably in response to local environmental cues, we hypothesized that HMW-HA may promote TR1 induction. Here we evaluate this hypothesis and the role of CD44 signaling as a nexus for fate decisions regarding TR1 induction. Finally, we use synthetic matrices to recapitulate matrix integrity cues and promote TR1 induction.

Results

Intact HA Promotes TR1 Induction from Effector Memory T-Cell Precursors. To ascertain the contribution of ECM components to TR1 induction, we devised an in vitro activation assay using immobilized plate-bound ECM components (Fig. S1A). To exclude FOXP3+ nTregs, we used GFP/FOXP3 knock-in mice and depleted the CD4+ T cells isolated from these animals of GFP/FOXP3+ cells. HMW-HA had a capacity to promote IL-10 whereas other ECM molecules did not (Fig. 1A). HMW-HA, but not LMW-HA generated from the same HMW-HA, promoted production of IL-10 protein (Fig. 1B) and mRNA (Fig. S1B), implicating a decisive role for HA integrity in this system. Significant enhancement of other TH1, TH2, or TH17 cytokines tested was not observed (Fig. 1C). IFN-γ and TNF-α were increased but not significantly (P = 0.079 and P = 0.504, respectively). Blocking antibodies directed against IFN-γ or TNF-α did not diminish HA-mediated IL-10 production (Fig. S1C). TGF-β was not significantly increased (Fig. S1D). By using tissues from GFP/IL-10 knock-in mice, we found that, whereas a fraction of induced GFP/IL-10+ cells produced IFN-γ, induced TR1 cells were otherwise negative for TNF-α, IL-2, IL-4, and IL-17 production (Fig. S1E). The effect of HMW-HA was dependent on TCR ligation (Fig. 1D). Cells induced to express IL-10 by HMW-HA costimulation retained this property even after being washed and restimulated with PMA/ionomycin (Fig. S1F).


The authors declare no conflict of interest.

This article is a PNAS Direct Submission. R.G. is a guest editor invited by the Editorial Board.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1017360108/-/DCSupplemental.

To whom correspondence should be addressed. E-mail: pbollyky@benaroyaresearch.org.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1017360108/-/DCSupplemental.
HMW-HA disproportionately promoted IL-10 production in the effector memory CD62L− fraction of CD4+ T cells (Fig. 1E). CD62L− T cells are known to express CD44 at high levels (15), a phenotypic characteristic likely to be important in interactions with HMW-HA. In contrast, the CD62L+ T cell fraction after activation produced similar amounts of IL-10 with or without HMW-HA, at levels comparable to anti-CD3 (aCD3)/28/HMW-HA treatment of freshly isolated CD62L− cells (Fig. S1G).

HA-Induced TR1 Cells Are Functional. The RAG.1−/− mouse colitis model is a well established system for evaluating IL-10–dependent regulatory T-cell effects. The infusion of CD4+CD45RBhi naive effector T cells typically causes colitis in these animals whereas the coinfusion of regulatory T cells abrogates colitis in an IL-10–dependent manner (9, 17). We used this model system to evaluate the regulatory capacity of TR1 cells induced with HMW-HA. Mice that received CD4+FoxP3-depleted T cells activated with aCD3/28/HMW-HA exhibited significantly improved survival relative to animals that received the same cells activated with aCD3/28 alone. Freshly isolated CD4+GFP/FOXP3+ nTreg cells completely abrogated disease whereas infusion of PBS solution alone in conjunction with the CD4+CD45RBhi naive effector T cells led to the demise of 90% of the animals in that experimental group (Fig. 2A).

These effects on survival occurred in conjunction with diminished colitis (Fig. 2B). Representative colonic sections clearly indicate

**Fig. 1.** HMW-HA costimulation induces a TR1-like phenotype in CD4+GFP/FoxP3− CD62L− effector memory T cells. (A) IL-10 production upon activation with aCD3/28 alone or in conjunction with the ECM components HMW-HA, COL, and fibrinogen (FB). (B) Effects of HMW-HA or LMW-HA treatment on IL-10 production. (C) Fold change in TH1, TH2, and TH17 cytokines levels upon HMW-HA costimulation (n ≥ 5 independent experiments each for A–C). (D) IL-10 production upon activation with aCD3/28, HMW-HA alone, or the two reagents in combination. Each condition was performed in triplicate; the image is representative of three experiments. (E) Fold change in IL-10 concentration in cell culture supernatants taken from mouse CD4+GFP/FoxP3− T cells sorted on the basis of CD62L expression and activated with or without HMW-HA (n = 6). For A, C, and E, data were normalized to the aCD3/28 condition, with this value equaling 1 for each experiment.

**Fig. 2.** Generated TR1 can suppress the development of colitis. (A) Impact of putative TR1 and controls on survival in an IL-10–dependent mouse colitis model (average n = 12 mice per group). (B) Histology scores for the colitis seen in the mice in A. (C) Representative histology of colon sections taken from the mice in A demonstrates goblet cell depletion, inflammatory infiltrate, epithelial shedding, and crypt microabscesses only in mice receiving aCD3/28-treated T cells or PBS solution.
the presence of healthy tissue with substantial numbers of goblet cells in animals treated with CD4+GFP/FOXP3− Tregs or CD4+GFP/FOXP3+ cells treated with aCD3/28/HMW-HA. However, in mice that received CD4+ GFP/FOXP3− cells treated with aCD3/28 alone or PBS solution, pathologic features consistent with colitis are seen (Fig. 2C).

HA Induction of TR1 Cells Is CD44-Dependent. CD44 is the primary cell-surface receptor for HA (17). We found that CD44−/− mice exhibited significant impairment of IL-10 up-regulation in response to HMW-HA (Fig. 3A). This indicates that CD44 is necessary for HMW-HA–mediated induction of IL-10. Consistent with this, costimulation of WT CD4+GFP/FOXP3− T cells with plate-bound aCD44 robustly induced IL-10 production at the level of protein (Fig. 3B) and mRNA (Fig. S2A). However, soluble aCD44 did not up-regulate IL-10 production, revealing a requirement for CD44 cross-linking (Fig. 3B). The increase in IL-10 upon CD44 cross-linking was still observed following normalization to proliferation (Fig. 3C), dispelling the possibility that the IL-10 increase was an artifact of enhanced proliferation. Antibodies directed at ICOS-1, a costimulatory molecule with roles in T-cell activation (18), were included as a control. Unlike the cytokine profile observed upon HMW-HA treatment, CD44 cross-linking also significantly increased TNF-α and IFN-γ (Fig. S2B). Neither WT nor CD44−/− mice had detectable CD4+IL-10+ splenocytes directly ex vivo (Fig. S2C).

TR1 cells induced with CD44 cross-linking were functional, as demonstrated in vitro (Fig. 3D). However, this suppressive function was lost when T cells from IL-10−/− mice were used as a source of TR1 cells. Of note, CD44 costimulation of mouse CD4+GFP/FOXp3− cells did not induce Foxp3 expression (Table S1).

Although CD44 facilitates signaling through numerous pathways, IL-10 production is reported to be primarily the product of signaling through MAP kinases, particularly those involving p38 and ERK1/2 (19). Intracellular staining for IL-10 after CD44 costimulation identified enhanced IL-10 production that was lost upon addition of specific small-molecule inhibitors of ERK1/2 and p38 signaling but not upon inhibition of MEK1 (Fig. 3E and F). This indicates that CD44 cross-linking promotes IL-10 production via a MAP kinase-dependent pathway. Consistent with this, we found that treatment with aCD44 together with a cross-linking antibody led to enhanced phosphorylation of both p38 and ERK1/2, which peaked 10 min after activation (Fig. S3A and B). If either the cross-linking Ab or the aCD44 Ab was left out, enhanced phosphorylation of p38 and ERK1/2 was not seen. Exogenous IL-2 had a negligible impact on p38 and ERK1/2 phosphorylation (Fig. S3 C and D). The experiments in Fig. S3A–D were performed using human CD4+CD25− T cells; similar results were seen with mouse cells (Fig. S3 E and F). As with HMW-HA, CD44 cross-linking disproportionately promoted IL-10 production in the CD62L+ effector memory population (Fig. 3G).

Intact HA Promotes Induction of Human TR1. Costimulation of human CD4+CD25− T cells with either HMW-HA or anti-CD44 antibodies significantly increased IL-10 production (Fig. S4A) and generated functional TR1 cells (Fig. S4B) but did not promote induction of Foxp3 (Fig. S4C). We therefore conclude that HMW-HA and CD44 also promote TR1 induction from human conventional T cells.

Exogenous IL-2 Boosts HMW-HA Induced IL-10 Production. Exogenous IL-2 significantly increased IL-10 production in the presence of plate-bound HMW-HA (Fig. S5). However, the enhanced IL-10 production seen upon IL-2 addition to the aCD3/28 condition did not reach statistical significance, leading us to suspect that...
the beneficial effect on IL-10 production previously reported for IL-2 (20) may not be relevant at the low levels of TCR activation used in our system.

**Osteopontin Abrogates HA TR1 Induction in a CD44-Dependent Manner.** In healing tissues, HA typically exists in the context of a complex ECM. We therefore asked whether other ECM components that are also CD44 ligands might impact the HA-mediated effect on TR1 induction described here. Osteopontin (OPN) is a matrix glycoprotein found in abundance in chronic inflammation and known to exacerbate autoimmunity (21, 22). Given that OPN is known to impact IL-10 production and is a CD44 ligand (23, 24), we explored the hypothesis that OPN inhibits HA-mediated TR1 induction. OPN decreased basal levels of IL-10 production seen upon aCD3/28 activation alone and negated the increase in IL-10 production seen upon HMW-HA co-stimulation in a dose-dependent manner (Fig. 4A). This was also the case for mRNA expression (Fig. S6A). OPN inhibited HMW-HA–mediated IL-10 production to an equivalent extent irrespective of IL-2 supplementation (Fig. S6B), indicating that OPN acts distal to or independent of STAT5 signaling.

OPN effects are known to be mediated by interactions with both CD44, as well as to the αVβ3 integrin receptor, to which it binds via an RGD motif (23). We observed that the decrease in basal IL-10 production upon OPN treatment was lost in CD44−/− mice (Fig. 4B), implicating CD44 in OPN effects on IL-10. However, addition of RGD peptide, but not RGE control peptide (Fig. 4C) or addition of an agonist antibody directed at the β3 integrin receptor subunit (Fig. 4D), blocked the suppression of IL-10 production by OPN. These data implicate roles for both CD44 and β3 in OPN effects on HA-mediated IL-10 production and indicate a nexus for regulatory control of the TR1 pathway by ECM components.

**Synthetic ECM Hydrogel Promotes IL-10 Production.** We explored the potential of biomimetics of HA-containing matrix to induce IL-10 production. Extracel is a commercially available HMW-HA and collagen (COL)-based hydrogel preparation (25), which we modified to deliver a polyclonal antigenic stimulus through the addition of streptavidin and biotinylated aCD3 before polymerization, referred to henceforth as an HA/COL gel. A schematic of this design is shown (Fig. 5A). CD4+GFP/FOXP3+ T cells activated using this platform produced IL-10 in comparable quantities to that seen with plate-bound activation. Matrigel or a fibrin hydrogel did not promote IL-10 induction (Fig. 5B).

In tissues, IL-2 is associated with sulfated proteoglycans such as heparan sulfate (HS), possibly prolonging its half-life and function (26, 27). We therefore asked whether a synthetic matrix containing HS could be used to deliver IL-2 in conjunction with the other signals necessary for TR1 induction. Extracel-HP, a hydrogel preparation that incorporates HS in addition to collagen and HMW-HA (henceforth referred to as HA/HS/COL gel), engendered equivalent IL-10 production in the absence of exogenous IL-2. Upon IL-2 supplementation the amount of IL-10 produced was significantly increased in the setting of HA/HS/COL gel (P = 0.037) but not HA/COL gel (P = 0.23) relative to plate-bound HMW-HA (Fig. 5C). This is consistent with reports of enhanced functionality of cytokines in HS-bound form (28, 29). Representative staining data are shown in Fig. 5D. This enhancement of TR1 induction was not associated with increases in other Th1, Th2, or TH17 cytokines (Fig. 5E). We confirmed that HA/HS/COL gel retains IL-2 (Fig. 5F).

**Discussion**

The local inflammatory milieu and the ECM in particular are underappreciated partners of the adaptive immune response. Herein we provide evidence of ECM modulation and control of IL-10 production, a key immunoregulatory cytokine in peripheral tissues. By using both mouse and human cells, we show that intact HA promotes induction of Foxp3+ IL-10–producing T cells with regulatory properties (i.e., TR1 cells) and that these function in vivo.

The TR1 cells described here differ from TR1 cells described previously in that the TR1 progenitor cells in this system are CD4+CD62L− T cells. Nor did we observe induction of FoxP3, a signaling molecule (30). Matrix integrity cues might thereby play a central role in maintaining peripheral tolerance to self antigens.

The exclusivity with which HMW-HA treatment, and particularly HMW-HA–based hydrogels, promoted IL-10 production is also noteworthy and differs from some other described TR1 cells (1). In particular, we did not observe significantly enhanced production of IFN-γ or other cytokines variably associated with TR1 cells (1). Nor did we observe induction of FoxP3, a signaling molecule.
molecule associated with Tregs. As we previously reported that HMW-HA promotes Foxp3 expression by mature Tregs (10–12), this suggests differences between HMW-HA-mediated modulation of different regulatory T-cell types. Another mechanistic distinction is that intact HA promotes TGF-β production by Treg cells (11) but not TR1. Given that CD44v isoforms possess diverse ECM ligand specificities (31), it is also possible that other ECM components may differentially interact with specific regulatory subsets (30) in a highly contextual and specific manner.

We identify two levels of regulation that modulate the capability of HA to induce TR1 regulatory cells. The first is the size of HA in the system. Although HMW-HA, characteristic of healing or uninjured tissues, promotes IL-10 production, fragmentary LMW-HA, indicative of active tissue injury, does not, indicating a decisive role for HA integrity in TR1 induction. It is known that the length of HA chains dictates their ability to cross-link multiple CD44 receptors on the cell surface (32), and this cross-linking is critical to a number of CD44-mediated functions (33, 34). The requirement for CD44 cross-linking in this system provides a potential mechanistic explanation tying TR1 induction to the inflammatory milieu in vivo.

A second level of control over HMW-HA induction of TR1 cells is the influence of OPN, a matrix glycoprotein found in abundance in many settings of chronic inflammation and autoimmunity (21, 35). Our data indicate that OPN overrides HMW-HA-mediated TR1 induction in a dose-dependent manner via interactions with both CD44 and integrin receptors. These data point to a central role for CD44 in fate decisions regarding TR1 induction. Furthermore, we demonstrate that the effect of OPN can be replicated with an antibody directed against β3 integrin. These data indicate a nexus for regulatory control of the TR1 pathway by ECM components. Given the requirement in HA-mediated TR1 induction for a TCR stimulus, DCs and other antigen-presenting cells (APCs) may serve as an important source of HA. It was recently reported that IFN-γ receptor engagement drives DC-mediated TR1 induction and inhibition of OPN production (36). We recently showed that DC production of HA was likewise promoted by IFN-γ and that HA is found at the immune synapse (30). We are currently investigating this HA/OPN/IFN-γ axis in DC-mediated TR1 induction.

Building upon our findings, we have used commercial HA-based hydrogels as platforms to provide the necessary cues for TR1 induction. These capitalize on the shared capacity of intact HA and an HA-based hydrogels to induce TR1. In this context, the hydrogel can be regarded as a synthetic biomimetic of intact ECM. The use of synthetic matrices to induce TR1 points toward novel strategies for immunomodulation.

---

**Fig. 5.** A synthetic matrix promotes TR1 induction. (A) Schematic of a hydrogel that delivers a set of stimuli capable of inducing TR1 from conventional T-cell precursors. (B) IL-10 production following plate-based or hydrogel-based activation (n = 5). (C) The impact of supplemental IL-2 on IL-10 production in the setting of plate-based or HA/COL (Extracel) or HA/COL/HS (Extracel-HP) hydrogels (n = 5). (D) Representative intracellular staining for IL-10 under these same conditions. (E) Levels of TH1, TH2, and TH17 cytokines upon hydrogel-based activation (n = 3).
Materials and Methods

Induction of TR1 Cells and Controls. CD4+GFP/FoxP3+ T cells (2 x 10^3) were activated for 96 h on plates initially coated with aCD3 (0.5 μg/mL) in 50 μL with or without CD44 antibody (1 μg/mL) washed, and then subsequently coated with 0.2 mg/mL BSA-conjugated HMW-HA or 10% BSA. After 96 h, cells and supernatants were collected for analysis. For TR1 cell induction using hydrogels, Extracel and Exacel-HP (Glycosan Biosystems) were used per the manufacturer’s instructions. Biotinylated anti-CD28 Ab (1 μg/mL; BD Biosciences), and streptavidin (10 μg/mL; Sigma-Aldrich) were added before cross-linking. Cells (2 x 10^5) were layered on gels of 25 μL volume following cross-linking. Additional information is included in SI Materials and Methods.

ACKNOWLEDGMENTS. We thank Drs. Zarembinski, Prestwich, and Buckner for their advice and comments. This study was supported by National Institutes of Health Grants DK046365 (to G.T.N.), HL018645 (to T.N.W.), DK080178-03 (to P.L.B.), JDF 25-2010-648 (to T.N.W. and P.L.B.), and R-03 DK089128-01 (to P.L.B.) and by the Juvenile Diabetes Research Foundation (Center for Translational Research, Benaroya Research Institute at Virginia Mason).
Th1 cytokines promote T-cell binding to antigen-presenting cells via enhanced hyaluronan production and accumulation at the immune synapse

Paul L Bollyky, Stephen P Evanko, Rebecca P Wu, Susan Potter-Perigo, S Alice Long, Brian Kinsella, Helena Reijonen, Kelly Guebtner, Brandon Teng, Christina K Chan, Kathy R Braun, John A Gebe, Gerald T Nepom and Thomas N Wight

Hyaluronan (HA) production by dendritic cells (DCs) is known to promote antigen presentation and to augment T-cell activation and proliferation. We hypothesized that pericellular HA can function as intercellular 'glue' directly mediating T cell–DC binding. Using primary human cells, we observed HA-dependent binding between T cells and DCs, which was abrogated upon pre-treatment of the DCs with 4-methylumbelliferone (4-MU), an agent which blocks HA synthesis. Furthermore, T cells regulate HA production by DCs via T cell-derived cytokines in a T helper (Th) subset-specific manner, as demonstrated by the observation that cell-culture supernatants from Th1 but not Th2 clones promote HA production. Similar effects were seen upon the addition of exogenous Th1 cytokines, IL-2, interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α). The critical factors which determined the extent of DC–T cell binding in this system were the nature of the pre-treatment the DCs received and their capacity to synthesize HA, as T-cell clones which were pre-treated with monensin, added to block cytokine secretion, bound equivalently irrespective of their Th subset. These data support the existence of a feedforward loop wherein T-cell cytokines influence DC production of HA, which in turn affects the extent of DC–T cell binding. We also document the presence of focal deposits of HA at the immune synapse between T-cells and APC and on dendritic processes thought to be important in antigen presentation. These data point to a pivotal role for HA in DC–T cell interactions at the IS.

Cellular & Molecular Immunology (2010) 7, 211–220; doi:10.1038/cmi.2010.9; published online 15 March 2010

Keywords: dendritic cell; hyaluronan; immune synapse; pericellular matrix; Th1
HA production is known to be positively regulated by proinflammatory cues and negatively regulated by anti-inflammatory agents, a paradigm which is consistent with a putative role for HA in promoting antigen presentation. Interestingly, the majority of cytokines, such as IFN-γ, tumor-necrosis factor (TNF)-α and IL-1β, which promote HA production in a variety of cell types tend to be associated with the T helper 1 (Th1) subset of T cells;20–23 cytokines associated with the Th2 subset of T cells, such as IL-4, on the contrary, generally do not;24–26 though there are exceptions.27 This observation led us to investigate whether T cells might not directly influence cell-surface HA production by virtue of their cytokine production profiles.

We have evaluated the hypothesis that pericellular HA directly moderates DC–T-cell interactions. We have evaluated whether HA production by DC promotes the formation and stability of T-cell–DC binding. We have then asked whether individual Th1 cytokines or cultured media from Th1 clones have the capacity to positively influence T-cell binding to DC in an HA-dependant manner. Our results represent a novel, pivotal role for HA and the pericellular matrix in regulating DC–T-cell interactions.

MATERIALS AND METHODS
Reagents
HA with a molecular weight of 1.5 × 10^6 kDa was provided by Genzyme (Cambridge, MA, USA). 4-MU and Streptomyces hyaluronidase were obtained from Sigma-Aldrich (St Louis, MO, USA).

Human blood samples
Human peripheral blood mononuclear cell (PBMC) samples were obtained from healthy volunteers with informed consent, participating in a research protocol approved by the institutional review board of the Benaroya Research Institute at Virginia Mason (BRI, Seattle, WA, USA).

Isolation of leukocyte populations
Human PBMCs were prepared by centrifugation of peripheral blood over Ficoll–Hypaque gradients. CD4+ T cells were isolated using the Dynal CD4 Positive Isolation Kit (Invitrogen, Carlsbad, CA, USA) as per the manufacturer’s instructions. Purity of the resulting cell fractions was reliably >98% CD4+ by flow cytometry; anti-CD4 Ab (RPA-T4), from BD-Biosciences (San Jose, CA) was used for this purpose. Cells were cultured in RPMI 1640 (Invitrogen) supplemented with 10% pooled human serum, 100 μg/ml penicillin, 100 U/ml streptomycin and 1 mM Na pyruvate (Invitrogen). Monocytes were isolated from the CD4+ population as per the manufacturer’s instructions.

Generation of monocytederived DCs
CD4+ CD14+ cells (monocytes) were cultured in 24 well plates, 3×10^6 cells/well. Cells were cultured 4–6 days in the presence of IL-4 (50 ng/ml; R&D, Minneapolis, MN, USA) and granulocyte/macrophage colony-stimulating factor (5 ng/ml; BD Pharmingen, BD Biosciences). Cells were stained before and after this protocol for CD14, CD80 and CD86 to document their development into DCs. A representative staining example is shown in Supplementary Figure 1.

Generation and characterization of Th1 and Th2 clones
PBMCs from human leukocyte antigen (HLA) DRB0404+ patients were stimulated as described earlier.28 Briefly, cells were cultured with RPMI 1640 containing 10% (v/v) pooled human serum at the density of 5×10^5/ml, in the presence of a GAD65 555-567 (5571; NFRKMVISNPAAT) peptide at a concentration of 10 μg/ml. On day 10, the cells were transferred at a density of 4×10^6/ml onto 48-well plate that had been adsorbed with 8 μg/ml DRB0404 monomer containing GAD65 5571 peptide major histocompatibility complex (MHC) in 1X phosphate-buffered saline (PBS) for 3 h at 37 °C. One microgram per milliliter of anti-CD28 antibody (BD Pharmingen, BD Biosciences) was added to the media and the cells incubated additional 5–6 days and stained using 10 μg/ml phycoerythrin-labeled 0404 tetramer for 2 h at 37 °C, and subsequently with fluorochrome-labeled anti-CD25 and anti-CD4 (BD Pharmingen, BD Biosciences) for 30 min on ice. Cells were then washed with PBS containing 1% fetal bovine serum and analyzed using a BD FACSCalibur flow cytometer (BD Biosciences). Data analysis was performed using CellQuest (BD Biosciences) software. CD4highCD25+ tetramer-binding cells were single-cell sorted into 96-well plates using a FACSVantage cell sorter (BD Biosciences). Sorted clones were expanded for 10–12 days by stimulation with irradiated unmatched PBMCs (1.5×10^7/well), 5 μg/ml phytohemagglutinin and 10 μ/ml IL-2 for two cycles, followed by stimulation with HLA-DRB0404-matched PBMCs pulsed with 10 μg/ml GAD65 5571 peptide and 10 μ/ml IL-2. On days 10–12, clones were selected based on growth for further expansion. Resting T cells (5×10^5) were tested for antigen specificity by stimulation with irradiated HLA-DRB404-matched PBMCs (1×10^5/well) with and without a specific peptide GAD65 555-567 (NFRKMVISNPAAT) in the culture (0.01–10 μg/ml). Proliferation as measured by 3H-thymidine incorporation was tested after 72 h in culture. The restriction elements of the T-cell clones were confirmed by testing proliferation induced by DRB0404-transfected type 1 bare-lymphocyte-syndrome cell lines (BLS-1) pulsed with GAD65 peptide. Cytokine secretion by the cells was measured at 48 h after stimulation by Cytometric Beads Array assay (BD Pharmingen, BD Biosciences) according to the manufacturer’s instructions. Clones were classified as Th1 or Th2 based on their cytokine production profiles (Supplementary Table 1). T-cell clones were tested for tetramer binding by staining with 10 μg/ml GAD65 or control tetramer for 1 h at 37 °C followed by fluorescein-conjugated antibody on ice for 30 min. The T-cell clones were expanded by stimulation at 2-week intervals with either irradiated non-HLA-matched PBMCs, phytohemagglutinin (5 μg/ml) and IL-2 (10 U/ml), or GAD peptide-pulsed DRB0404+ PBMCs and IL-2 (10 U/ml). After 3–4 cycles of stimulation the cells were frozen and aliquots were subsequently thawed for the experiments described in this work.

Generation and characterization of stock Th1- and Th2-conditioned media solutions
Three pairs of thawed Th1 and Th2 clones were stimulated with irradiated non-HLA-matched PBMCs, phytohemagglutinin and IL-2, as described above. Cells were maintained for three weeks with periodic readministration with IL-2 and replacement of media. Whenever this was done the conditioned media was harvested and stored at 4 °C. Conditioned media was collected from the three Th1 clones in approximately equal proportions and pooled. The same was done for the Th2 cell cultures. In this manner a single stock of Th1 conditioned media and a single stock of Th2 conditioned media were generated over the course of 2 weeks. These two stocks underwent cytokine profiling as described above and the results are shown in Table 1.

Treatment of DCs with cytokines or Th1- or Th2-conditioned media
DCs generated from monocytes were collected, washed in complete media, and replated at 3×10^5 cells/well in a 6-well plate. Th1- or
Table 1  Cytokine profiles for the Th1- and Th2-conditioned media used as stock solutions for these experiments. These stock solutions were derived from pooled Th1- and Th2-culture supernatants

<table>
<thead>
<tr>
<th>Conditioned media</th>
<th>IFN-γ</th>
<th>TNF-α</th>
<th>IL-10</th>
<th>IL-4</th>
<th>IL-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th1</td>
<td>1183.5</td>
<td>84.7</td>
<td>1452.6</td>
<td>10.6</td>
<td>38.9</td>
</tr>
<tr>
<td>Th2</td>
<td>264.4</td>
<td>51.2</td>
<td>1176.7</td>
<td>9571.3</td>
<td>0</td>
</tr>
</tbody>
</table>

Abbreviations: IFN, interferon; Th, T helper; TNF, tumor-necrosis factor.

Th2-conditioned media were added in 2:1 ratio of fresh complete media to stock conditioned media. Fresh media alone were used as a control. Alternatively, where indicated fresh media was supplemented with recombinant cytokines individually and in combination at the following concentrations: 100 IU/ml IL-2 from (Chiron, Emeryville, CA, USA); 10 ng/ml recombinant human IFN-γ (R&D Systems, Minneapolis, MN, USA); 10 ng/ml recombinant human TNF-α (BD Pharmingen, BD Biosciences), 10 ng/ml recombinant human IL-1β (BD Pharmingen, BD Biosciences). DCs were treated in this manner for 4 h prior to mRNA harvest.

Quantitative PCR
Total RNA was harvested from T cells and DCs using the Qiagen RNeasy Mini Kit from Qiagen (Valencia, CA, USA). cDNA was prepared from 350 ng total RNA reverse transcribed in a 40 µl reaction mix with random primers using the High-Capacity cDNA Archive Kit according to the manufacturer’s instructions. Relative quantification of transforming growth factor-β1 gene expression was performed using Taqman Gene Expression Assay Mm03024053_m1 and eukaryotic 18S rRNA Endogenous Control part no.4333760. Briefly, 1.2 µl cDNA was amplified in a Taqman Fast Universal PCR Mix with 250 nM Taqman probe in a 20 µl reaction using the Fast program for 50 cycles on an ABI7900HT thermocycler. All qPCR reagents were from Applied Biosystems (Foster City, CA, USA). All samples were done in duplicate and data were analyzed using the Comparative Ct Method with software from Applied Biosystems. Estimated copy numbers were generated from a standard curve created by using a selected reference cDNA template and Taqman probe.29

QUANTIFICATION OF HA SYNTHESIS
H2-glucosamine was added at a concentration of 40 µCi/ml to DC cultures. After 24 h the supernatant was removed, thereby separating each condition into soluble and cellular fractions. These fractions were then digested with pronase (100 µg/ml) in 0.5 M Tris pH 6.5 overnight at 37 °C. Following digestion, the pronase was inactivated by heating to 100 °C for 20 min. Radiolabeled macromolecules were then recovered and separated from unincorporated precursor by precipitation on nitrocellulose membranes using slot blot analysis as described previously.30 Briefly, 200 µl of the sample was added to an equal volume of 2% cetylpyridiniumchloride, 50 mM NaCl buffer and the solution blotted onto 0.45 µm nitrocellulose membrane (Schleicher and Schuell, Keene, NH, USA). The membrane was washed for six times in 2% cetylpyridiniumchloride, 50 mM NaCl buffer and once in deionized water before air drying at room temperature overnight. Incorporation of H2-glucosamine into HA was measured by digesting an equivalent radiolabeled aliquot with Streptomyces hyaluronidase (2 U/ml) for 24 h at 37 °C before slot blotting. HA was measured as the amount of hyaluronidase sensitive material precipitated to the nitrocellulose membrane. To determine the amount of chondroitin sulfate and dermatan sulfate present in the sample, an equal aliquot of sample was adjusted to pH 8.0 before digesting with Chondroitin ABC lyase (0.03 U/ml; North Star BioProducts, East Falmouth, MA, USA). All scintillation counting was done on Beckman LS 6500 (Beckman Instruments, Fullerton, CA, USA).

T cell–DC binding experiments
These were modeled on previous work by Do et al.,14 with modifications. DCs induced from monocytes were stained using SNARF-1 (Invitrogen). After this 1×105 DCs per condition were cultured on a coverslip in a 6-well plate (Corning, Corning, NY, USA) overnight. Th1- or Th2-conditioned media was added in 2:1 ratio of fresh complete media to conditioned media. Fresh media alone was used as a control. Alternatively, fresh media was supplemented with 100 IU/ml IL-2 and 10 ng/ml IFN-γ. DCs were maintained under these culture conditions overnight. The plates were gently washed twice to remove any conditioned media.

Primary T cells were activated for 4 days with anti-CD3/28 beads (Invitrogen) at a ratio of 1 bead to 10 cells without exogenous IL-2. Activated T cells were then labeled with 50 µM, carboxyfluorescein succinimidyl ester (CFSE; Invitrogen). CD4+ T cells which were labeled by 1×105 CFSE were added to the plates. After incubation for 2 h, the plates were washed in PBS; the coverslips were removed and mounted on slides for analysis.

Analysis of binding was performed as follows. For each condition, at least 10 non-overlapping fields were photographed using a digital camera (Diagnostic Instruments, Sterling Height, MI, USA) attached to a Leica DM-IRB microscope (Leica Microsystems, Wetzlar, Germany). Spot Software 4.5 (Diagnostic Instruments) was used for analysis. For each field photographs were taken using the excitation laser at 488 and 568 in order to capture binding of both CFSE-labeled T cells as well as SNARF-1-labeled DCs. For each field the images were then merged using software in order to provide an assessment of clustering involving both T cells and DCs. Using this image, for each field the number of DCs was counted as well as the number of clusters. A cluster was defined as ≥2 T cells bound to one or more DCs.

Binding experiments were also performed using CFSE-labeled Th1-or Th2-clones activated in an identical manner to the primary CD4+ T cells described above. The cytokine production profiles for these clones are shown in Supplementary Table 1. These T-cell clones were pre-incubated for 1 h with BD GolgiStop (BD Pharmingen, BD Biosciences). BD GolgiStop was added to prevent any further cytokine contribution from T cells to the binding assay. The T-cell clones were then washed twice and incorporated into the same binding assay protocol as above.

IMMUNOCITOCHEMISTRY
For visualization of HA, cells were fixed in an acid alcohol formalin buffer as described by Lin et al.,31 thereby allowing maximum retention of the HA and associated proteins. The coverslips were blocked at room temperature with 1% bovine serum albumin/5% normal donkey serum in PBS for at least 1 h. Subsequently, they were incubated with bPG (the N-terminal HA binding region of aggrecan which has been biotinylated) as previously described.32 Following three washes, cells were incubated with Alexa Fluor 488 streptavidin (2 µg/ml), Alexa Fluor 647 anti-HLA-DR (L243; Biolegend, San Diego, CA, USA) (8 µg/ml) and DAPI (1 µg/ml) for 1 h. Following three washes in PBS, coverslips were mounted in Gel/Mount (Biomeda, Foster City, CA, USA), and photographed using the apparatus described above.
Statistical analysis
Statistical comparisons were made using a Student’s t-test. Standard error is shown unless otherwise noted. Values of \( P < 0.05 \) were considered significant.

RESULTS
Biosynthesis of HA by DCs
We first sought to quantify and characterize HA production by monocyte-derived human DCs. This was accomplished using a method by which the incorporation of radiolabeled glucosamine into HA is assessed.33 Because glucosamine is converted into HA as well as other molecules, the proportion of HA was calculated from parallel aliquots digested with and without Streptomyces hyaluronidase, an enzyme specifically degrading HA;34 chondroitinase is used as a control in these studies to confirm the specificity of the assay for HA. Using this method we found that monocyte-derived human DCs but not primary T cells produced HA (Figure 1a). The majority of this HA production was cell associated as HA was observed in the cellular fraction but not the media fraction from DC cultures (Figure 1b).

Of the three HAS genes, HAS3 was most highly expressed by monocyte-derived human DCs with minimal expression of HAS1 and no detectable expression of HAS2. Activated T cells produced negligible quantities of cell-associated or soluble HA (Figure 1a). Of note, this was also the case for unactivated T cells as well as the T-cell clones used in later experiments (data not shown). We therefore subsequently focused only on HA production by DCs.

DC production of HA was substantially abrogated upon treatment with 4-MU used at 50 \( \mu \)g/ml (Figure 1b). This dose of 4-MU was demonstrated to be non-toxic to DCs as ascertained by staining with 7-AAD and Annexin V (Supplementary Figure 2). This corroborates reports with other cell types that 4-MU at comparable concentrations has been shown in other systems.38,39 Interestingly, these data suggest that DCs have a previously unreported capacity to respond to IL-2. DCs do not express the high-affinity IL-2 receptor CD25 (data not shown), but we did find that DCs do express the low-affinity receptor CD122 (Supplementary Figure 1). However, neither antibodies directed at CD122 nor at IL-2 itself negated the enhanced production of HA observed upon treatment with Th1-conditioned media (data not shown). This suggests that IL-2 is not a strict requirement for enhanced DC production of HA under this condition.

The accumulation of cell-surface HA of DCs is likely to reflect the balance of production as well as degradation of HA. We therefore evaluated the effects of Th1-conditioned media and controls on the genes responsible for HA synthesis and degradation. Interestingly, Th1-conditioned media, and IL-2 and IFN-\( \gamma \) supplementation did not engender any increase in HAS3 mRNA (Figure 3a). Neither was there any increase in HAS1 nor HAS2 mRNA as these both remained at negligible levels under all conditions tested (data not shown). However, we did note a significant decrease in the expression of mRNA for the hyaluronidase HYAL1 with either Th1-conditioned

![Figure 1](image-url) DCs produce cell-associated HA. (a) Radiolabeled glucosamine incorporation into HA by DCs and T cells. Since glucosamine is converted into HA as well as other molecules, the proportion of HA was calculated from parallel aliquots digested with and without Streptomyces hyaluronidase. Chondroitin ABC lyase is used as a control in these studies to confirm the specificity of the assay for HA. (b) Radiolabeled glucosamine incorporation into HA for the media and cell fractions of DC cultures. DCs were cultured with and without 4-MU treatment at the time of glucosamine addition. Error bars are for replicates in triplicate. Data are representative of four experiments. (c) mRNA expression for the three hyaluronan synthases normalized to 18S mRNA. Results include data from four independent experiments each using DCs from different individuals. CPM, counts per min; DC, dendritic cell; HA, hyaluronan; HAS, hyaluronan synthases; 4-MU, 4-methylumbelliferone.
media, or IL-2 and IFN-γ supplementation (Figure 3b). This suggests that Th1-conditioned media, and IL-2 and IFN-γ may affect the HA content of DCs primarily by impacting the rate of degradation rather than production. Similar complex effects on HA production and degradation were reported for IFN-γ and TNF-α in lung fibroblasts.41

Conditioned media from Th1 cytokines, and IL-2 and IFN-γ supplementation promote DC spreading

Induced DCs had the typical morphological appearance of immature DCs: they were predominantly non-adherent and had few DC processes (Figure 4a). Upon treatment with Th1-conditioned media, these cells became more adherent, formed long dendrites and tended to cluster (Figure 4b). These are features associated with DC maturation and heightened capacity to present antigen.42,43 These morphologic changes could be abrogated by treatment with 4-MU (Figure 4c). In contrast, DCs incubated with Th2-conditioned media were only slightly altered in appearance (Figure 4d). The same changes observed with Th1-conditioned media could be seen upon treatment with IL-2 and IFN-γ (Figure 4e). As previously reported, these treatments impacted expression of CD80 and CD86 in tandem with their effects on dendritic processes.44–46 (Data not shown).

Figure 2  DCs produce cell-associated HA in response to Th1-conditioned media and to specific Th1 cytokines. (a) Radiolabeled glucosamine incorporation into HA or chondroitin sulfate upon coculture in the setting of Th1- or Th2-cell culture supernatants. CPM shown are for the amount of radiolabel lost upon treatment of the radiolabeled cell lysate with either Streptomyces hyaluronidase or chondroitin ABC lyase. (b) Radiolabeled glucosamine incorporation into HA upon coculture in the setting of Th1-cell culture supernatants or specific cytokines as shown. CPM shown are for the amount of radiolabel lost upon treatment of the radiolabeled cell lysate with Streptomyces hyaluronidase. Error bars are for replicates in triplicate; data are representative of four experiments. CPM, counts per min; DC, dendritic cell; HA, hyaluronan; IFN, interferon; Th, T helper; TNF, tumor-necrosis factor; 4-MU, 4-methylumbelliferone.

Figure 3  DCs downregulate HYAL1 in response to IL-2 and IFN-γ. (a) mRNA expression of HAS3 4 h following addition of Th1- and Th2-cell culture supernatants or supplementation with IL-2 and IFN-γ. (b) mRNA expression of the hyaluronidase genes HYAL1 and HYAL2 under the same conditions. Results include data from four independent experiments each using DCs from different individuals. * connotes conditions where there was a significant (P<0.05) difference between that sample and the media-only condition. DC, dendritic cell; HAS, hyaluronan synthases; HYAL, hyaluronidase; IFN, interferon; Th, T helper.
Treatment of DCs with Th1-conditioned media as well as IFN-γ and IL-2 supplementation promote T-cell binding in an HA-dependent manner

We sought to ascertain whether HA production by DCs contributed to T-cell binding. To this end, we evaluated cluster formation between SNARF-labeled DCs and CSFE-labeled T cells. DCs pre-treated with Th1-cultured media demonstrated a significantly greater propensity to bind to primary T cells than controls (Figure 5a–e). This enhanced binding could be abrogated by inclusion of 4-MU during the pre-treatment phase (Figures 5c and e). A similar response to that seen with Th1-cultured media pre-treatment was seen upon pre-treatment of DCs with media supplemented with IFN-γ and IL-2 (Figure 5e). The addition of exogenous HA to the DC–T cell cultures did not significantly improve cluster formation (Figure 5e). These data

Figure 4 Conditioned media from Th1 cells promote DC spreading in an HA-dependent manner. DCs treated with (a) control media, (b) Th1-conditioned media, (c) Th1-conditioned media with the addition of 4-MU, (d) Th2-conditioned media, or (e) control media supplemented with IL-2 and IFN-γ. Images are shown at ×10 magnification. Data are representative of three separate experiments. DC, dendritic cell; HA, hyaluronan; IFN, interferon; Th, T helper; 4-MU, 4-methylumbelliferone.

Figure 5 Treatment of DCs with Th1 cytokines promotes T-cell binding. Binding of SNARF-labeled DCs with CSFE-labeled T cells was ascertained by evaluating DC–T cell clusters. A cluster was defined as ≥2 T cells bound to one or more DCs. The DCs were pre-treated overnight with a stock of Th1-cell culture supernatants or controls and then washed prior to the addition of the T cells. Representative images are shown for DCs pre-treated with (a) media alone, (b) Th1-cell culture supernatants and (c) Th1-cell culture supernatants together with 4-MU. Random fields (10–15) were evaluated per condition. The number of conjugates was normalized to the number of DCs for each field. A close-up of DC–T cell clusters present upon Th1 supernatant treatment is shown (d). Brightness and contrast were identical for each color in single and merged images. (e) The percentage of DCs pre-treated with Th1-cell culture supernatants or controls bound to activated primary T cells in a cluster. Data are representative of three separate experiments made using DCs and autologous T cells from different individuals. (f) Fold change in the percentage of DCs bound to T-cell clones (two Th1 and two Th2) taken from a pair of individuals (termed a and b). For each clone comparison the left bracket is for the test of significance for the Th1 supernatant condition versus media alone while the right bracket is for the Th1 supernatants comparison versus Th2 supernatants. * indicates a P value of <0.05. DC, dendritic cell; HA, hyaluronan; IFN, interferon; Th, T helper; 4-MU, 4-methylumbelliferone.
support the conclusion that Th1 soluble factors act on DCs in a paracrine manner to promote HA-dependent DC–T cell binding.

These experiments were repeated using Th1 and Th2 clones in order to better determine whether the effects on DC–T cell binding described here were restricted by T-cell subtype. The T-cell clones used were the same clones from which the conditioned media were derived and activated in an identical manner to the aforementioned primary T cells. These T cells were CFSE labeled and pre-treated with GolgiStop to prevent any further cytokine production by these cells. We found that in all cases T cells exhibited significantly increased binding to DCs pre-treated with Th1-conditioned media (Figure 5f). For three of the four clones analyzed, the clone bound significantly better to DCs pre-treated with Th1 cytokines, irrespective of whether the clone was a Th1 or a Th2 clone. The fourth clone, a Th1 clone, likewise demonstrated increased binding to Th1-conditioned media-pre-treated DCs over those treated by Th2-conditioned media, but this difference was not significant (Figure 5f). These data support the conclusion that the crucial determinant in these HA-dependent binding interactions is the nature of the cytokine milieu which DCs encounter and that subsequent binding to T cells is not subtype restricted.

IFN-γ and IL-2 promote HA accumulation on dendritic processes and at the IS

Pseudopodia are cellular extensions known to be enriched for MHC class II molecules and thought to function in antigen presentation. We observed that HA tended to be concentrated on such structures upon treatment of CD4 APCs with IFN-γ and IL-2 (Figure 6a) and that these could be removed with hyaluronidase treatment (Figure 6b) and pretreatment with 4-MU (data not shown). These structures and the HA deposits are seen clearly in cross-sectional views (Figure 6d and e). Upon addition of activated autologous CD4 T cells to these same CD4 APCs which had been pre-treated with IFN-γ and IL-2, we observed the colocalization of HA (green) and MHC class II (red) at sites of union between cells (nuclei stained in blue) (Figure 7). MHC class II is enriched upon APCs and is a key component of the IS. The colocalization of HA and MHC class II supports the conclusion that HA is present at the IS.

DISCUSSION

We have evaluated the hypothesis that pericellular HA can function as intercellular ‘glue’ directly mediating T cell–DC binding. Using primary human cells, we observed HA-dependent binding between T cells and DCs. Moreover, we describe the existence of a feedforward loop wherein T-cell cytokines influence DC production of HA in a Th1-dependent manner which in turn affects the extent of DC–T cell binding in a Th1-independent manner. These data suggest that HA plays a dynamic pivotal role in DC–T cell interactions.

Human monocyte-derived DCs produce substantial cell-surface-associated HA, which is associated with HAS3 expression. These results are consistent with previously published data for mouse DC.
lines and mouse bone marrow-derived DCs. In contrast, we observed negligible production of HA by either freshly isolated or activated T cells. While mouse T cells are reported to produce physiologically relevant quantities of HA, these data suggest that the bulk of HA present in human DC–T cell interactions is of DC origin.

Pericellular HA facilitates DC–T cell binding. 4-MU pre-treatment abrogated this binding while treatments were shown to increase HA-promoted binding. Interestingly, we find that the addition of exogenous HA to the surface of DCs and membrane-bound CD44 on the surface of T cells, as suggested by work with CD44−/− mice where CD44 expression was required on T cells but not DCs for optimal antigen presentation. However, the mechanisms by which HA promotes DC–T cell binding are unlikely to be exclusively CD44-mediated. Indeed one group reported that CD44 expression on T cells is not necessary for antigen presentation by DC. A variable role for charge-based interactions or the binding of other receptors to HA-associated proteoglycans could explain these conflicting data. Such alternative mechanisms could also account for data showing that the addition of an HA-binding peptide, Pep-1, did not significantly impair DC–T cell conjugate formation, whereas this treatment inhibited most other HA receptor-mediated interactions. Indirect effects of HA on DC maturation and expression of adhesion molecules are also likely to contribute to binding.

Production of HA by DCs was promoted by conditioned media from Th1 clones but not Th2 clones. Similar effects were seen upon treatment with the Th1 cytokines, TNF-α and IFN-γ, in combination with IL-2. IFN-γ and TNF-α are both well known to promote antigen presentation by DCs; their effects on HA are consistent with this role. These findings square well with reports of these same cytokines alone and in concert promoting HA production by other cell types.

These data suggest that Th1 cells may directly influence HA production by APCs by virtue of their cytokine production profiles. In the context of our aforementioned binding data, this represents a novel feedforward mechanism whereby T cells influence their own binding to DCs in an HA-dependent manner. While similar feedforward mechanisms exist elsewhere in immunology, none, to our knowledge, involve the extra-cellular matrix. Moreover, these data raise the intriguing possibility that HA production is an integral part of the Th1 program. A putative role for HA in Th1 responses is supported by reports that the viral mimetic Poly(IC) and infection with the Epstein–Barr virus both promote HA production.

We were interested to find that IL-2 promotes HA production by DCs because these cells do not express the high-affinity receptor for IL-2, CD25. DCs presumably respond to IL-2 through the low-affinity IL-2 receptor, CD122. We demonstrate here that monocyte-derived DCs express this receptor. CD122 expression has also been reported for bone marrow-derived DCs.

We observed focal deposits of HA at sites where T cells and APCs are thought to interface. Specifically, HA deposits colocalized with MHC class II at the IS. This may help explain published data on the role of HA in antigen presentation. HA deposits were also present atop cellular protrusions known to play a role in antigen presentation. Furthermore, 4-MU treatment abrogated formation of dendrites on DCs; this is consistent with reports that HA may play a role in maintaining similar structures on other cell types.

Figure 7 IFN-γ and IL-2 cytokines promote focal clusters of HA accumulation at the immunological synapse. PBMCs were activated with soluble anti-CD3 and anti-CD28 Ab in the setting of exogenous IFN-γ and IL-2. Images are shown for two clusters of cells for bPG (green) alone (a and c) and for costaining for MHC class II (red) and DAPI (blue) (b and d). Treatment with 4-MU abrogated clustering as well as diminished the amount of visible hyaluronan (not shown). Brightness and contrast were identical for each color in single and merged images. This experiment was performed twice with similar results. Ab, antibodies; DAPI, 4,6-diamidino-2-phenylindole; DC, dendritic cell; HA, hyaluronan; IFN, interferon; MHC, major histocompatibility complex; PBMC, peripheral blood mononuclear cell; 4-MU, 4-methylumbelliferone.
Ito S. Structure and function of the glycocalyx.  


Haslam SM, Julien S, Burchell JM, Monk CR, Ceroni A, Garden OA et al. Immunology website (http://www.nature.com/cmi/).  


54 Dustin ML. T-cell activation through immunological synapses and kinapses. Immuno Rev 2008; 221: 77–89.

B-cell adaptor for PI3K (BCAP) negatively regulates Toll-like receptor signaling through activation of PI3K

Minjian Ni, Alexander W. MacFarlane IV, Michelle Toft, Clifford A. Lowell, Kerry S. Campbell, and Jessica A. Hamerman

*Immunology Program, Benaroya Research Institute, Seattle, WA 98101; †Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111; and ‡Department of Laboratory Medicine, University of California, San Francisco, CA 94143

Edited by Lewis L. Lanier, University of California, San Francisco, CA, and approved October 20, 2011 (received for review July 22, 2011)

Toll-like receptors (TLRs) recognize pathogens and their components, thereby initiating immune responses to infectious organisms. TLR ligation leads to the activation of NF-κB and MAPKs through well-defined pathways, but it has remained unclear how TLR signaling activates PI3K, which provides an inhibitory pathway limiting TLR responses. Here, we show that the signaling adapter B-cell adaptor for PI3K (BCAP) links TLR signaling to PI3K activation. BCAP-deficient macrophages and mice are hyperresponsive to TLR agonists and have reduced PI3K activation. The ability of BCAP to inhibit TLR responses requires its capacity to bind PI3K. BCAP is constitutively phosphorylated and associated with the p85 subunit of PI3K in macrophages. This tyrosine-phosphorylated BCAP is transiently enriched in the membrane fraction in response to LPS treatment, suggesting a model whereby TLR signaling causes the phosphorylation of the small amount of BCAP that is associated with membranes in the resting state or the translocation of phosphorylated BCAP from the cytoplasm to the membrane. This accumulation of tyrosine-phosphorylated BCAP at the membrane with its associated PI3K would then allow for the catalysis of Ptd Ins P2 to Ptd Ins P3 and downstream PI3K-dependent signals. Therefore, BCAP is an essential activator of the PI3K pathway downstream of TLR signaling, providing a brake to limit potentially pathogenic excessive TLR responses.

Results

Increased TLR-Induced Inflammatory Cytokine Production by BCAP-Deficient Macrophages. Because the PI3K pathway can negatively regulate IL-12 production in dendritic cells (8), we first examined IL-12 p40 production by BCAP-deficient macrophages. Bone


The authors declare no conflict of interest.

This article is a PNAS Direct Submission. To whom correspondence should be addressed. E-mail: jhamerman@benaroya-research.org.

This article contains supporting information online at www.pnas.orglookup/suppl/doi:10.1073/pnas.1111957108/-/DCSupplemental.
marrow (BM)-derived macrophages from WT and BCAP-deficient mice were stimulated with TLR4, TLR7, and TLR9 agonists to induce cytokine production. BCAP-deficient macrophages secreted a significantly higher amount of IL-12 p40 when stimulated with all three TLR ligands tested, indicating that BCAP negatively regulates IL-12 p40 expression in BM-derived macrophages (Fig. 1A). We also examined whether BCAP negatively regulates the production of other proinflammatory cytokines. Secretion of both IL-6 and TNF was higher in BCAP-deficient macrophages than in WT macrophages (Fig. 1A). Therefore, BCAP negatively regulates not only IL-12 p40 secretion but IL-6 and TNF secretion downstream of TLR ligation in macrophages.

TLR signaling also induces the secretion of the antiinflammatory cytokine IL-10, which can decrease inflammatory cytokine production in an autocrine and paracrine manner (17). We therefore asked whether the increased IL-12 p40, IL-6, and TNF secretion from TLR-activated BCAP-deficient macrophages was attributable to decreased IL-10 secretion. However, IL-10 secretion was not lower in LPS-treated BCAP-deficient macrophages than in WT macrophages (Fig. 1B). We also investigated whether BCAP negatively regulates TLR responses in vivo. BCAP-deficient mice produced significantly more IL-12 p40 in response to in vivo injection of LPS than WT mice over a 6-h time course (Fig. 1C). Therefore, BCAP inhibits TLR responses both in vitro and in vivo.

**BCAP Deficiency Minimally Affects TLR-Induced MAPK Activation and IkBa Degradation.** To investigate the molecular mechanism by which BCAP inhibits TLR-induced cytokine production, we assessed how BCAP deficiency influences MAPK and NF-κB signaling downstream of TLR ligation. The kinetics and magnitude of phosphorylation of all three MAPKs were similar in BCAP-deficient and WT macrophages after stimulation with LPS (Fig. 2A). In some experiments, there was a slight increase in ERK phosphorylation in BCAP-deficient macrophages in comparison to WT macrophages; however, these differences were subtle and not consistent. In WT and BCAP-deficient macrophages, IkBa, the cytoplasmic inhibitor of NF-κB, was degraded with similar kinetics and was present in similar amounts (Fig. 2B). These data suggested that the hyperresponsiveness to TLR stimulation in BCAP-deficient macrophages did not result from increased NF-κB or MAPK activation.

**Reduced Akt Phosphorylation and PI3K Activity in BCAP-Deficient Macrophages.** Because BCAP has four YxxM motifs and is associated with PI3K activation in B cells, we hypothesized that deficiency in BCAP would reduce TLR-induced Akt phosphorylation, which is dependent on PI3K activation (18). Therefore, we compared LPS-induced Akt phosphorylation in WT and BCAP-deficient macrophages. Indeed, we found that LPS-induced phosphorylation of Akt was dramatically reduced in BCAP-deficient macrophages, at both Ser473 and Thr308 residues (Fig. 3A), indicating a reduced capacity for PI3K to stimulate downstream Akt activation in the absence of BCAP. Interestingly, basal Akt phosphorylation at both sites was also reduced in BCAP-deficient macrophages, suggesting that BCAP functions to regulate PI3K activation in resting macrophages in addition to those activated by TLR ligation. BCAP-deficient macrophages were not defective in Akt phosphorylation in response to TNF (Fig. S1), suggesting that BCAP specifically participates in the activation of PI3K downstream of TLR signaling.

Because BCAP-deficient macrophages had reduced Akt activation in response to TLR ligation, we reasoned that the PI3K inhibitor wortmannin would have a reduced capacity to enhance TLR-induced cytokine responses by BCAP-deficient macrophages compared with WT macrophages. To test this hypothesis, we measured the increase in TLR-induced cytokine production after pretreatment of macrophages with varying doses of wortmannin. In WT macrophages, CpG DNA-stimulated IL-12 p40 and IL-6 secretion increased when cells were pretreated with wortmannin in a dose-dependent manner (Fig. 3B and C), consistent with published data demonstrating the inhibitory impact of PI3K on TLR responses (8, 19–21). In contrast to WT macrophages, however, pretreatment of BCAP-deficient macrophages with wortmannin had little effect on IL-12 p40 or IL-6 secretion (Fig. 3B and C), suggesting that the amount of PI3K activity suppressing TLR function is minimal in cells lacking BCAP. Together with the reduced TLR-induced Akt phosphorylation, these results demonstrate that BCAP-deficient macrophages have a defect in TLR-induced PI3K activation.

**BCAP Is Constitutively Tyrosine-Phosphorylated and Associated with PI3K in Macrophages.** When immunoprecipitated from resting macrophages, BCAP was found as two doublets, which correspond to the bands designated 1/2 and 3/4 by Kurosaki and colleagues (15) (Fig. 4A). The 1/2 and 3/4 bands of BCAP are thought to be generated by alternative splicing of the BCAP mRNA (15). Interestingly, we never observed bands 5 and 6 seen in B cells, which run at over 100 kDa. Previous studies showed that BCAP is inducibly tyrosine-phosphorylated in B cells on BCR ligation, resulting in association with the p85 subunit of PI3K (15). Surprisingly, BCAP was constitutively tyrosine-phosphorylated and associated with PI3K p85 in resting macrophages, and the magnitude of tyrosine phosphorylation did not...
increase with LPS stimulation at any time point examined, from 5 to 30 min (Fig. 4A and B). As previously reported in B cells and NK cells, all four BCAP bands were tyrosine-phosphorylated (15, 16). Consistent with the constitutive tyrosine phosphorylation of BCAP, we also observed the association of PI3K p85 subunit in resting macrophages, and this association also did not increase with LPS stimulation (Fig. 4A and B). These data show that BCAP is tyrosine-phosphorylated and associated with PI3K in the absence of TLR ligation, indicating that upstream signals causing BCAP tyrosine phosphorylation and PI3K recruitment are active in resting macrophages.

Neither CSF1 Receptor nor Syk Signaling Is Required for BCAP Tyrosine Phosphorylation and PI3K Association in Macrophages. Because the BM-derived macrophages used in these immunoprecipitation studies are grown in macrophage (M)-CSF, whose receptor, CSF1R, can mediate PI3K activation, we examined whether CSF1R signaling may induce BCAP phosphorylation and PI3K association. To test this hypothesis, we starved macrophages for 3 h in media without M-CSF or serum and measured BCAP tyrosine phosphorylation and PI3K association. To test this hypothesis, we starved macrophages for 3 h in media without M-CSF or serum and measured BCAP tyrosine phosphorylation and PI3K association. To test this hypothesis, we starved macrophages for 3 h in media without M-CSF or serum and measured BCAP tyrosine phosphorylation and PI3K association. To test this hypothesis, we starved macrophages for 3 h in media without M-CSF or serum and measured BCAP tyrosine phosphorylation and PI3K association. To test this hypothesis, we starved macrophages for 3 h in media without M-CSF or serum and measured BCAP tyrosine phosphorylation and PI3K association. To test this hypothesis, we starved macrophages for 3 h in media without M-CSF or serum and measured BCAP tyrosine phosphorylation and PI3K association. To test this hypothesis, we starved macrophages for 3 h in media without M-CSF or serum and measured BCAP tyrosine phosphorylation and PI3K association. To test this hypothesis, we starved macrophages for 3 h in media without M-CSF or serum and measured BCAP tyrosine phosphorylation and PI3K association. To test this hypothesis, we starved macrophages for 3 h in media without M-CSF or serum and measured BCAP tyrosine phosphorylation and PI3K association. To test this hypothesis, we starved macrophages for 3 h in media without M-CSF or serum and measured BCAP tyrosine phosphorylation and PI3K association. To test this hypothesis, we starved macrophages for 3 h in media without M-CSF or serum and measured BCAP tyrosine phosphorylation and PI3K association. To test this hypothesis, we starved macrophages for 3 h in media without M-CSF or serum and measured BCAP tyrosine phosphorylation and PI3K association. To test this hypothesis, we starved macrophages for 3 h in media without M-CSF or serum and measured BCAP tyrosine phosphorylation and PI3K association. To test this hypothesis, we starved macrophages for 3 h in media without M-CSF or serum and measured BCAP tyrosine phosphorylation and PI3K association. To test this hypothesis, we starved macrophages for 3 h in media without M-CSF or serum and measured BCAP tyrosine phosphorylation and PI3K association. To test this hypothesis, we starved macrophages for 3 h in media without M-CSF or serum and measured BCAP tyrosine phosphorylation and PI3K association. To test this hypothesis, we starved macrophages for 3 h in media without M-CSF or serum and measured BCAP tyrosine phosphorylation and PI3K association. To test this hypothesis, we starved macrophages for 3 h in media without M-CSF or serum and measured BCAP tyrosine phosphorylation and PI3K association. To test this hypothesis, we starved macrophages for 3 h in media without M-CSF or serum and measured BCAP tyrosine phosphorylation and PI3K association. To test this hypothesis, we starved macrophages for 3 h in media without M-CSF or serum and measured BCAP tyrosine phosphorylation and PI3K association. To test this hypothesis, we starved macrophages for 3 h in media without M-CSF or serum and measured BCAP tyrosine phosphorylation and PI3K association. To test this hypothesis, we starved macrophages for 3 h in media without M-CSF or serum and measured BCAP tyrosine phosphorylation and PI3K association. To test this hypothesis, we starved macrophages for 3 h in media without M-CSF or serum and measured BCAP tyrosine phosphorylation and PI3K association. To test this hypothesis, we starved macrophages for 3 h in media without M-CSF or serum and measured BCAP tyrosine phosphorylation and PI3K association. To test this hypothesis, we starved macrophages for 3 h in media without M-CSF or serum and measured BCAP tyrosine phosphorylation and PI3K association. To test this hypothesis, we starved macrophages for 3 h in media without M-CSF or serum and measured BCAP tyrosine phosphorylation and PI3K association. To test this hypothesis, we starved macrophages for 3 h in media without M-CSF or serum and measured BCAP tyrosine phosphorylation and PI3K association. To test this hypothesis, we starved macrophages for 3 h in media without M-CSF or serum and measured BCAP tyrosine phosphorylation and PI3K association. To test this hypothesis, we starved macrophages for 3 h in media without M-CSF or serum and measured BCAP tyrosine phosphorylation and PI3K association. To test this hypothesis, we starved macrophages for 3 h in media without M-CSF or serum and measured BCAP tyrosine phosphorylation and PI3K association. To test this hypothesis, we starved macrophages for 3 h in media without M-CSF or serum and measured BCAP tyrosine phosphorylation and PI3K association.

Tyrosine-Phosphorylated BCAP Is Enriched on Membrane Fractions After LPS Treatment. YxxM-containing adapter proteins often function not only to bind and activate PI3K but to bring active PI3K to membranes where its substrate, PIP2, is found. To test this hypothesis, we separated cytosolic and membrane fractions followed by Western blot, with a small minority in the membrane fraction. We hypothesized that TLR signaling may cause the accumulation of tyrosine-phosphorylated BCAP at membranes where it may access PIP2. To test this hypothesis, we separated cytosolic and membrane fractions of macrophages before and after LPS treatment, as shown by the enrichment for cadherins in the membrane fraction and GAPDH in the cytosolic fraction (Fig. 4C, Bottom). We immunoprecipitated BCAP from both cytosolic and membrane fractions, and we performed Western blotting for phosphotyrosine and BCAP. As in B cells, the majority of BCAP protein was found in the cytosolic fraction, with a small but detectable amount of BCAP in the membrane fraction as seen when blotting for BCAP (Fig. 4C). Both the amount of tyrosine-phosphorylated BCAP and the total amount of BCAP in the membrane fraction were transiently increased 5 min after LPS treatment and returned to baseline by 10 min. Interestingly, this...
they do not have a developmental defect. Normal morphology and uniformly expressed F4/80, suggesting TLR responses. Additionally, BCAP-deleted BCAP gene on another gene required for normal development or cytokine-producing cells to an amount equivalent to that of WT macrophages, compared with responses of macrophages transduced with empty vector. These data show that the ability of BCAP to inhibit TLR signaling in macrophages was mediated predominantly by PI3K recruitment and activation.

Discussion

Although TLR-mediated proinflammatory cytokine production during infection is necessary for the host to eradicate pathogens successfully, these cytokines can be detrimental if not tightly regulated. One mechanism by which TLR responses are kept in check is through activation of the PI3K pathway (3, 24). Here, we show that the signaling adapter BCAP is required for optimal TLR responses. To test this hypothesis, we transduced BCAP-deficient macrophages with retrovirus encoding a mutant BCAP protein in which the four YxxM tyrosine residues were mutated to phenylalanines to prevent PI3K p85 binding and compared this with transduction of the WT BCAP protein or control retrovirus (23). The YxxM mutant BCAP had a greatly reduced ability to inhibit cytokine production in response to CpG DNA compared with the WT BCAP protein (Fig. 5 C and D). Interestingly, the YxxM mutant still diminished the TLR responses to a small degree compared with responses of macrophages transduced with empty vector. These data show that the ability of BCAP to inhibit TLR signaling in macrophages was mediated predominantly by PI3K recruitment and activation.

Reconstitution of BCAP into BCAP-Deficient Macrophages Reduces TLR Responses. To investigate whether there was a developmental defect attributable to BCAP deficiency, we introduced BCAP and empty control constructs into WT or BCAP-deficient BM-derived macrophages through retroviral transduction. After retroviral transduction, the macrophages were activated with CpG DNA and proinflammatory cytokine production was assessed by flow cytometry, gating on the GFP-expressing retrovirally transduced cells. BCAP-deficient macrophages transduced with a control vector showed an increased percentage of cells producing IL-12, TNF compared with control virus-transduced WT macrophages, showing that BCAP deficiency correlates with reduced PI3K activity in the absence of BCAP. Furthermore, the effect of PI3K inhibition with wortmannin is reduced in BCAP-deficient macrophages compared with its effect in WT macrophages. This indicates that there is less TLR-induced PI3K activity in BCAP-deficient macrophages, consistent with the reduced TLR-induced Akt phosphorylation in these cells. Additionally, reconstitution of BCAP-deficient macrophages with a BCAP mutant that cannot associate with PI3K p85 because of the substitution of phenylalanines for the tyrosines in the four PI3K binding motifs found in BCAP had a significantly reduced ability to inhibit TLR responses in comparison to reconstitution with the WT protein. Therefore, we conclude that BCAP inhibits TLR responses through activation of the PI3K pathway and that BCAP is a critical link between TLR signaling and the PI3K signaling pathway in macrophages.

Unlike in B cells, where BCAP tyrosine phosphorylation and PI3K association are induced by receptor cross-linking (15, 22), BCAP was constitutively tyrosine-phosphorylated and associated with PI3K p85 in resting macrophages. In addition to TLR-induced Akt phosphorylation, basal Akt phosphorylation in the absence of activation was reduced in macrophages lacking BCAP. This suggests that BCAP-associated PI3K is also important for the basal PI3K activity in macrophages. Interestingly, the total amount of BCAP tyrosine phosphorylation and PI3K association did not change with LPS treatment, even though LPS-induced Akt phosphorylation was reduced in the absence of BCAP. The basal and LPS-induced tyrosine phosphorylation of BCAP, and its PI3K association, did not depend on signaling by M-CSF through the CSF1R, showing that cross-talk between CSF1R and BCAP does not influence BCAP function. Additionally, BCAP tyrosine phosphorylation and PI3K association did not depend on the Syk tyrosine kinase, which is required for BCR-induced BCAP activation in B cells (15). Taken together, these data suggest that the ability of BCAP to control PI3K activity in macrophages is not
to move to the plasma membrane or other intracellular membranes, allowing for BCAP to regulate PI3K activity in two distinct steps: increasing PIP3 production and downstream signaling. This may function of BCAP during TLR signaling is to enrich active PI3K toplasm to membranes in response to LPS. We propose that the fraction is inducibly tyrosine-phosphorylated after LPS treatment, the amount of tyrosine-phosphorylated BCAP in macrophages, as has been shown in B cells (15). In response to LPS treatment, the amount of tyrosine-phosphorylated BCAP increased transiently in the membrane fraction but not in the cytosolic fraction of macrophages. Our experiments cannot distinguish whether BCAP that is already present in the membrane fraction is inducibly tyrosine-phosphorylated after LPS treatment or whether phosphorylated BCAP is translocated from the cytoplasm to membranes in response to LPS. We propose that the function of BCAP during TLR signaling is to enrich active PI3K at membranes where it can access its substrate PI3P, thereby increasing PI3P production and downstream signaling. This may allow for BCAP to regulate PI3K activity in two distinct steps: first, by binding p85/p110 heterodimers, thereby increasing catalytic activity, and, second, by interacting with other proteins to move to the plasma membrane or other intracellular membranes. Interestingly, we only found enrichment at the membrane of tyrosine-phosphorylated BCAP isoforms 3/4, suggesting that these isoforms may be responsible for regulating TLR responses. Identification of the signaling pathway that directs the enrichment of tyrosine-phosphorylated BCAP in the membrane fraction after TLR ligation will be the subject of future work.

The molecular mechanisms underlying PI3K negative regulation of cytokine expression are complex. One recent study suggests that PI3K regulates IL-12 production in dendritic cells through both mammalian target of rapamycin (mTOR) and glycosynase synthase kinase 3b (GSK3b) pathways (12). PI3K-generated PI3P activates Akt, which phosphorylates and causes the degradation of GSK3b. GSK3b positively regulates LPS-induced IL-12 p70 directly through transcriptional induction and indirectly through inhibition of IL-10 production. Therefore, when PI3K activity is reduced, GSK3b levels remain high, causing more IL-12 and less IL-10 to be produced. Akt also activates the mTOR pathway, which regulates IL-12 production only indirectly through induction of IL-10, again causing less IL-10 to be produced when PI3K activity is reduced. It is not likely that IL-10 is involved in BCAP-mediated suppression of IL-12 p40 secretion by macrophages because there is no decrease in TLR-induced IL-10 secretion by BCAP-deficient macrophages. We therefore favor a direct form of inhibition of IL-12 p40 secretion by BCAP-induced PI3K activity, possibly through regulation of GSK3b degradation.

Although we believe the principal role of BCAP is to activate PI3K, BCAP is not the only pathway through which PI3K gets activated in macrophages. In the absence of BCAP, we saw a small amount of basal and LPS-induced Akt phosphorylation. Therefore, other pathways exist downstream of TLRs leading to PI3K activation. TLRs have been reported to interact directly or indirectly through MyD88 with the p85 subunit to activate PI3K activation. Therefore, other pathways exist downstream of TLR signaling, this BCAP-mediated PI3K activation downstream of TLR ligation. Alternatively, the activation of PI3K described in these reports may depend on BCAP. Further work is required to define better whether BCAP is activated directly or indirectly by TLRs. Additionally, BCAP may have other functions during TLR signaling than activation of PI3K. BCAP is a large protein with many regions of unknown function. Our reconstitution assay with the BCAP Y→F mutant showed a small but consistent ability to inhibit TLR responses, although this was much lower than the inhibition achieved with the WT protein. This suggests that there is a function of BCAP independent of PI3K binding that can affect the magnitude of TLR responses.

Here, we show that the signaling adapter BCAP is required for optimal PI3K activation downstream of TLR ligation, identifying an elusive link between TLR signaling and PI3K activation in controlling inflammatory responses. Although BCAP serves to activate PI3K both in B cells downstream of BCR signaling and in macrophages downstream of TLR signaling, this BCAP-mediated PI3K activation has opposite effects, promoting B-cell activation and inhibiting macrophage activation, thus revealing cell type-specific roles of BCAP in regulation of cellular activation pathways. The negative regulation of TLR responses by BCAP may be beneficial to the host in limiting macrophage responses to infection and in preventing chronic inflammatory or autoimmune disorders. Therefore, BCAP provides a potential new target for designing therapeutic approaches to treat inflammation or sepsis.

Methods

Mice. We purchased C57BL/6 mice from Charles River Laboratories. BCAP-deficient mice lack (25) the p85α subunit (p85α−/−) gene (25) were backcrossed to C57BL/6 mice for nine generations. Syk−/− fetal liver chimeras were generated as previously described (27). All experiments and animal care procedures were performed in accordance with protocols approved by the Institutional Animal Care and Use Committees at Benaroya Research Institute; Fox Chase Cancer Center; and the University of California, San Francisco.
Macrophage Preparation. BM-derived macrophages were made as described (28).

TLR Stimulation and Cytokine Measurement. For ELISA, day 5 BM-derived macrophages were plated in a 96-well tissue plate (5 x 10^5 cells per well) overnight. Titrations of TLR stimuli were added for 16 h as follows: Salmonella minnesota R595 LPS (List Biological Laboratories), CpG DNA (ODN1826; Invivogen), and Imiquimod (Invivogen). The concentration of TNF, IL-6, IL-12 p40, and IL-10 in supernatants from triplicate wells was measured with ELISA (eBioscience). For measurement of intracellular TNF and IL-12 p40 by flow cytometry, 2 x 10^6 macrophages were plated in 24-well non–TC-treated plates overnight and then stimulated for 6 h with CpG DNA in the presence of Brefeldin A (10 μg/mL) for the final 2 h. Macrophages were blocked with 2.4G2 for 10 min and fixed in 4% paraformaldehyde (w/vtvl), followed by permeabilization using Perm/Wash buffer (BD Bioscience). Staining for intracellular TNF and IL-12 p40 was performed using Pacific blue-labeled anti-TNF antibody and AlexaFluor 647-labeled anti–IL-12 p40 (eBioscience). Cells were analyzed by flow cytometry using an LS28 (BD Bioscience) and analyzed by FlowJo software (TreeStar).

Retroviral Transduction of Macrophages. Generation of VSVG-pseudotyped retroviruses and infection of macrophages were as described (28). Retroviral constructs were in the pMSCVires vector, in which the cDNA is followed by an IRES-eGFP to identify infected cells, and included control empty vector, BCAP WT, and a mutant BCAP in which the four tyrosines in the pI3K p85 binding motifs have been changed to phenylalanine (23).

Immunoprecipitation and Western Blot Analysis. Macrophages were activated with 1 ng/mL LPS or recombinant mouse TNF (Peprotech) and lysed at the indicated times in lysis buffer containing 1% Triton X-100, protease inhibitors (mammalian protease inhibitor mixture; Sigma), and sodium orthovanadate (1 mM; Sigma). For immunoprecipitation, day 6 macrophages were lysed using lysis buffer (50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.25% sodium deoxycholate, 1 mM PMSF, 1 mM sodium orthovanadate and protease inhibitor (Sigma)). Lysates were sequentially incubated with anti-BCAP monoclonal antibody (16) and protein A-agarose, and then eluted with 1× SDS sample buffer (Invitrogen). For measurement of intracellular protein extraction, macrophages were removed from plates, resuspended in media, and stimulated with 1 ng/mL LPS for indicated times. Cytosolic and transmembrane proteins were extracted with a ProteoExtract Transmembrane protein extraction kit (Novagen). Cells were resuspended in Extraction Buffer 1 for cytosolic protein fraction extraction, and Extraction Buffer 2A was used subsequently to extract the membrane protein fraction. BCAP was immunoprecipitated from both fractions as described above. Lysates or immunoprecipitates were separated by Tris-bis SDS/PAGE gels (Invitrogen), transferred to PVDF (Millipore) membrane, and detected by the indicated antibodies and the Immobilon chemiluminescence system (Millipore). Antibodies for Western blotting were used specific for phosphorylated and nonphosphorylated Akt, p38 MAPK, p44/42 ERK and JNK, PI3K p85, IκBα, and pan-Cadherin (all from Cell Signalling); phosphotyrosine (4G10; Millipore); and anti–GAPDH (Trevigen).

In Vivo LPS Treatment. Mice were injected with 1 μg of Escherichia coli 055: B5 LPS (Sigma) in PBS. At the indicated times, a sample of blood was taken and plasma IL-12 p40 was determined by ELISA.

Statistical Analysis. The Student’s unpaired t test was used in Figs. 1 and 3, and one-way ANOVA with Bonferroni’s multiple comparison test was used in Fig. 4 as determined using Prism 5 software (GraphPad Software).

ACKNOWLEDGMENTS. We thank Dr. Tomohiro Kurosaki for providing retroviral BCAP plasmids and BCAP-deficient mice and members of the J.A.H. laboratory, Dr. Daniel Campbell, Dr. Steve Ziegler, and Dr. Mary Beth Humphrey for helpful discussions. This study was supported by National Institutes of Health Grant R01AI073441, National Institutes of Health American Recovery and Reinvestment Act Supplement R01AI073441S1, and Department of Defense Grant W81XWH-10-1-0149, as well as an Investigator Award from the Cancer Research Institute (to J.A.H.), National Institutes of Health Grants R01CA083859 and R01CA100226 (to K.S.C.), and Grants R01AI65495 and R01AI68150 (to C.A.L.).
Hyaluronan and versican in the control of human T-lymphocyte adhesion and migration

Stephen P. Evanko, Susan Potter-Perigo, Paul L. Bollyky, Gerald T. Nepom, Thomas N. Wight

Benaroya Research Institute, Seattle, WA 98101, United States

A R T I C L E   I N F O

Article history:
Received 11 May 2011
Received in revised form 10 October 2011
Accepted 31 October 2011

Keywords:
Hyaluronan
Versican
Lymphocyte
Migration
Myofibroblast
Inflammation

A B S T R A C T

The ability of lymphocytes to migrate freely through connective tissues is vital to efficient immune function. How the extracellular matrix (ECM) may affect T-cell adhesion and migration is not well understood. We have examined the adhesion and migration of activated human T-lymphocytes on ECM made by fibroblast-like synovocytes and lung fibroblasts. These cells were minimally interactive until treated with a viral mimetic, Poly I:C. This treatment promoted myofibroblast formation and engendered a higher-order structured ECM, rich in versican and hyaluronan, to which T-cells avidly adhered in a hyaluronidase-sensitive manner. This Poly I:C-induced matrix impeded T-cell spreading and migration on and through synovocyte monolayers, while hyaluronidase treatment or adding versican antibody during matrix formation reversed the effect on T-cell migration. Hyaluronidase also reversed the spread myofibroblast morphology. These data suggest that the viscous hyaluronan- and versican-rich matrix binds and constrains T-lymphocytes. Using purified matrix components and solid state matrices of defined composition, we uncovered a role for versican in modulating hyaluronan-T-cell interactions. Versican prevented T-cell binding to soluble hyaluronan, as well as the amoeboid shape change on hyaluronan-coated dishes and T-cell penetration of collagen gels. Together, these data suggest that hyaluronan and versican play a role in T-cell trafficking and function in inflamed tissues.

1. Introduction

The ability of T-cells to adhere and migrate through connective tissue extracellular matrix (ECM) is vital to efficient immune responses (Korpos et al., 2009; Sorokin, 2010). T-cell migration is a multi-step process mediated by a complex assortment of integrins, matrix metalloproteases and other cell surface receptors, such as CD44, whose interactions initiate bidirectional signaling pathways (Denucci et al., 2009; Johnson and Ruffell, 2009). Among other effects, these signals result in T-cell activation and cytoskeleton rearrangements that are integral to T-cell adhesion and migration. When T-cells adhere to surfaces or tissues they usually adopt a “crawling” or “spreading” amoeboid morphology characterized by a broad lamellipodium at the leading edge and a handle-like protrusion or uropod at the rear. Cell scaffold-mediated migration strategies occur in lymph nodes, and it is likely that leukocytes move along stromal cells as part of their surveillance function in other tissues (Friedl and Weigelin, 2008). The transition from a rounded morphology to the amoeboid shape allows lymphocytes to squeeze through narrow spaces and move on collagen without reliance on matrix metalloproteases (Wolf et al., 2003). CD44 is thought to be important to crawling morphology and has been implicated in successful interstitial navigation of killer T-cells and maintenance of stable migratory polarity (Mrass et al., 2008).

The ECM components that partner with cell-surface receptors at sites of inflammation are less well understood. This is because these molecules are dynamic, complex and difficult to study in isolation. Two relatively well characterized ECM components implicated in leukocyte adhesion are hyaluronan and versican. Hyaluronan is an ECM glycosaminoglycan that serves as a ligand for CD44 and is produced in connective tissues during inflammation in a number of contexts (Day and de la Motte, 2005). Versican is a chondroitin sulfate proteoglycan that aggregates with hyaluronan, and modulates cellular adhesion (Yamagata et al., 1989; Yamagata and Kimata, 1994; Ernst et al., 1995). Hyaluronan and versican are primary constituents of the cell coat (also known as the pericellular matrix or glycoalyx) of fibroblasts, myofibroblasts, smooth muscle cells and other cell types, and participate in the regulation of cell motility, proliferation, and myofibroblast differentiation (Evanko et al., 1999; Toole, 2004; Evanko et al., 2007; Meran et al., 2007; Hattori et al., 2011). Versican is known to have a barrier/guidance function in neural crest migration and axonal growth (Landolt et al., 1995; Dutt et al., 2006). However, the influence of these ECM components on lymphocyte adhesion and migration is not well understood.

Abbreviations: ECM, extracellular matrix; Poly I:C, polyinosine-polycytidylic acid; HMWHA, high molecular weight hyaluronan; b-HABP, biotinylated hyaluronan binding protein; nTreg, natural T-reg; PBMC, peripheral blood mononuclear cell; ER, endoplasmic reticulum; HLFs, human lung fibroblasts; HFLS, human fibroblast-like synovocytes.

* Corresponding author at: Benaroya Research Institute, 1201 9th Ave, Seattle, WA 98101-2795, United States. Fax: +1 206 342 6567.

E-mail address: twight@benaroyaresearch.org (T.N. Wight).

0945-053X/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.matbio.2011.10.004
During chronic inflammation in both lung and synovial tissues, fibrosis and accumulation of myofibroblasts follow the accumulation of complex crosslinked hyaluronan matrices (Day and de la Motte, 2005; Kasperkowitz et al., 2005; Westergren-Thorsson et al., 2010), and this can be repeated in multiple inflammatory events. Thus, the fibroblast milieu may play a role in modulating inflammatory cell function, trafficking, and chronicity of inflammation. Inflammatory stimuli, such as viruses, viral mimics and inducers of endoplasmic reticulum (ER) stress, are known to induce production of adhesion, higher order hyaluronan- and versican-rich cable structures by smooth muscle cells and fibroblasts (de la Motte et al., 1999; Majors et al., 2003; Wang and Hascall, 2004; Selbi et al., 2006; Evanko et al., 2009; Potter-Perigo et al., 2010), and there is evidence of similar matrices in vivo (de la Motte et al., 1999). We recently reported that the viral mimic polyinosine:cytidylic acid (Poly I:C), a ligand for TLR3, promotes the deposition of versican in the hyaluronan cables in lung fibroblasts (Potter-Perigo et al., 2010). Others have found that activation of TLR3 with Poly I:C can augment myofibroblast formation via production of TGF-β (Sugita et al., 2009). Monocyte adhesion to the hyaluronan cables of fibroblasts and other cells is hyaluronan-dependent, as shown by abolishment using hyaluronidase, which destroys the pericellular cable and coat structures. This adhesion is also partly dependent on cell surface CD44 (de la Motte et al., 1999), as well as versican that is present in the matrix (Potter-Perigo et al., 2010). Although T-lymphocytes are known to express CD44 and bind hyaluronan (Lesley et al., 1994; Bollyky et al., 2007; Ruffell and Johnson, 2008; Bollyky et al., 2008a), the role of hyaluronan-based cable structures in T-cell adhesion and function is not well understood. Because hyaluronan is known to promote migration of several cell types, we hypothesized that hyaluronan cable structures formed by fibroblasts in vitro could provide a traction mechanism, thus promoting and supporting migration of lymphocytes.

In this study, we evaluate T-lymphocyte adhesion and migratory behavior on an inflammatory ECM that is rich in hyaluronan and versican made by fibroblasts in response to Poly I:C. We show that the retention of CD4+ T-cells by human lung fibroblasts and normal human synoviocytes is promoted by Poly I:C while migration is inhibited, and these effects are reversed by treatment with hyaluronidase and anti-versican antibody. To complement these studies with native, cell-derived matrices, we have also used defined synthetic matrices to evaluate the effect of hyaluronan and versican on T-cell migration. The hypothesis that hyaluronan-dependent, versican-rich cable structures would facilitate T-cell migration is not supported.

2. Materials and methods

2.1. Reagents

Pharmaceutical grade hyaluronan with molecular weights of 1.53 MDa and 200 kDa was provided by Genzyme (Cambridge, MA, USA). Streptomyces hyaluronidase was obtained from Sigma-Aldrich (St Louis, MO, USA). Collagen (type I, rat tail) was from BD Biosciences (Bedford, MA). Poly I:C was from Invivogen (San Diego, CA). Biotinylated hyaluronan binding protein (b-HABP) was prepared from cartilage as described (Underhill et al., 1993). Biotinylated hyaluronan was prepared as described (Hoare et al., 1993). Monoclonal anti-versican antibodies, 2B1 and 12C5, came from North Star Bioproducts (East Falmouth, MA), and the Developmental Studies Hybridoma Bank (University of Iowa), respectively. Monoclonal antibody to human smooth muscle α actin (clone 1A4) was from Dako North America, Inc. (Carpinteria, CA).

Versican was purified from bovine aorta by a combination of 4 M guanidinium HCl extraction, ion exchange and size exclusion chromatography, as described previously (Olin et al., 2001). The versican preparation was free of contaminants as assessed by SDS-PAGE and Coomassie blue and Alcian blue staining, and was endotoxin-free (<1.0 EU/μg) as assessed using a ToxinSensor™ LAL Endotoxin Assay Kit (GenScript Corp., Piscataway, NJ). The versican preparation bound specifically to biotinylated hyaluronan on ligand blots (Supplemental Fig. 1) and to versican specific antibodies on western blots and comprised the V0 and V1 isoforms (data not shown).

A portion of the versican preparation was biotinylated, repurified on a hyaluronan affinity column, and used in an enzyme-linked sorbent assay (ELSA) to assess the ability of 12C5 antibody to inhibit bovin-versican binding to hyaluronan-coated plates and to assess direct binding of versican to T-cells. The biotinylation of versican was done essentially as described for cartilage hyaluronan binding protein (Underhill et al., 1993), with slight modification. The trypsin step was omitted and versican was biotinylated in the presence of 100 μg/ml exogenous 200 kDa hyaluronan to preserve the binding site prior to putting it on the hyaluronan affinity column.

2.2. Human blood samples

Human peripheral blood mononuclear cell (PBMC) samples were obtained from healthy volunteers with informed consent, participating in a research protocol approved by the institutional review board of the Benaroya Research Institute at Virginia Mason (BRI, Seattle, WA, USA).

2.3. Isolation of leukocyte populations

Human PBMCs were prepared by centrifugation of peripheral blood over Ficoll–Hyphaque gradients. CD4+ T-cells were isolated using the Dynal CD4 Positive Isolation Kit (Invitrogen, Carlsbad, CA, USA) as per the manufacturer’s instructions. Purity of the resulting cell fractions was reliably 98% CD4+ by flow cytometry; anti-CD4 Ab (RPAT4), from BD Biosciences was used for this purpose. Cells were cultured in RPMI 1640 (Invitrogen) supplemented with 10% pooled human serum, 100 μg/ml penicillin, 100 U/ml streptomycin and 1 mM Na pyruvate (Invitrogen). CD4+ T-cells were activated with anti-CD3/28 coated beads (Invitrogen) in the setting of 100 IU of recombinant IL-2 (Chiron, Emeryville, CA) for 72 h prior to their use in binding studies and other assays.

2.4. Culture and Poly I:C treatment of fibroblasts

Human lung fibroblasts (HLFs) were derived from explants of the lung, following removal of both the pleura and parenchyma, and were a generous gift from Professor Ganesh Raghu, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle. The cells were isolated as described previously in accordance with approval from the institution’s human subjects review committee (Raghu et al., 1988). HLFs were maintained in DMEM high-glucose medium supplemented with 10% FBS (HyClone; Logan, UT), 1 mM sodium pyruvate, 0.1 mM non-essential amino acids, 0.43 mg/ml GlutMAX-1, and penicillin-streptomycin (penicillin G sodium, 100 U/ml, and streptomycin sulfate, 0.10 mg/ml; Invitrogen) at 37 °C in 5% CO2. Cells were passaged with trypsin-EDTA (0.05% trypsin and 0.53 mM tetradsodium EDTA) and were used for experiments between passages 9 and 17 after initial isolation.

Normal human fibroblast-like synoviocytes (HFLS) were purchased from Cell Applications Inc. (San Diego, CA) and grown in synoviocyte growth medium (Cell Applications). They were arrested in DMEM with 0.1% FBS and stimulated in synoviocyte growth medium with and without Poly I:C (20 μg/ml) for 20 h. HFLS were maintained in 5% CO2 at 37 °C and passaged with trypsin-EDTA as for HLFs. Hyaluronan and versican in the cell layers were measured by ELSA using biotinylated HABP and western blotting (2B1 antibody), respectively, as described previously (Potter-Perigo et al., 2010).

For imaging and immunohistochemistry, fibroblasts or synoviocytes were seeded on glass coverslips at 3.5 × 103/well in 6-well plates in 10% FBS DMEM or synoviocyte medium. After 24 h, cells were growth arrested for 48 h in medium containing 0.1% FBS, at which point the cells were...
nearly confluent. Following this period of serum deprivation, the cells tended to have very little hyaluronan on their surfaces and no cell coats by the particle exclusion assay (data not shown). Medium was then removed and cells were stimulated without or with Poly I:C (20 μg/ml) in the presence of 10% FBS to stimulate the formation of hyaluronan-based matrix cable structures (de la Motte et al. 1999) for 20 h. Alternatively, cells were sometimes seeded at 3.5×10^4/well in order to obtain sparse cultures to allow visualization of T-cells in warm up experiments. The fibroblast layers were washed with PBS and incubated with T-cells 0.5–1×10^5 at 4 °C in synoviocyte medium or RPMI containing 10% FBS. Following binding, the non-adherent T-cells were rinsed by immersion of the inverted coverslip in 200 ml of PBS using forceps (6 dips of 1 s duration).

Adhesion of calcine-labeled (Calcine AM, Invitrogen) T-cells to fibroblasts and synoviocytes was assayed in 96-well plates as described previously for monocyte adhesion (Potter-Perigo et al., 2010). Some fibroblasts were treated with Streptomyces hyaluronidase (0.66 U/ml) in the growth medium for 30 min at 37 °C prior to the adhesion assay.

2.5. Western analysis and ligand blotting of versican

For western and ligand blotting, versican was digested by chondroitin ABC lyase, applied to a gradient of 4–12% SDS-PAGE, and electrophoretically transferred to 0.2 μm nitrocellulose membranes (GE Healthcare, Piscataway, NJ) using a BioRad Transblot SD Semi-Dry Transfer Cell (BioRad, Hercules, CA) (Olin et al., 1999). The transferred proteins were then detected with the primary antibody to versican, ZB1 (North Star Bioproducts), and enhanced chemiluminescence (Western-Light Chemiluminescent Detection System) with CSPD proprietary luminescent substrate (Applied Biosystems, Foster City, CA). Bands were scanned and quantitated using NIH Image J. For ligand blots, to assess versican binding to biotinylated hyaluronan, 10 μg versican was electrophoresed under non-reducing and reducing conditions prior to transfer to nitrocellulose. Blot strips were incubated with biotinylated hyaluronan (prepared as described in Hoare et al., 1993). A control strip was preincubated with 500 μg/ml unlabeled hyaluronan.

2.6. Immunohistochemistry

Fibroblasts with bound T-cells on coverslips were fixed in acid-formalin-ethanol (3.7% formaldehyde-PBS, 70% ethanol, and 5% glacial acetic acid, all v/v) (Lin et al. 1997). Following rinsing in PBS, cells were stained for hyaluronan using b-HABP followed by either streptavidin–Alexa Fluor 488 or streptavidin–Texas Red in PBS containing 1% bovine serum albumin as previously described (Evanko et al., 1999). Versican was localized using monoclonal antibody ZB1 (Seikagaku Corp.; East Falls, PA) and photographs were acquired at a depth of 100 μm into the gel using a Leica ICL SP5 confocal microscope, 10× objective, and the number of lymphocytes that penetrated to within 50 μm of the coverslip was counted using a 20× objective with phase contrast optics and calibrated focusing. Alternatively, T-cell nuclei were stained with Topro-3 (Invitrogen) and photographs were acquired at a depth of 100 μm into the gel using a Leica ICL SP5 confocal microscope, 10× objective, and the number of penetrated cells counted with the aid of Image J. A minimum of 30 fields per condition, randomly selected from the central 1 cm² region of the coverslip were counted. One-way ANOVA with Tukey’s post test was performed as described above.

2.7. Time-lapse microscopy and determination of T-cell migration

CD4+ T-cells were applied to control and Poly I:C-treated synoviocyte monolayers in synoviocyte medium containing 10% FBS and 20 mM HEPES and allowed to settle for 15 min atop a microscope stage that was maintained at 37 °C. Sequential phase-contrast images were taken every 20 s for 20 min. Tracings of the migratory paths of 20 randomly selected lymphocytes from each condition were obtained with the aid of Image J. The net migration distance was used to calculate migration rate.

In some experiments, random migration through the matrix and monolayer in the Z-axis was assessed. Calcein-labeled T-cells (6×10^5 in 100 μl) were applied atop the synoviocytes and allowed to migrate for 20 min at 37 °C. Coverslips were fixed in 10% formalin for 30 min. Most of the T-cells bound and trapped by the matrix were well above the cell layer in a different focal plane which facilitated counting the number of migrated T-cells that had passed through the matrix and monolayer and were in focus at the level of the coverslip. The migrant cells were clearly discernible from the cells trapped well above. Some cultures were treated with Streptomyces hyaluronidase (1 U/ml in the culture medium) prior to adding the T-cells to assess the contribution of the matrix to migration through the monolayer. Thirty fields per condition were measured using the 20× objective. One-way ANOVA with Tukey’s post test was performed using GraphPad Prism version 5.03 for Windows, GraphPad Software, San Diego, CA, www.graphpad.com. The data are representative of three independent experiments.

2.8. T-cell penetration of collagen gels

Collagen gels (1 mg/ml, 100 μl in DMEM) without or with added hyaluronan (100 μg/ml) or versican (5 or 20 μg/ml) or versican that was pre-treated with Chondroitin ABC lyase, were cast atop flame-sterilized 22 mm coverslips. Control additives included chondroitin sulfate and Chondroitin ABC lyase (North Star Bioproducts) alone. In some experiments, chemokines CCL19 (100 ng/ml) and CCL21 (500 ng/ml) were included in the gels to enhance T-cell migration. Care was taken to spread the 100 μl collagen solutions over the entire coverslip. After polymerization of the collagen gels for 30 min at 37 °C, activated lymphocytes (2×10^5) were applied to the upper surface of the gel in 10 μl of RPMI medium containing 10% FBS and cells were allowed to penetrate the collagen for 3 h at 37 °C. Coverslips were fixed with formalin and the number of lymphocytes that penetrated to within 50 μm of the coverslip was counted using a 20× objective with phase contrast optics and calibrated focusing. Alternatively, T-cell nuclei were stained with Topro-3 (Invitrogen) and photographs were acquired at a depth of 100 μm into the gel using a Leica ICL SP5 confocal microscope, 10× objective, and the number of penetrated cells counted with the aid of Image J. A minimum of 30 fields per condition, randomly selected from the central 1 cm² region of the coverslip were counted. One-way ANOVA with Tukey’s post test was performed as described above.

2.9. Two dimensional coatings and T-cell morphology

24-well culture dishes were coated overnight with 100 μg/ml of BSA-conjugated hyaluronan, rinsed with PBS, and then followed by PBS alone or with versican or chondroitinase-treated versican (20 μg/ml) for 1 h. Lymphocytes were applied and allowed to settle for 20–30 min. Cells were fixed and the proportions of amoeboid versus round cells were quantitated from photographs.

2.10. Soluble HA and versican binding studies

FITC-labeled hyaluronan (Sigma) and unlabeled versican were incubated together for 1 h at 37 °C before addition to T-cells. In the meantime, activated human T-cells (2×10^5) were washed and resuspended in 200 μl of RPMI 1640 not supplemented with serum. 4-methylumbelliferone (4-MU) from Sigma was added to the cells at 50 μg/ml also for 1 h. The FITC-labeled hyaluronan was then added (for a final concentration of 50 μg/ml) together with the indicated concentration of versican. The FITC-labeled hyaluronan and the T-cells were incubated for 1 h at 37 °C prior to analysis. Direct binding of biotinylated versican (5 μg/ml) to T-cells pretreated with 4MU and hyaluronidase was similarly assessed. Data were acquired on a FACSCaliber (Becton
Dickinson). Analysis was performed using FlowJo (Tree Star, Inc.) software.

3. Results

3.1. Effect of Poly I:C on ECM production

Poly I:C had similar effects on ECM production by synoviocytes as was previously reported for lung fibroblasts (Potter-Perigo et al., 2010). In the Poly I:C-treated synoviocytes, hyaluronan was significantly increased in the cell layer by 8-fold (8.22 ± 2.34 fold, p < 0.01), and contained a higher proportion of HMWHA as measured by gel filtration chromatography. As measured by western blotting and densitometry, versican was increased 1.77-fold compared to controls, (1.77 ± 0.22, p < 0.01).

3.2. T-cell adhesion to fibroblast and synoviocyte matrix

Compared to untreated control fibroblasts, several-fold more activated human CD4+ T-lymphocytes bound to Poly I:C-treated HLFs or...
fibroblast-like synoviocytes (Fig. 1). Treatment of the fibroblast monolayers with *Streptomyces* hyaluronidase abolished most of the lymphocyte adhesion to the Poly I:C-induced matrix, indicating that the adhesion was hyaluronan-dependent. Fig. 1 also shows phase contrast images of the T-cells bound to the fibroblast cell layers and the effect of hyaluronidase treatment. In lung fibroblasts, the bound T-lymphocytes were typically arrayed along cable structures (Fig. 1C), as has been reported previously for binding of monocytes to smooth muscle cells or lung fibroblasts (de la Motte et al., 1999; Potter-Perigo et al., 2010). In contrast, the T-cells adhering to the synoviocyte matrix tended to form large clumps, while the extremely long cable structures were less apparent (Fig. 1H). T-cell subsets, such as CD4+ CD25+ Treg, or TH1 and TH2 cells, were all capable of binding to the matrix of Poly I:C-treated fibroblasts in a hyaluronan-dependent manner (data not shown). Therefore, we limited the remainder of our studies to activated CD4+ T-cells.

### 3.3. Versican and hyaluronan localization in adhesive matrix

Versican and hyaluronan were detected in the adhesive matrix of both fibroblast types, as shown by immunohistochemistry (Fig. 2). Following Poly I:C treatment of the fibroblasts and synoviocytes, most of the T-cells were bound in the matrix some distance (roughly 50–100 μm) above the fibroblast or synoviocyte cell layer (Fig. 2A), indicating that copious amounts of matrix were produced in response to the stimulus. Consistent with the phase contrast images, the hyaluronan- and versican-enriched matrix was present in the form of long cables in the lung fibroblasts, while in the synoviocytes, the hyaluronan- and versican-rich matrix appeared as more of a dense mat or lawn and occasional broad cables, to which clumps of T-cells were bound. The synoviocyte matrix tended to have more intense versican staining than the lung fibroblasts as shown by the diffuse green signal over the entire cell layer in Fig. 2C and D. Controls for staining included digestion of the cells with *Streptomyces* hyaluronidase, which abolished staining of the matrix with the hyaluronan binding probe, and normal mouse IgG, which was also negative (data not shown).

### 3.4. T-cell migration and interactions with fibroblasts

Beyond adhesion, the immediate functional consequence of T-cells encountering a matrix rich in hyaluronan and versican is not clear. We hypothesized that the cable structures made by Poly I:C-treated lung fibroblasts could facilitate migratory behavior by the T-cells. However, following warm-up to physiological 37 °C, time-lapse microscopy showed no evidence for directional migration of T-cells along the hyaluronan cables. Instead, the T-cells aligned along the cables remained immobile and spherical, and eventually dispersed randomly and settled down onto the culture surface or fibroblast monolayer (Fig. 3A, B). This suggests that the cable structures made by lung fibroblasts in vitro do not support directional migration of T-cells under these conditions, and that the T-cells may, at least partially, degrade the matrix after binding. The cells tended to transition to the amoeboid shape only when they settled onto the culture surface (Fig. 3B, upper arrow). It was also evident that the pericellular matrix around the fibroblast acted as an exclusion barrier to the lymphocytes, preventing them from directly contacting the fibroblast surface in some places (Fig. 3C). This exclusion phenomenon using lymphocytes is similar to the exclusion of fixed erythrocytes in the widely used particle exclusion assay, used to identify pericellular hyaluronan coats (Evanko et al., 2007). T-cells were generally much more motile than the fibroblasts. Various kinds of direct physical interactions between the cell types were also noted. For example, T-cells crawling on the control fibroblast surfaces were sometimes deflected to change direction by microvilli on the fibroblasts. In other sequences, T-cells were physically pulled into tight clusters by the fibroblast, such as during occasional gross movements where the fibroblast retracted long cellular processes and matrix to which the T-cells had adhered (Supplemental video 1).

![Fig. 2. T-cells bind to hyaluronan- and versican-rich matrix. Following binding of human T-cells, lung fibroblasts (A, B) and synovial fibroblasts (C, D) were fixed with acid/alcohol/formalin and stained for hyaluronan (red) using bHABP and versican (green) using monoclonal antibody (2B1). Nuclei were counterstained with DAPI. Bars equal 50 μm in all images.](image-url)
We performed additional time-lapse studies to assess T-cell migration on monolayers of synoviocytes. (Supplemental videos 2 and 3 show T-cells on control and Poly I:C-treated synoviocytes, respectively). Given that hyaluronan tends to promote the migration of several cell types (Evanko et al., 2007), we also hypothesized that the interaction with the matrix would lead to faster migration of the T-cells. However, most of the T-cells remained clustered in the dense matrix of Poly I:C-treated synoviocytes and failed to disperse and migrate over the 20-min period after encountering the matrix. Many of the T-cells attempted to polarize by extending pseudopods in various directions, but appeared to be unable to gain traction or free themselves from the matrix. In contrast, the T-cells tended to crawl more directly on the surface of control synoviocytes, employing a cell scaffold-mediated migration strategy, and easily worked their way between and under the synoviocyte margins by amoeboid shape change. Tracings of the migratory paths of 20 representative T-cells on the ECM of control and Poly I:C-treated synoviocytes are shown in Fig. 4A. The rate of T-lymphocyte migration on the Poly I:C-induced matrix (1.69 + 0.22 μm/min) was significantly decreased by about 55% compared to the migration rate on control synoviocyte matrix (4.47 + 0.37 μm/min) (Fig. 4B). Correspondingly, the number of persistent T-cell clusters was significantly increased on the Poly I:C-induced matrix (Fig. 4C).

To assess migration along a vertical axis, the number of T-cells that passed through the synoviocyte monolayer to the level of the coverslip was measured after a 20-min warm up period. Despite the increased binding potential of the matrix, the number of T-cells that migrated through the matrix and monolayer to the coverslip was significantly decreased in the Poly I:C-treated synoviocytes and this was reversed by hyaluronidase treatment (Fig. 5A). In addition, the proportion of the total bound T-cells with the amoeboid morphology was also diminished in the Poly I:C-treated cultures (Fig. 5B). Pretreatment of the matrix with hyaluronidase before adding the T-cells promoted the amoeboid shape in the T-cells and abolished the inhibitory effect of the Poly I:C-induced matrix on T-cell penetration to the coverslip, indicating that hyaluronan integrity or its retention of versican may be crucial to T-cell arrest and slower penetration of the fibroblast layer. Incubation of the synoviocytes with an antibody to the versican N-terminus (12C5) during the period of matrix formation also partially abolished the ability of the Poly I:C-induced matrix to impede T-cell migration to the coverslip (Fig. 5C). This antibody had no effect on the amount of hyaluronan in the cell layer (data not shown). Although T-cell adhesion to the Poly I:C-induced matrix was increased, these results suggest that, rather than facilitating migration, the matrix may prevent...
polarization, promote rounding and constrain T-cell migration, and that versican may be one component that is partially responsible for this effect.

3.5. Poly I:C drives myofibroblast morphology

Treatment of HFLS (Fig. 6) or lung fibroblasts (data not shown) with Poly I:C also caused a dramatic alteration in the morphology of these cells. The cells became much more spread and flattened, particularly around the nucleus (Fig. 6A). Digestion with Streptomyces hyaluronidase for 30 min caused a partial reversion of the synoviocytes back toward the control cell morphology. In addition, smooth muscle α actin was detected in Poly I:C-treated synoviocytes, but not in control cells (Fig. 6B). These data are consistent with previous studies showing increased stress fiber formation in lung fibroblasts (Evanko et al., 2009), and augmented myofibroblast differentiation by activation of TLR3 with Poly I:C (Sugiura et al., 2009).

3.6. Versican inhibits T-lymphocyte migration

In order to simplify assessment of the role of versican and hyaluronan in T-cell function, we also studied the interaction of T-lymphocytes with purified matrix components. In solution binding experiments, versican partially inhibited the binding of fluorescein-labeled hyaluronan to activated CD4+ T-cells, as assessed by flow cytometry (Fig. 7A, B). The inhibition of hyaluronan binding to T-cells required preincubation of the versican with the hyaluronan, suggesting that it is the interaction of versican with hyaluronan that is important for the inhibition, rather than direct competition of versican with hyaluronan for CD44 or another receptor on the T-cells. We were unable to demonstrate binding of biotinylated versican directly to 4MU-treated T-cells (Supplementary Fig. 2) nor to untreated T-cells (data not shown). Consistent with earlier studies (Bollyky et al., 2007), the CD44 blocking antibody, BU75 (Ancell Corp., Bayport, MN), only partially inhibited binding of FITC-hyaluronan to T-cells (Supplemental Fig. 2).

When T-cells were plated in dishes coated with hyaluronan alone, there was a significant increase in the proportion of cells with an amoeboid shape compared to tissue culture plastic (Fig. 8). Preincubation of the hyaluronan-coated dishes with versican or versican core protein caused a significant reduction in the proportion of T-cells with the amoeboid shape compared to hyaluronan alone. These data indicate that versican may interrupt adhesion of T-cells to plate-bound hyaluronan, promote rounding, and potentially influence the migratory ability of the T-cells.

To assess the contribution of the matrix components on T-cell migration in a three dimensional system, collagen gels were cast on coverslips without or with the inclusion of purified versican alone or in combination with hyaluronan, as well as the versican core protein and T-cell penetration into the gels over a 3-hr period was measured (Fig. 9). Hyaluronan alone significantly promoted random T-cell penetration into the collagen gels in 4 out of 7 experiments (two examples are given in Fig. 9A, B). Versican and versican core protein significantly inhibited T-cell penetration into the collagen gels (Fig. 9B). Neither chondroitin sulfate nor the chondroitin ABC lyase enzyme used to generate the versican core protein had an effect on T-cell penetration into the collagen (Fig. 9B). Similar results were seen when versican or hyaluronan was added to the gels after the collagen had polymerized, suggesting that the diminished penetration by randomly migrating T-cells was not due to an effect of the additives on collagen polymerization or pore size (data not shown). When chemokines CCL19 and CCL21 were included in the gel to increase T-cell migration, the promotional effect of hyaluronan alone was lost, while versican alone, or added with hyaluronan, significantly reduced T-cell penetration into the collagen (Fig. 9C).

4. Discussion

The present study examines the effects of T-lymphocytes encountering matrix that is rich in hyaluronan and the hyaluronan-binding proteoglycan, versican and derived from treatment of lung fibroblasts and synoviocytes with a viral mimetic that is known to promote myofibroblast formation and hyaluronan cable formation. Others have previously shown that monocytes adhere to hyaluronan- and versican-rich cable structures induced by Poly I:C, and this adhesion is partly dependent on CD44 (de la Motte et al., 1999; Majors et al.,
Wang and Hascall, 2004; Selbi et al., 2006; Evanko et al., 2009b; Potter-Perigo et al., 2010). Our results extend these observations to activated CD4+ T-lymphocytes.

Unexpectedly, increased binding of T-lymphocytes to the hyaluronan-and versican-rich cables made by lung fibroblasts in response to Poly I:C did not translate into directional migration along the cables.

Fig. 6. Myofibroblast morphology and smooth muscle α actin expression is induced by Poly I:C. A. Phase contrast views of control (left panel) and Poly I:C-treated synoviocytes before and after digestion with Streptomyces hyaluronidase (middle and right panels) as indicated. B. Smooth muscle α actin staining in control and Poly I:C-treated cells. Bars in all images equal 100 μm.

Fig. 7. Versican addition inhibits T-cell binding to FITC-labeled HMWHA. A. Histogram demonstrating FITC-HA binding to T-cells with and without preincubation of the FITC-HA with increasing amounts of versican or an equivalent volume of PBS. FITC-HA binding is shown on a logarithmic scale. Data are representative of five experiments. B. Fold change in mean fluorescence index as a measure of FITC-HA binding. CD4+ T-cells were activated with αCD3/28 coated beads and IL-2 for 4 days and washed prior to treatment with FITC-HA with or without versican at the indicated concentrations. In both A and B, FITC-HA binding was assessed by flow cytometry after cells had been washed to remove non-adherent FITC-HA.

Fig. 8. Versican blocks amoeboid shape change induced by hyaluronan. A–D, phase contrast images of T-cells plated on A, tissue culture plastic; B, hyaluronan-coated surface, C, hyaluronan-coated dish followed by versican or D, versican core protein. E, Quantitation of the number of amoeboid cells. *p<0.001 compared to plastic. *p<0.001 compared to hyaluronan alone.
It was not due to an effect of any residual Poly I:C in the cultures. The structural integrity of hyaluronan-based matrix was vital, and that after hyaluronidase digestion of the matrix, indicating that the amoeboid shape was increased and the number of T-cells with the amoeboid shape was increased. Instead, the matrix promoted clustering, rounding and arrest of the lymphocytes and thus may interfere with polarization. The matrix also constrained T-cell migration on the surface and to the underside of the synoviocyte monolayer. T-cell penetration of the monolayer and the number of T-cells with the amoeboid shape was increased after hyaluronidase digestion of the matrix, indicating that the structural integrity of hyaluronan-based matrix was vital, and that it was not due to an effect of any residual Poly I:C in the cultures. In addition to the reversion to normal fibroblast morphology (i.e., less spread) by hyaluronidase treatment reported here, hyaluronidase digestion has been shown to induce the retraction of fine microvillus protrusions that are involved in pericellular matrix formation in fibroblasts and other cells (Kultti et al., 2006) and this may also facilitate T-cells passing through the monolayer. These data also suggest that factors which impact local production of hyaluronidases may be important in the transition from T-cell adhesion to polarized migration.

Inflammation can result in a mucinous ECM/extracellular fluid environment where high viscosity, negative charge density and other attributes of the proteoglycans may contribute to alterations in leukocyte retention and rate of migration, and this ECM tends to precede fibrosis. Hyaluronan and versican have both been shown to modulate differentiation of myofibroblasts (Hattori et al., 2011; Meran et al., 2007; Webber et al., 2009). During chronic inflammation in both lung and synovial tissues, fibrosis and accumulation of myofibroblasts tend to follow the accumulation of complex hyaluronan matrices (Day and de la Motte, 2005; Kasperkovitz et al., 2005; Westergren-Thorsson et al., 2010), and this can be repeated in multiple inflammatory events. Our data suggest that the milieu of the fibroblast or synoviocyte may modulate inflammatory cell migration and surveillance.

Previous studies have shown a selective association of myofibroblasts with high inflammation synovial tissues (Kasperkovitz et al., 2005), and fibrosis in lung tissue is common following chronic inflammation (Westergren-Thorsson et al., 2010). Our results are consistent with previous studies showing that Poly I:C augmented myofibroblast formation (Sugiuira et al., 2009) as well as stress fibers and microvillous protrusions in HLF (Evanko et al., 2009). Together these results imply that this ECM of myofibroblasts induced by a viral mimetic may inhibit the migration of lymphocytes, partly through a trapping effect. In a study of lymphocyte migration in infected brain, parasite-specific CD8 + T-cells migrated on a system of inflammation-associated reticular fibers of unknown composition visualized by second harmonics (Wilson et al., 2009). The lymphocytes exhibited various other behaviors such as clustering, or rapid migration followed by constraint and rounding, but it was not clear if hyaluronan and versican, known matrix components in brain (Dours-Zimmermann et al., 2009), may have influenced migratory behavior in these studies.

Lymphocyte penetration of the synoviocyte monolayer was increased in Poly I:C-treated cultures when an antibody to an epitope in the N-terminal globular domain of versican (12C5) was added during the period of matrix formation, suggesting that versican's interaction with hyaluronan may be important for the ability of the matrix to impede T-cell migration. This antibody was previously shown to inhibit monocyte binding to the matrix of lung fibroblasts (Potter-Perigo et al., 2010). However, the 12C5 antibody was unable to block the binding of biotinylated versican to hyaluronan-coated dishes (data not shown), suggesting that it may work by other mechanisms, such as interfering with aggregate stability or versican turnover. More experiments will be required to understand how this antibody is working.

In addition, the fibroblast cell coat acted as a barrier to direct contact between T-cells and the fibroblasts, potentially impairing cell scaffold-mediated migration strategies. This, together with time-lapse video data, suggests that T-cell migration may be more efficient when direct contact is made between lymphocytes and stromal cells. The more flattened and adherent nature of myofibroblasts may also help to limit the potential of the T-cells to slip between cell margins. Overwhelming amounts of the matrix may prevent proper T-cell polarization. Further study will be required to better understand the roles of hyaluronan, versican, and the participation of myofibroblasts in the inflammatory process.

Using purified matrix components, we found that versican (V0, V1) partially prevented the binding of soluble hyaluronan to T-lymphocytes. Versican added to plate-bound hyaluronan also inhibited the amoeboid shape change induced by the hyaluronan coating alone. In a three-dimensional system, we found that addition of versican or versican core protein alone, or in combination with hyaluronan, blocked T-cell migration into collagen gels. Earlier studies have found that versican can have both adhesive and antiadhesive functions (Yamagata et al., 1989; Yamagata et al., 1993; Ernst et al., 1995) and this depends in part on the geometry of...
the assay system. These differences may also reflect the presence of higher order hyaluronan structures, such as cables. Others have shown that versican V0 and the core protein inhibited or guided migration of neural crest cells on fibronectin by interfering with substrate adhesion (Dutt et al., 2006). Addition of aggregating proteoglycans or their G1 domains to hyaluronan can affect length and conformation of hyaluronan (Morgelin et al., 1995) and material properties, such as viscosity (Mow et al., 1995) and material properties, such as viscosity (Mow et al., 1995). Excess amounts of hyaluronan binding domains of the proteoglycan can destabilize hyaluronan networks (Brewton and Mayne, 1992; Morgelin et al., 1995). Thus the effects of versican on the interaction of hyaluronan with the T-cell surface may be quite complex. Previous studies have shown that versican V3 expression and CD44 silencing in melanoma cells blocked CD44-dependent hyaluronan internalization, leading to an accumulation of hyaluronan in the pericellular matrix and to changes in cell migration on hyaluronan (Hernandez et al., 2010). Our results suggest there may be a role for versican V0, V1 in modulating effects of hyaluronan on T-cell adhesion and migration.

The physiologic relevance of these findings extends beyond T-cell trafficking. Hyaluronan can play concomitant pro-tolerogenic or proinflammatory roles depending on its size and amount (Noble, 2002; Day and de la Motte, 2005). Several studies have looked at the influence of hyaluronan on leukocyte function. For example, we have previously reported that high molecular weight hyaluronan promotes the suppressive effects of CD4 + CD25 + regulatory T-cells in part through production of the immunosuppressive cytokine IL-10 (Bollyky et al., 2007; Johnson, P.Y., Wight, T.N., 2009). Organization of hyaluronan and versican in the extracellular matrix of human fibroblasts treated with the viral mimetic poly I:C (V. Higgins, 1990). Immunol. 43, 109–110.


Reversal of Diabetes in Mice with a Bioengineered Islet Implant Incorporating a Type I Collagen Hydrogel and Sustained Release of Vascular Endothelial Growth Factor


*Benaroya Research Institute at Virginia Mason, 1201 Ninth Ave., Seattle, WA 98101, U.S.A.
†Virginia Mason Medical Center, 1100 Ninth Ave., Seattle, WA 98101, U.S.A.

Running head: BIOENGINEERED ISLET IMPLANT

Corresponding Author:
John A. Gebe, Ph.D.
Benaroya Research Institute at Virginia Mason
1201 Ninth Ave.
Seattle, WA 98101, U.S.A.
Telephone: 206.287.5612
Fax: 206.342.6581
Email: jgebe@benaroyaresearch.org
ABSTRACT

We have developed a bioengineered implant (BI) to evaluate strategies to promote graft survival and function in models of islet transplantation in mice. The BI, sized for implantation within a fold of intestinal mesentery, consists of a disk-shaped, polyvinyl alcohol sponge infused with a type I collagen hydrogel that contains dispersed donor islets. To promote islet vascularization, the BI incorporates a spherical alginate hydrogel for sustained release of vascular endothelial growth factor (VEGF). BIs that contained 450–500 islets from syngeneic (C57Bl/6) donors and 20 ng of VEGF reversed streptozotocin (STZ)-induced diabetes in 100% of mice (8/8), whereas BIs that contained an equivalent number of islets, but which lacked VEGF, reversed STZ-induced diabetes in only 62.5% of mice (5/8). Between these “+VEGF” and “–VEGF” groups, the time to achieve normoglycemia (8–18 days after implantation) did not differ statistically; however, transitory, post-operative hypoglycemia was markedly reduced in the +VEGF group relative to the –VEGF group. Notably, none of the mice that achieved normoglycemia in these two groups required exogenous insulin therapy once the BIs began to fully regulate levels of blood glucose. Moreover, the transplanted mice responded to glucose challenge in a near-normal manner, as compared to the responses of healthy, non-diabetic (control) mice that had not received STZ. In future studies, the BIs described here will serve as platforms to evaluate the capability of immunomodulatory compounds, delivered locally within the BI, to prevent or reverse diabetes in the setting of autoimmune (type 1) diabetes.

Key words: Diabetes; Islet; Bioengineered Implant; Collagen; VEGF; Mouse
INTRODUCTION

Type 1 diabetes (T1D) is a late-stage manifestation of an autoimmune-mediated loss of insulin-secreting pancreatic β-cells that results in the inability to maintain blood glucose homeostasis (28,47). Current options for the treatment of T1D are: 1) daily insulin therapy (DIT), 2) transplantation of the pancreas, either without the kidney (pancreas transplant alone – PTA) or with the kidney (simultaneous pancreas/kidney – SPK) (39), or 3) transplantation of isolated islets (36). While PTA and SPK procedures can restore glucose homeostasis, they involve major surgery and require lifelong immunosuppression, with the problem of recurrent autoimmunity (18,23,41). Moreover, these procedures can result in significant complications that include acute rejection, infection with cytomegalovirus (43), and technical failure as a result of vascular thrombosis, bleeding, anastomotic leaks, or infection/pancreatitis (11,13). Consequently, these treatments are generally limited to severely diabetic patients with associated kidney disease, which leaves the majority of T1D patients with either DIT or islet transplantation to manage their disease.

DIT, which requires injection of short- or long-acting insulin formulations, has been made easier by the use of semi-automated pump devices (30). However, a significant problem of DIT is ineffective control of unrecognized hypoglycemic episodes, which are further amplified under more intensive glucose management protocols designed to reduce secondary complications (5,24,33). Presumably, this problem would not arise with a properly-functioning islet graft, which would act like the native endocrine pancreas to maintain glucose homeostasis. Accordingly, there is a substantial effort to develop effective methods for islet transplantation (27). Notably, however, current islet transplant protocols for treatment of T1D have had limited success as a consequence of: 1) poor
survival of islets in therapeutically-approved intrahepatic graft sites (1,9), 2) alloimmune rejection (34), and 3) recurrence of the underlying autoimmunity (23,40). These three critical barriers to success must be overcome for islet replacement therapy to be an effective treatment for T1D.

The present study describes a bioengineered implant (BI) that will be used as a test-bed to evaluate a number of strategies to promote islet graft survival and function in the setting of T1D. The BI incorporates five features that make it useful in this role: 1) It is miniaturized for engraftment in mice – a species that includes specific strains that effectively model T1D. 2) The BI is disk-shaped for implantation in a fold made from gut mesentery that models the greater omentum of humans, which is considered a favorable site for islet engraftment due to its large size and rich, dynamic blood supply. 3) The supportive scaffold of the BI is comprised of polyvinyl alcohol (PVA) sponge, a material that is durable and easily shaped, elicits a minimal inflammatory response, and which supports neovascularization (17,32). 4) Islets within the BI are supported by a hydrogel comprised of native fibrillar type I collagen, a natural extracellular matrix (ECM) component that is biodegradable, elicits little or no immune response, and has been shown to improve β-cell viability and insulin secretion in vitro (10,20,25,26). 5) To improve revascularization of the islets, the BI incorporates a spherical alginate hydrogel (an “alginate macrosphere”) to provide sustained, local delivery of vascular endothelial growth factor (VEGF), a potent angiogenic cytokine.

We find that murine donor islets incorporated into BIs and transplanted into syngeneic recipients are revascularized and produce insulin. Significantly, BIs containing 450–500 donor islets reverse diabetes in streptozotocin (STZ)-treated mice. Moreover, we
find that release of VEGF within the implant mitigates hypoglycemia following transplantation and improves implant performance.

MATERIALS AND METHODS

Isolation of Islets

C57Bl/6 mice 12–24 weeks of age were anesthetized by injection at 20 µL/g body weight with 2,2,2-tribromoethanol, prepared as a 2.5% solution in phosphate-buffered saline (PBS) from a 1:1 wt (g)/vol (mL) 2,2,2-tribromoethanol/tert-amyl alcohol stock. The descending aorta of each anesthetized mouse was transected and a 30-gauge needle was used to inject each pancreas, through the common bile duct, with 3 mL of 4°C “Islet Medium” comprised of RPMI 1640 containing 1.0 g NaHCO₃, 1 mM Na-pyruvate, 100 µg/mL penicillin, and 100 U/mL streptomycin (all from Gibco/Invitrogen), and 10% fetal bovine serum (FBS) (Atlanta Biologicals, cat. # S12450H). The Islet Medium was supplemented with 0.8 mg/mL of collagenase P (Roche, cat. # 11-249-002-001) and filtered through a 0.22 µm filter prior to injection. Subsequently, the pancreata were excised and each placed separately in a 50 mL conical centrifuge tube on ice. When 2–3 pancreata were obtained, 5 mL of 37°C Islet Medium was added to each tube, incubated at 37°C for 13 min, then decanted and 30 mL of 4°C Islet Medium added to each tube. The tubes were shaken vigorously for 1 min to disrupt the pancreata and the tissue suspensions were filtered through a 30-mesh metal screen to remove large debris. The filtrates were centrifuged in a Beckman GS-6 at 500 rpm for 10 min at 4°C, the supernates discarded, and the pellets resuspended in 5 mL of 4°C Islet Medium. Subsequently, 5 mL of 4°C Histopaque®-1077 (Sigma-Aldrich) was injected under the medium layer and the tubes centrifuged for 20 min at 2000 rpm (without applied braking). The islets were collected at the Histopaque/medium interface and washed by a 500 rpm centrifugation for
10 min through 40 mL of 4°C Islet Medium. The washed islets were resuspended in 4 mL of Islet Medium, placed in 60 mm dishes and put in a 37°C, 5% CO₂ incubator. Once all pancreata were processed, the isolated islets were hand-picked into a new 60 mm dish, cultured overnight, and picked again the next day before being placed in BIs. Average yields were 100–150 islets per mouse.

**In Vitro Assays of Glucose-Mediated Insulin Release from Islets**

For standard *in vitro* assays, the islets were isolated, cultured overnight in Islet Medium, washed briefly in Hank’s Buffered Salt Solution (HBSS), and then were preincubated for 2 hr at 37°C in HBSS with 5.6 mM glucose (low glucose). After the 2-hr interval, samples of medium were collected for insulin measurement by enzyme-linked immunosorbent assay (ELISA) (Mercodia Insulin ELISA kit, cat. # 10-1247-01). Subsequently, the islets were stimulated for 3 or 30 min with 16.6 mM glucose (high glucose) and samples of medium collected for insulin measurement by ELISA. Fold changes were calculated as insulin (high glucose) / insulin (low glucose).

For experiments evaluating the effects of VEGF on insulin secretion, purified islets were cultured overnight in Islet Medium, washed in HBSS, and then distributed into a 24-well tissue culture plate. Each well contained 30 islets in 1 mL of HBSS / 5.6 mM glucose (low glucose) with or without 10 ng/mL of human recombinant VEGF₁₆₅ (Peprotech, cat. # 100-20). Baseline (i.e., low glucose) samples of medium were collected after 2 hr and then glucose was added to each well to a final concentration of 16.6 mM (high glucose). Samples of medium (50 µL) were then taken at 30 min and insulin concentrations were determined by ELISA as described above. Fold changes were calculated as insulin (high glucose) / insulin (low glucose).
Fabrication of the PVA Scaffolds

To fabricate the PVA scaffolds for the BIs, biopsy punches (Sklar Instruments) were used to cut 6 mm diameter disks from 2 mm thick sheets of PVA sponge (Type CF90, 500 µm average pore size with no surfactant treatment – a generous gift from Merocel/Medtronic, Inc.). Subsequently, each disk was through-punched with a single central hole of 1.5 mm diameter and eight peripheral holes of 1 mm diameter, using correspondingly-sized biopsy punches (Acuderm, Inc.). The punched disks were washed on a rocker in 50 mL centrifuge tubes filled with 40 mL of sterile distilled water (10 min per wash, repeated 5 times), then air-dried on Whatman filter paper, transferred to 60 mm dishes, exposed to gamma-irradiation, and stored until needed for BI assembly.

Preparation of VEGF-Alginate Macrospheres

To prepare VEGF-alginate macrospheres, a stock solution of 4% Na alginate (Sigma-Aldrich, cat. # A0682) was prepared in deionized water and filtered at 0.45 µm, using positive pressure. A stock solution of human recombinant VEGF₁₆₅ was prepared at 100 ng/µL in sterile, deionized water with 0.1% normal mouse serum (NMS). For macrospheres containing VEGF, 32 µL of alginate stock was combined with 28 µL of sterile deionized water and 4 µL of VEGF stock and pipetted in 8 µL volumes (each containing 2% alginate and 50 ng of VEGF) onto a sheet of hydrophobic Parafilm™ “M” (Pechiney Plastic Packaging) that was cut into a narrow triangular shape. The Parafilm triangle was held vertically on a clamp positioned 5 cm above a 60 mm Petri dish filled with a solution of 100 mM CaCl₂. The alginate / VEGF droplets were pulled to the tip of the Parafilm triangle by gravity, where they fell one at a time into the CaCl₂ solution and were crosslinked by the free Ca²⁺ ions into spheres approximately 2 mm in diameter. The spheres were crosslinked for 15 min in the CaCl₂ solution, then washed for 2 min in 10 mL
of 0.15 M NaCl/25 mM HEPES/2 mM CaCl$_2$, pH 7.0 (repeated twice), transferred to a 35 mm dish filled with serum-free Dulbecco’s Modified Eagle’s Medium (DMEM) (Gibco/Invitrogen) with 100 µg/mL penicillin and 100 U/mL streptomycin (P/S), and maintained in a tissue culture incubator until needed for BI assembly.

**Preparation of Type I Collagen Solution**

To prepare type I collagen solution for the BIs, 1 volume of a stock solution of rat tail native type I collagen in dilute acetic acid (Becton Dickinson) was combined with 1/9 volume of 10-strength NaHCO$_3$-saturated Medium 199 (Gibco/Invitrogen) and sufficient DMEM and NMS to yield a solution containing 2.5 mg/mL collagen and 10% NMS (42). The collagen solution was prepared just prior to assembly of the BIs and maintained on ice until needed.

**Assembly of the BIs**

To prepare the BIs, the dry PVA sponge scaffolds were expanded for 5 min in sterile DMEM/P/S and a single, freshly-prepared alginate macrosphere was gently pressed into the 1.5 mm diameter center hole of each scaffold. The scaffolds were then blotted on sterile Whatman filter paper, transferred to 60 mm plastic tissue culture dishes lined with UV-sterilized Parafilm M, and flooded with 60 µL of type I collagen solution containing suspended islets. The PVA sponges absorbed the collagen solution, with the majority of the islets entering the 1 mm diameter peripheral holes. Subsequently, the dishes were covered with dish tops (lined with moist filter paper) and incubated for 30 min at 37°C/5%CO$_2$/100% humidity to gel the collagen. The completed BIs were transferred to a 24-well tissue culture plate filled with 500 µL/well of pre-equilibrated DMEM/10% NMS/P/S and maintained in a tissue culture incubator until implantation in subject mice.
Induction of Diabetes and Implantation of BIs in Mice

Three days prior to surgical implantation of BIs, C57Bl/6 mice were treated with a high dose (200 mg/kg) of STZ made as a stock solution of 7.5 mg/mL STZ in 100 mM citrate, pH 4.2 (prepared and filtered at 0.22 µm immediately prior to injection). Over 90% of mice receiving STZ became diabetic within 72 hrs (and most became diabetic within 48 hrs). Blood glucose was measured every day and insulin given when needed (see following section), but insulin was not administered on the day of surgery. To implant BIs, mice were administered Buprenorphine (0.05–0.1 mg/kg) prior to the surgery, which was performed under isoflurane. A 1 cm vertical, mid-line incision was made in the skin and peritoneum, a loop of the small intestine was extracted, and the BI placed on the intestinal mesentery. Subsequently, the intestinal loop was folded over the BI and returned to the peritoneal cavity. The incision was closed with absorbable sutures (for the peritoneum) and staples (for the skin). Removal of BIs was done in the same manner as implantation. All work with mice was done in an AAALAC-accredited facility and was approved by the Benaroya Research Institutional Animal Care and Use Committee.

Monitoring of Insulin and Glucose Levels, and Intraperitoneal Glucose Tolerance Tests

The blood glucose levels (BGLs) and body weights of STZ-treated mice were measured once a day. BGLs were measured from a saphenous vein bleed (30 gauge needle) using a Wavesense Presto glucometer (AgaMatrix). For insulin treatment, sustained-release Levemir® insulin (Novo Nordisk) was diluted 1:5 to 1:20 in a solution of 20 mM NaCl/5 mM Na₂HPO₄/19 mM phenol/174 mM glycerol just prior to administration and was injected subcutaneously (SC). Mice were given 0.12 U of insulin for BGLs of 250–350 mg/dL, 0.23 U for BGLs of 350–450 mg/dL, or 0.33 U for BGLs over 450 mg/dL. Mice were also given 800–1,000 µL of saline SC in the inner thigh if loss of body weight
was greater than 10% from starting weight (i.e., just prior to STZ treatment). For those mice in which receipt of BIs induced normoglycemia (i.e., BGLs were < 250 mg/dL), the frequency of body weight and BGL measurements was reduced.

For intraperitoneal glucose tolerance tests, mice were fasted (water, but no food) for 6 hr before injection with 1 mg of glucose (in sterile PBS) per g of body weight. BGLs in saphenous vein blood were measured at 0, 15, 30, 60, and 120 min after injection of glucose.

**Histological Analyses**

Implants and pancreata were fixed in neutral-buffered formalin (NBF), dehydrated, embedded in paraffin, and sectioned at 8 µm. Sections were stained with hematoxylin and eosin (H&E) for routine histological examination. For detection of von Willebrand Factor (vWF), sections were subjected to epitope retrieval for 20 min at 79°C using an ethylenediaminetetraacetic acid (EDTA)-based buffer, pH 9 (Bond™ Epitope Retrieval Solution 2, Leica Microsystems, cat. # AR9640), then blocked and exposed 1 hr to a 1:400 dilution of a rabbit polyclonal antibody to human vWF (Dako, cat. # A0082). Bound antibodies were visualized with a Bond™ Polymer Refine Detection Kit (Leica Microsystems, cat. # DS9800) using 3,3′-diaminobenzidine as the chromogen. The vWF-labeled sections were then exposed to hematoxylin to stain cell nuclei. For detection of insulin, sections were labeled for indirect immunofluorescence with a guinea pig monoclonal antibody to human insulin (Abcam, cat. # ab7842) in conjunction with an Alexa-Fluor 488™-conjugated goat anti-guinea pig IgG secondary antibody (Molecular Probes/Invitrogen). Images were recorded with a Leica DMR brightfield/epifluorescence microscope equipped with SPOT Insight™ and RT™ digital cameras (Diagnostic Instruments).
**Measurement of Release of VEGF from Alginate Macrospheres In Vitro**

To measure the release of VEGF from alginate in vitro, macrospheres containing 2% alginate and 50 ng VEGF were prepared as described above. The macrospheres were placed in 96-well tissue culture plates (one sphere per well) with each of the wells filled with 200 µL of DMEM/10%FBS/P/S. The plates were placed in a tissue culture incubator maintained at 37°C/5%CO₂/100% humidity. At specific time points (1, 2, 3, 6, and 14 days of incubation), a 100 µL volume of medium was removed from each well and stored at –80°C until analysis by ELISA. Following removal of the medium at each time point, the residual medium in each well was discarded and each well was refilled with 200 µL of fresh medium. ELISA assays were performed with a DuoSet® Human VEGF ELISA Kit (R&D Systems, cat. # DY293B).

To determine the percentage of VEGF retained in alginate macrospheres during their fabrication, freshly-prepared macrospheres of 8 µL volume were each dissolved in 892 µL of PBS/100 mM EDTA, followed by addition of 100 µL of FBS to the solution. VEGF in the samples was measured by ELISA, with a solution of 50 ng/mL of VEGF in PBS/100 mM EDTA/10% FBS serving as a positive control.

**Statistics**

Statistical p values were calculated with Prism® (GraphPad Software, Inc.) using a two-tailed t-test or, for groups, a one-way ANOVA with the Bonferroni multiple comparison test. Values of p for Kaplan-Meier plots were calculated using a log-rank test.
RESULTS

**BI Fabrication and Islets**

The body of the BI (Fig. 1A) consisted of a disk-shaped scaffold of PVA sponge infused with a type I collagen hydrogel that held the suspended islets. An alginate macrosphere was placed in the center of the construct to provide a source of VEGF. The PVA sponge was readily infiltrated by the unpolymerized collagen solution—a consequence of the large (500 µm) pore diameter of the sponge. In contrast, penetration of the sponge by suspended islets was inhibited by the relatively narrow connections between the pores (pore throats). Consequently, we punched eight peripheral holes of 1 mm diameter into the PVA sponge in order to provide open spaces for the islets to occupy (Fig. 1A, 1B). The diameter of the central hole in the PVA sponge was set at 1.5 mm (Fig. 1B) so that it would stretch slightly to grip the 2 mm diameter alginate macrosphere (Fig. 1C). In fully-assembled BIs, the collagen hydrogel held the suspended islets firmly in place and provided additional stabilization to the macrosphere while the construct was wrapped in a fold of small-intestinal mesentery (Fig. 1D).

The viability of the islets used in the BIs was confirmed by implanting 450 freshly-isolated islets under the kidney capsule of STZ-treated diabetic mice. These mice became normoglycemic within 24 hr of implantation (data not shown). When similar preparations of isolated islets were incorporated into freshly-made BIs (500 islets per BI), the islets increased their production of insulin *in vitro* following 3- or 30-min exposures to elevated (16.6 mM) glucose, as compared to “resting” levels of insulin produced in the presence of low (5.6 mM) glucose (Fig. 1E). Therefore, the materials and processes used to fabricate the BIs were not immediately harmful to the islets.
Release of VEGF from Alginate Macrospheres

Solutions of alginate are rapidly crosslinked by calcium ions to form stable hydrogels. The conditions for gelation are relatively mild, which has made alginate an attractive candidate for delivery of bioactive proteins (6,12,44), including VEGF (8,21,29). We found that a simple, gravity-driven drop generator using a non-wettable (Parafilm) surface allowed us to make spheres of smaller volume than could be made using conventional, syringe-type drop generators. The method also used reagents efficiently, as we did not have to fill a syringe body with a minimum volume of alginate/VEGF solution.

As determined by ELISA assays, freshly-fabricated alginate macrospheres each retained an average of 42 ± 2% (n = 5) of the 50 ng of VEGF added to the alginate before calcium crosslinking (equivalent to 21 ng of VEGF per crosslinked macrosphere). This efficiency of VEGF incorporation is comparable to results obtained by others (e.g., 31% (29)) for 2% alginate hydrogels. Based on our measurement of percent incorporation of VEGF, our macrospheres released approximately 71% of their VEGF within 6 days (Fig. 2). This value is substantially higher than the 43–47% release level reported by others (29), which might be a consequence of our inclusion of 10% FBS in the culture media, in contrast to the use of serum-free media (29).

BI-Mediated Reversal of Diabetes in STZ-Treated Mice

We assessed the capacity of BIs to support islet survival and reverse acute (STZ-induced) diabetes in three groups of C57Bl/6 mice, as follows: 1) a +VEGF/+Islet group that received BIs containing 450–500 donor islets and alginate macrospheres loaded with VEGF, 2) a –VEGF/+Islet group that received BIs containing 450–500 donor islets and alginate macrospheres that lacked VEGF, and 3) a +VEGF/-Islet group that received BIs without donor islets, but with VEGF/alginate macrospheres. The BIs were surgically
implanted on the intestinal mesentery under isoflurane anesthesia on Day 0 in mice that were given a single high dose of STZ (200 mg/kg) three days earlier (Day −3). The majority of recipients on the day of surgery had BGLs of at least 600 mg/dL (the maximum value on the glucometer). Basal BGLs prior to STZ-induced diabetes were 185 ± 21 mg/dL (n = 16). To prevent excessive diabetes-mediated weight loss, the STZ-treated mice were given daily insulin (Levemir) as needed beginning on Day −2 for BGLs greater than 250 mg/dL, which lowered BGLs to near normal for at least 6 hr after administration, but did not sustain normal BGLs after 24 hr. This response profile allowed us to determine if a mouse was still diabetic under daily insulin therapy. All mice lost weight following STZ-induced diabetes, but slowly gained weight after BIs were implanted, with the +VEGF/−Islet group exhibiting the greatest weight loss and the longest recovery time (Fig. 3A).

One-hundred percent (8 of 8) of diabetic mice in the +VEGF/+Islet group became normoglycemic within 18 days post-implantation (p-i) (Fig. 3B). Normoglycemia (i.e., BGLs < 250 mg/dL) was maintained until the BIs were removed for histological analysis between 40 and 54 days p-i. In contrast, 100% (10 of 10) of diabetic mice in the +VEGF/−Islet group remained hyperglycemic until sacrifice at 21 days p-i (Fig. 3B).

When averaged collectively, the mice of the −VEGF/+Islet group also achieved normoglycemia (Fig. 3C). Compared to the +VEGF/+Islet group, the percentage of mice that became normoglycemic in the −VEGF/+Islet group was lower (62.5% – 5 of 8 mice), but there was no statistical difference between the two groups (Fig. 3D), nor was there a statistical difference between the average time required for the two groups to achieve normoglycemia after transplant (13.3 ± 3.4 days and 10.4 ± 2.1 days, respectively – Fig. 3D). In an additional group of mice that received VEGF but only 200 islets, only 33.3% (1
of 3) of the mice became normoglycemic (Fig. 3D). As expected, we were able to reduce exogenous insulin therapy for the subset of mice within the +VEGF/+Islet and –VEGF/+Islet groups that proceeded to normoglycemia (Fig. 3E). Notably, none of the mice that achieved normoglycemia in these two groups required exogenous insulin therapy once the BIs began to fully regulate levels of blood glucose by 8–18 days p-i (e.g., Fig. 3F).

As an additional assessment of BI function, intraperitoneal glucose tolerance tests were performed at 40–50 days p-i on the subset of animals from the +VEGF/+Islet group (all 8 mice) and –VEGF/+Islet group (5 of 8 mice) that had achieved normoglycemia (Fig. 4). Compared to healthy, non-diabetic mice that had not received STZ or BIs (n = 10), the BGLs of both groups of mice carrying BIs were elevated 15–30 min after glucose administration. The rise in BGL was slightly lower for the +VEGF/+Islet group than for the –VEGF/+Islet group, but the difference was not statistically significant. Within 1–2 hr of challenge, the BGLs for all three groups had returned to normal levels, with no significant difference between them.

The functionality of the BIs was further confirmed upon removal, by survival surgery, of implants from four mice of the +VEGF/+Islet group at 54 days p-i. Three of these mice became hyperglycemic within 24–48 hr, while the fourth mouse remained normoglycemic (data not shown). By histological assay, all four mice had little or no islet residua in their pancreata; therefore, maintenance of normoglycemia in the one mouse may have been due to migration of islets from the BI into the animal’s peritoneal cavity. These islets would not have been removed when the BI was excised. In the four mice, we observed that removal of the BI caused devascularization of the adjacent intestine leading to focal necrosis; therefore, we did not perform survival surgeries on additional mice.
Histological analyses of BIs explanted from the +VEGF/+Islet group at 54 days p-i (Fig. 5) revealed the presence of insulin-positive islets that were well-vascularized, as indicated by the presence of vWF-positive microvessels that contained luminal blood. The type I collagen hydrogel in which the islets were suspended prior to implantation was largely absent, although scattered remnants were observed.

By histology, there were no obvious differences at 54–77 days p-i in the level of vascularization within BIs from the +VEGF/+Islet group compared to the normoglycemic mice of the −VEGF/+Islet group (data not shown). Interestingly, however, although the +VEGF/+Islet, −VEGF/+Islet, and +VEGF/−Islet groups all exhibited similar hyperglycemic BGLs prior to surgery on Day 0 (Fig. 6A, left panel), by 24 hr p-i, 7 of 8 mice of the −VEGF/+Islet group were hypoglycemic (avg. 116 ± 21 mg/dL, n = 7), whereas only 1 of 8 mice of the +VEGF/+Islet group was hypoglycemic (group avg. 348 ± 142 mg/dL, n = 8) (Fig. 6A, center panel). None of the mice of the +VEGF/−Islet group were hypoglycemic (group avg. 491 ± 91 mg/dL, n = 12). Notably, by 48 hr p-i, all of the mice of all three groups were hyperglycemic (Fig. 6A, right panel). Collectively, these results indicated that inclusion of VEGF with the implanted islets substantially mitigated the transitory hypoglycemia that occurred when islets were implanted in the absence of VEGF. To further investigate this phenomenon, we cultured isolated islets for 2 hr in the presence of 10 ng/mL of VEGF and a low level (5.6 mM) of glucose, followed by a 30-min stimulus with elevated (16.6 mM) glucose to elicit insulin release. We found that the exposure to VEGF significantly reduced glucose-induced insulin release, compared to cultured islets not exposed to VEGF (Fig. 6B).
DISCUSSION

To achieve successful islet transplantation for treatment of T1D, the protocol must promote islet survival in the short-term. Insulin secretory function in patients who receive intraportal islet transplantation averages only ~20% of that of non-diabetic persons despite the use of islets from multiple donors (35) – a result suggesting that only a small proportion of transplanted islets successfully engraft. Reasons for this loss of islet function include: 1) exposure to high concentrations of cytotoxic immunosuppressive drugs via portal blood, 2) proinflammatory cytokine release by intrahepatic endothelial cells activated by islet cell contact, 3) liver ischemia, focal necrosis, and inflammation induced by islet embolism, and 4) acute inflammatory reactions that involve platelet activation and binding at the islet surface, activation of coagulation and complement systems, and leukocyte infiltration of the islet mass. To address the shortcomings of the intrahepatic environment, we developed BIs for implantation in a non-hepatic site (the intestinal mesentery). We have demonstrated that these BIs can reliably reverse drug (STZ)-induced diabetes in mice.

Injection of islet suspensions under the kidney capsule (UKC) is the most frequently used model for studies of islet engraftment in mice. With the UKC model, normoglycemia can be established in STZ-treated diabetic mice within 24–48 hr using 200 islets (45). In contrast to the UKC model, we observed that engraftment of islets on the mouse mesentery in BIs required a larger number of islets (200 islets were insufficient, whereas 450-500 islets were effective) and required a longer time to achieve normoglycemia (10–13 days). Similar disparities in islet number and time to functionality between UKC and mesenteric (omentum) graft sites in mice have been reported by Kim, et al. (2010) (16), who found that the marginal islet mass required for the omental site was
twice that of the kidney site and that time to normoglycemia averaged 14 days for omental
grafts, but only 3 days for UKC grafts. Notably, the omentum performed better than liver
and muscle sites, which each required 3-fold more islets than the omentum and
comparable or longer times to achieve normoglycemia (15 and 27 days for liver and
muscle, respectively). The reason why engraftment of islets is less efficient in non-UKC
sites relative to the UKC site is unclear, but may relate to a lower availability of
vasculature, particularly for muscle (16).

Despite the efficiency of UKC transplant, the limited space within the kidney
capsule cannot accommodate large numbers of injected islets or complex implants that
include drug delivery devices, such as the one we describe. This limitation, among others
(7,31), suggests that the UKC site may be problematic for therapeutic islet transplant in
human patients. In contrast, the human omentum should be able to accommodate
relatively large, multi-component BIs. Moreover, unlike the kidney, the omentum is not a
critical organ and, therefore, could be excised with few negative consequences should
post-transplantation complications arise.

In contrast to most other approaches in which islets are engrafted as dispersions,
our BI retains the islets in a unified structure by means of a disk-shaped scaffold. The
purpose of this scaffold is four-fold: 1) To keep the islets contained within a limited volume
and in close proximity to the alginate delivery device in order to maximize the effects of
the released cytokine. 2) To protect the relatively soft collagen hydrogel (which supports
the islets directly) from physical disruption both before and after implantation. 3) To allow
the BI, with all of its components, to be rapidly assembled and implanted easily without
the additional complexity of a surgically-produced omental/mesenteric pouch. 4) To allow
the implant to be removed easily and maintained in a compact form that makes
histological analysis straightforward. For the present experimental study (which has relatively short-term endpoints), non-biodegradable PVA sponge works well as a scaffold. For therapeutic use in human patients, the PVA could be replaced by biodegradable materials that would be resorbed after the implanted islets become fully functional.

A beneficial effect of scaffolds on islet engraftment has been observed by others. Blomeier, et al. (2006) (2) reported that STZ-induced diabetic mice that received intraperitoneal implants of islets infused into cylindrical poly-lactide/glycolide (PLG) sponge scaffolds had higher conversions and shorter times to normoglycemia, greater weight gain, and improved response to intraperitoneal glucose tolerance tests compared to control mice that received islets not retained in scaffolds. These authors demonstrated that the islets transplanted in scaffolds remained localized at the original site of implantation, whereas the non-scaffolded islets tended to be more dispersed throughout the peritoneum. Therefore, the protective environment provided by the scaffold might have contributed to better performance of the graft. These results, and our own observations that scaffolds facilitate the assembly and handling of multi-component constructs, argue for the continued development of scaffolds for islet transplantation.

In our BIs, direct physical support of the islets is accomplished by a fibrillar type I collagen hydrogel. The islets are dispersed in a single volume of monomeric collagen solution, which is infused into the protective PVA scaffold and polymerized in situ into a gel-like network of fibrils. Notably, neither the PVA scaffold, with its open structure, nor the collagen gel seem to impede the rate of vascularization from the mesentery, since dispersed islets implanted into mesenteric (omental) pouches also require the same time as our BIs to engraft and function (i.e., about 2 weeks) (16).
The endocrine cells of islets *in vivo* are associated with a complex peri-insular and perivascular ECM, with components of the basement membrane (BM) (e.g., laminin, type IV collagen, fibronectin) predominating (38). In this context, there is evidence that addition of specific BM components to islet graft sites improves islet graft performance. Salvay, et al. (2008) (37) demonstrated that islets implanted onto the epididymal fat pads of STZ-treated mice were more effective at reversing diabetes when the islets were infused into PLG sponge scaffolds pre-adsorbed with type IV collagen, compared with control scaffolds pre-treated with serum proteins. Adsorbed fibronectin and laminin 5 were less effective than type IV collagen, but were superior to the serum-treated controls. It was proposed that the adsorbed BM proteins might be improving islet function directly and/or promoting infiltration of beneficial cell types (e.g., endothelial cells) from the host, as vascularization of the ECM-treated grafts was better than vascularization of the serum-coated grafts. Collectively, these results suggest that incorporation of individual BM components (or perhaps more complex BM mixtures) into our BIs (e.g., via direct binding to or co-gelation with the collagen hydrogel) might improve the overall performance of the grafts after implantation.

Reportedly, the level of vascularization of islets transplanted into the liver or kidney is lower than that of native islets in the pancreas (22), but transfection of islets to express VEGF increases vascularization following transplantation (19,46). Transfection-based approaches are therapeutically problematic; therefore, we incorporated a device (an alginate macrosphere) within the BI to achieve a local, sustained delivery of VEGF. In preliminary experiments, we produced BIs with macrospheres that incorporated high levels (160 ng) of VEGF. The VEGF in these constructs induced a very robust response from the host within 7 days of implantation *in vivo*, as indicated by high levels of
angiogenesis, the presence of enlarged sinusoidal neovessels, and substantial vascular permeability (i.e., extravasated blood) within the BI. Although these results were a clear indication that the VEGF was biologically active, we considered this level of response to be excessive; therefore, we reduced the level of VEGF to approximately 20 ng per macrosphere for the subsequent experiments reported here. Inclusion of 20 ng of VEGF in the BI did not decrease the average time for transplanted mice to achieve normoglycemia (approximately 2 weeks), as compared to control mice with BIs that lacked VEGF. Although VEGF increased the percentage of mice that became normoglycemic compared to the controls lacking VEGF (100% vs. 62.5%), this increase was not statistically significant for our sample size \((n = 8\) mice per group). These results suggest that exogenous VEGF may not have a major effect on implant performance when therapeutically “safe” (i.e., well above the minimum) numbers of islets are used.

We were particularly interested by the finding that, with the exception of one animal, the +VEGF/+Islet group did not exhibit the hypoglycemia that occurred within 24 hr p-i in the –VEGF/+Islet group. Post-operative, transitory hypoglycemia has been observed in other models of islet transplantation and may be a consequence of an acute release of insulin from stressed or dying islets. Our observations suggest that the inclusion of VEGF within BIs mitigates this acute insulin release, perhaps via direct influences on the transplanted islets, as we found that exogenous VEGF suppresses glucose-stimulated release of insulin from isolated, cultured islets. This suppressive effect of exogenous VEGF on insulin release \textit{in vitro} seems to support an earlier finding that islets isolated from RIP-CRE:VEGF\textsuperscript{fl/fl} mice, in which production of VEGF is prevented specifically in \(\beta\)-cells, had higher levels of insulin mRNA and secreted more insulin after glucose stimulation \textit{in vitro} than did islets from control mice that expressed VEGF (15).
VEGF acts on endothelial cells to promote the maintenance and growth of vasculature, including the vasculature of islets, as illustrated by RIP-CRE:VEGF\textsuperscript{fl/fl} mice, which have deficiencies in their microvessels (14). Although pro-survival, pro-angiogenic responses of intra-islet endothelial cells to VEGF would be expected, additional responses by these cells might include the production of paracrine factors that promote the survival and function of islet endocrine cells.

In treatments of diabetic patients that involve transplantation of islets, controlling rejection is typically accomplished by systemic immunosuppressive compounds. Dosing of these compounds is a difficult balance – levels must be low enough to permit a reasonable degree of protective immunity against pathogenic organisms, but high enough to effectively suppress allo- and autoimmune activity directed against the transplant. In the case of SPK transplants, some current immunosuppression regimens are inadequate to control autoimmunity (18,41). Moreover, no matter what the dose, systemic immunosuppression can be accompanied by a variety of undesirable side-effects on tissue and organ systems that are not directly associated with the transplant. In light of the problems associated with systemic treatments, an alternative approach would be to confine the delivery of immunotherapy to the implant itself. In this way, immunomodulatory compounds could be delivered at relatively high concentrations, but within the limited volume of the implant, thereby minimizing side effects on tissues and organs outside the zone of delivery. To this end, the BI described here includes a mechanically-supportive scaffold and collagen hydrogel that concentrates the islets in a small volume. Localized immunotherapy might be achieved by supplementing or replacing the collagen hydrogel with ECM components that have been shown to have immunosuppressive properties, such as hyaluronan (3,4). This ECM-based approach could be augmented by sustained
release of specific, immunomodulatory cytokines (e.g., IL-10 and TGF-β) from biocompatible storage media placed within the implant. We are currently investigating the use of alginate-based media for this purpose.

In the present study, we have developed a BI, and associated protocols for its implantation, that can effectively reverse STZ-induced diabetes in syngeneic mice. Our future studies will evaluate the effectiveness of the BI in the context of strains of mice that develop autoimmune diabetes. In this way, the BI will serve as a platform to evaluate the capability of a variety of immunomodulatory compounds and formulations, delivered locally, to prevent or reverse diabetes in the setting of autoimmune dysfunction.

ACKNOWLEDGMENTS

We would like to thank Dr. Rebecca Hull for her valuable help in optimizing the islet isolation procedures. This work was funded in part by Department of Defense Award W81XWH-10-1-049 (J.T.N.) and by an award from the Klorfine Foundation (R.B.V.).

CONFLICTS OF INTEREST

In regard to this manuscript, none of the authors has any conflicts of interest, financial or otherwise, as defined by the journal (Cell Transplantation) guidelines.
REFERENCES


FIGURE LEGENDS

Figure 1. **Bl fabrication and implantation.** A) Cut-away diagram of the Bl, with the components shown to scale. A disk-shaped PVA sponge (Sp) scaffold provides mechanical support. An alginate macrosphere (AM) (blue) occupies the central hole of the sponge. Eight peripheral holes (PH) in the sponge (5 appear in this cut-away) contain islets (yellow) suspended in a type 1 collagen hydrogel (reddish-pink). The collagen hydrogel also infuses the sponge (light pink). For clarity, the pores of the sponge are not depicted. B) A PVA sponge scaffold oriented to show the central hole (CH) and peripheral holes (PH). The scaffold is 6 mm in diameter. C) An alginate macrosphere of 2 mm diameter. D) Diagram illustrating placement of the Bl (pink disk) on the mesentery supporting a loop of small intestine. E) Islets within freshly-made BIs (500 islets per Bl) increased their production of insulin in vitro following 3- or 30-min exposures to elevated (16.6 mM) glucose, as compared to “resting” levels of insulin produced in the presence of low (5.6 mM) glucose.

Figure 2. Cumulative release of VEGF from 2% alginate macrospheres incubated for 14 days under physiological conditions in vitro (n = 5 macrospheres).

Figure 3. **Responses of mice with STZ-induced diabetes to engrafted BIs.** A) Time-course of weight change following engraftment of BIs, shown for the +VEGF/+Islet group (black circles), the −VEGF/+Islet group (black triangles), and the +VEGF/−Islet group (white triangles) (error bars are omitted for purposes of clarity). B) In time-course studies, the BGLs of the +VEGF/+Islet group (black circles) fell to normal (dotted line) within 18 days p-i. Normoglycemic BGLs were maintained until the BIs were removed at 54 days p-i. In contrast, mice of the +VEGF/−Islet group (white triangles) remained hyperglycemic until
sacrifice at 21 days p-i. C) When averaged collectively, BGLs of the –VEGF/+Islet group (black triangles) fell to near-normal levels within 21 days p-i. BGLs of the +VEGF/–Islet group (white triangles) are included for comparison. D) Kaplan-Meier plots of glucose regulation after BI implantation. BIs in +VEGF/+Islet (n = 8) and –VEGF/+Islet (n = 8) groups contained 450–500 islets. BIs in the +VEGF/200 Islet group (n = 3) contained 200 islets. Asterisks indicate significant difference between the percent of animals that remained diabetic, as analyzed by a log-rank test (*** = p < 0.001, ** = p < 0.01, * = p < 0.05). E) Over time, exogenous insulin therapy could be reduced for mice of the +VEGF/+Islet group (black circles) and –VEGF/+Islet group (black triangles) that proceeded to normoglycemia. In contrast, mice of the –VEGF/–Islet group (white triangles) required a continuous, high-dose regimen of insulin. In this graph, error bars for the +VEGF/+Islet and –VEGF/+Islet groups are omitted for purposes of clarity. F) BGLs of one mouse of the +VEGF/+Islet group, measured during the course of the experiment (black circles), are compared to the quantities of therapeutic insulin administered to the animal (white circles). The BGL measured at the time of implantation of the BI on Day 0 is indicated (large gray circle). After Day 10 p-i, the mouse did not require exogenous insulin.

**Figure 4. Response to glucose challenge of mice rendered normoglycemic by BIs.**

Intraperitoneal glucose tolerance tests were performed at 40–50 days p-i on the animals from the +VEGF/+Islet group (8 mice, black circles) and –VEGF/+Islet group (5 mice, white squares) that had achieved normoglycemia. These results were compared to similar tests performed on healthy, non-diabetic mice that had not received STZ or BIs (control group) (white circles). By 15–30 min after challenge with glucose, both groups of mice implanted with BIs had elevated BGLs relative to controls. The rise in BGL was slightly
lower for the +VEGF group than for the –VEGF group, but the difference was not statistically significant. Within 1–2 hr of challenge, the difference in BGL between the three groups was non-significant. Asterisks denote $p < 0.05$ between the control group and the groups implanted with BIs.

**Figure 5.** *Histological evaluation of islets within BIs after 54 days in vivo.* Mice of the +VEGF/+Islet group that had exhibited sustained normoglycemia for 54 days had their BIs excised and sectioned for histological analysis. **A)** An islet labeled for vWF (brown stain) exhibits profiles of large- and small-caliber microvessels (*arrows* and *arrowheads*, respectively) of the islet. Nuclei are counterstained with hematoxylin. **B)** A slightly deeper section of the islet shown in Panel A, stained with H&E, indicates the presence of red blood cells (*red stain*) in the large- and small-caliber microvessels (*arrow* and *arrowheads*, respectively) of the islet. **C)** Islet groups within a similar BI are strongly positive for insulin, as shown by indirect immunofluorescence (*green*). Cell nuclei in the section are stained with DAPI (*blue*). In A–C, scale bars are 100 µm.

**Figure 6.** *The presence of VEGF in BIs is associated with limitation of post-operative, transitory hypoglycemia.* **A, left panel** Prior to surgery on Day 0, all mice within the –VEGF/+Islet, +VEGF/+Islet, and +VEGF/–Islet groups (*white, black, and gray circles, respectively*) exhibited hyperglycemic BGLs. **A, center panel** By 24 hr (Day 1) p-i, 7 of 8 mice of the –VEGF/+Islet group were hypoglycemic, whereas only 1 of 8 mice of the +VEGF/+Islet group was fully hypoglycemic. None of the mice of the +VEGF/–Islet group were hypoglycemic. **A, right panel** By 48 hr (Day 2) p-i, the hypoglycemic episodes had ended: all of the mice within the three groups were hyperglycemic. **B** Glucose-induced insulin release *in vitro* from isolated islets in the presence or absence of VEGF. Islets were preincubated for 2 hr with a low level (5.6 mM) of glucose, with or without 10 ng/mL
of VEGF, and then stimulated for 30 min with elevated (16.6 mM) glucose. Fold change represents insulin levels in media before and after glucose stimulus.
Figure 3
Figure 4
Figure 5
Figure 6

(A) Blood Glucose (mg/dL) over time with VEGF and Islets. Significance levels are indicated:
- \( p < 0.01 \) and \( p < 0.05 \).

(B) Insulin Release (fold change) with VEGF. Significant difference marked with \( p < 0.05 \).
1. INTRODUCTION

1.1 Subject, Purpose, and Scope of the Research (Aims 1 & 2)

Recent advances in molecular and cellular biology offer an opportunity to create new therapies to regulate tissue reparative processes through the use of specific extracellular matrix (ECM) components, which play a significant role in regulating the inflammatory processes that follow injury, creating cytoprotective environments that promote healing. Prior to the current project, the Benaroya Research Institute’s Center for Inflammation and Tissue Repair (CITR) developed a number of tissue repair strategies that utilized engineered ECM scaffolds comprised of proteoglycans and natural collagen, which emphasized enhancement of elasticity, strength, cellular survival and orientation, and optimal integration with host tissue. The current research program expands on this prior work to address a key challenge to clinical application of our engineered tissue repair technology—the host inflammatory response. This new program in cytoprotection addresses a major barrier to effective cell-based therapies, namely, that, after treatment with regenerating or reconstituted cells or stem cells, the viability of those therapeutic cells is often threatened by the noxious microenvironment of inflamed tissue.

The research program consists of a coordinated set of projects that address two Specific Aims (listed below). The goal of projects in Aim 1 is to develop and evaluate specific cytoprotective modulators of tissue-immune interactions. The goal of Aim 2 is to develop an engineered tissue model (a “myobridge” for replacement of skeletal muscle) and use it as a test-bed to evaluate promising cytoprotective strategies identified in Aim 1 for their capacity to control inflammation, improve cell survival, and promote healing.

1.2 Specific Aims

**Aim 1**  To develop ECM hydrogels with cytoprotective properties, including mechanical resistance to shear, binding sites for specific bioactive molecules, and sites for retention of regulatory lymphocytes. Novel cytoprotective mediators associated with regulatory lymphocytes and innate immune activation will be identified using siRNA (human and mouse) and knockout animal models, and potential biomarkers for monitoring efficacy in humans will be evaluated in a pilot clinical research study.

**Aim 2**  To use cytoprotective ECM hydrogels in customized skeletal muscle implants to evaluate a novel engineered tissue, referred to as a “myobridge,” designed to enable rapid reconstruction of extensive skeletal muscle wounds. Cytoprotection from inflammation-mediated damage, vascularization, and myocyte differentiation within the graft will be evaluated.

1.3 Scope of this Report

This Annual Report includes work from 3/15/11–3/14/12 performed under Aim 2. This aim, organized into Tasks 9–15, is continuing as a no-cost extension through 3/14/13.

All work under **Aim 1 (Tasks 1–8)** was completed as of 3/14/12.
2. BODY

2.1. Statement of Work

The research program is two years in duration and is organized into 15 specific Tasks, which are indicated below. Work performed under Tasks 9–15 during Year 2 is the subject of this part of the report.

Specific Aim 1: Cytoprotective Mechanisms of Immune Regulation

Task 1  
(Months 1 – 9)  Develop and test stable, shear-resistant HMW-HA/fibrillar collagen hydrogels on dye-cut 2.9 mm nylon mesh rings.

Task 2  
(Months 2 – 12)  Validate microwell plate assay for expression using murine T cells and hydrogel rings at collagen:HMW:HA ratios of 8:1, 4:1, 2:1, 1:1, 1:2, 1:4, and 1:8.

Task 3  
(Months 6 – 18)  Supplement hydrogel microwell GFP-FOXP3 assay with rapamycin, IL-10, and TGF-β, with and without gelatin sponge component.

Task 4  
(Months 1 – 12)  Perform flow cytometry assays for lineage deviation with 11 siRNA constructs (listed in the proposal) using human naïve CD4+ T cells.

Task 5  
(Months 12 – 24)  Evaluate in vivo candidate siRNA using DO11.10-Treg transfection.

Task 6  
(Months 1 – 8)  Evaluate siRNA for TREM-2 and DAP12 for inhibition of TNF production by THP-1 cells.

Task 7  
(Months 6 – 24)  Measure TLR activation by cytokine production and phospho-specific antibodies in CD18 and BCAP KO mice, and map BCAP domains as potential therapeutic targets.

Task 8  
(Months 6 – 24)  Measure serum biomarkers in 20 human subjects treated with IL1RA after inflammatory stimulus.

Specific Aim 2: The CITR Cytoprotective Implant (CI) and Myobridge

Task 9  
(Months 3 – 12)  Production of the three-layer CI “sandwich”.

Task 10  
(Months 6 – 16)  Evaluation of prototype CI in rat dermal pockets for histological monitoring of biodegradation and in mouse dermal pockets for evaluation of regulatory T cell responses.

Task 11  
(Months 1 – 12)  Development of myobridges using uniaxial supports and collagen gels populated with myoblastic cells. Histological evaluation of cultured myobridges for cell survival, new muscle cell generation, proliferation and differentiation.

Task 12  
(Months 12 – 24)  Implantation of cell-seeded myobridge into female F344 rat anterior tibialis, with histological analysis after 3 weeks.

Task 13  
(Months 12 – 24)  Supplementation of myobridge with CoPP and regulatory modulators from Aim 1, prior to implantation.

Task 14  
(Months 16 – 24)  Co-transplantation of myobridge and CI to evaluate effects of CI-mediated immunomodulation on integration of the myobridge with host tissues.

Task 15  
(Months 18 – 24)  In vitro seeding of myobridge prototypes with human MDSC for evaluation of human cell compatibility with hydrogel components.
2.2. Year 2 Annual Report for Aim 2 (Tasks 9–15)

Task 9
Production of the three-layer CI “sandwich” (Robert Vernon, PhD).

Task 9 is a component of Aim 2A, which involves the design and fabrication of the Cytoprotective Implant (CI). In the beginning of Year 2, we continued our focus on the development of new approaches for controlled release of cytokines within the CI. In the previous year, we showed that alginate could be used as a controlled-release agent to deliver soluble high molecular weight hyaluronan (HMW-HA) over a considerable period of time (as long as 3 months) and that the rate of release of HMW-HA from the alginate could be varied by the length of time the alginate is crosslinked with Ca\(^{++}\). We also showed that release of HMW-HA from alginate spheres could be blocked by coating the spheres with poly-L-lysine (PLL). We extended these studies in Year 2 to show that coating the spheres using lower concentrations of PLL does not block HMW-HA release, but, instead, permits release at rates lower than are measured for uncoated spheres (Figure 1).

In parallel studies, we also explored methods to use PLL-coated alginate matrices to deliver immunomodulatory compounds with substantially lower molecular weights than HMW-HA. We focused on modulating the release of antibodies, with the objective of delivering antibodies with immunomodulatory properties within the CI. Initial results were encouraging. Alginate spheres coated with PLL at 0.25 mg/ml showed a linear release of polyclonal antibodies directed against immunoglobulin isotype G (IgG) over a 14 day period (Figure 2). Exposure to PLL at 0.125 mg/ml resulted in a higher release rate, whereas PLL coated at 0.0625 mg/ml yielded release rates like that of uncoated controls. These experiments showed that release of antibodies from alginate could be modulated by PLL and that specific levels of exposure to PLL could result in release with linear kinetics.

In subsequent studies, we continued our work with HA, which the Nepom group (under Task 3) had shown is an activator for Treg function. We evaluated controlled release under physiological conditions in vitro of both high molecular weight (HMW)-HA (MW of 1.5 million Da) and “middle” molecular weight (MMW)-
HA (MW of 120,000 Da). Both forms of HA were retained by alginate with high efficiencies, over 90% for HMW-HA and over 60% for MMW-HA (Figure 3). Not surprisingly, HMW-HA and MMW-HA had markedly different profiles of release over time. MMW-HA was released relatively rapidly (98% within two weeks). In contrast, only 4.6% of HMW-HA was released within two weeks (Figure 4). These experiments suggested that use of HA of different MW classes may be an effective means to control HA release rate for specific applications.

With respect to our work with PLL-coated alginate, we extended our initial experiments that evaluated the release of a “generic” polyclonal antibody against IgG to include tests of the release of an antibody to CD3e, a component of the CD3 T cell receptor (TCR). Binding of “functional” forms of the CD3e antibody to the TCR initiates T cell activation and proliferation. In these experiments, we showed that anti-CD3e antibody could be released from PLL-coated alginate spheres in a controlled, linear manner (Figure 5).

In parallel with our studies of controlled release of immunomodulators in vitro, we conducted controlled release studies in vivo in which alginate spheres loaded with either HA or anti-CD3e antibody were incorporated into CI testbeds and implanted into mice in a mesenteric pocket. These studies showed that the alginate spheres were highly biocompatible and released the compounds in bioactive forms that elicited appropriate (i.e., angiogenic/immunomodulatory) responses from their target cell types within the host.

In initial experiments in vivo in B6 mice, we observed that controlled release of a functional anti-CD3e monoclonal antibody from CI testbeds containing alginate/PLL spheres could activate CD4+ T cells from their resting state into an immunomodulatory state (Figure 6A). CD4+ T cells include both T helper cells and T regulatory (Treg) cell populations. In subsequent experiments, we showed that controlled release of the functional anti-CD3e monoclonal antibody in vivo in RIP-OVA/Rag-/- (RO/RAG) mice, which model
autoimmune (type 1) diabetes (described under Aim 1, Task 5) resulted in a lack of proliferation of autoreactive CD4+ T cells (Figure 6B). The cause of the suppression of proliferation has not yet been determined, but it is likely the result of elimination of the autoreactive T cells by anti-CD3e antibody-induced apoptosis, a known effect of this particular antibody clone. Whatever the cause, the suppression of T cell activity by the anti-CD3e antibody was reflected by the absence of immune attack in vivo of both native and transplanted pancreatic islets in RO/RAG mice treated with the antibody (see Task 10).

In addition to the in vivo studies using the anti-CD3e antibody, we began parallel studies of the influence of controlled release of MMW-HA on T cell behaviors in vivo. For the studies with MMW-HA, we designed a new CI testbed consisting of a polyvinyl alcohol sponge with peripheral holes to hold six alginate spheres, each of 10 µL volume (2 mm diameter) (Figure 7). From our prior experiments, we showed that the release of MMW-HA from uncoated alginate spheres in vitro was compatible with the time required to induce an autoimmune response in our RO/RAG mouse model—essentially 100% of the MMW-HA was released from the spheres within 2 weeks (Figure 8A). Consequently, our initial experiment evaluated the immunomodulatory effects of MMW-HA in vivo, rather than testing the effects of HMW-HA, which has a much slower, more prolonged release from alginate (the relatively slow release of HMW-HA may prove useful for long-term immunomodulatory treatments). CIs incorporating six alginate spheres, each loaded with 32 µg of MMW-HA (for a total of 192 µg of HA in each testbed) were implanted into the mesenteric pockets of two RO/RAG mice (one of these mice died from a post-operative injury). Two additional control mice received CIs with alginate spheres lacking HA. After 11 days, CD4+ T cells were isolated from four locations within the animals: the spleen (Spln) and the mesenteric, iliac, and axillary lymph nodes (MLN, ILN, and ALN, respectively). These T cells were assessed for their degree of immune "activation", as indicated by their loss of the molecule L-selectin. Implants that contained the anti-CD3e antibody were significantly more effective at activating T cells than were control implants that lacked the antibody. B) An experiment performed using the RO/RAG mouse model of autoimmune (type 1) diabetes. As in the experiment described in Panel A, mice received implants either containing anti-CD3e antibody or lacking the antibody. Subsequently, the mice received an injection of DO11.10 CD4+ T cells and a priming injection of ovalbumin (OVA) peptide. After 11 days, CD4+ T cells were removed from the mice and exposed in culture to various concentrations of the OVA peptide, to reactivate the cells. CD4+ T cells from the three mice that received implants lacking antibody (animals K4525, K4526, and K4534, shown on the left-hand side of the graph) were stimulated by the OVA peptide to proliferate (as measured by incorporation of 3H-thymidine). In contrast, immune cells from the three mice that had received the anti-CD3e antibody-loaded implants (animals K4527, K4528, and K4535, shown on the right-hand side of the graph) had very low proliferative responses after OVA peptide exposure, which indicated that the antibody had strongly influenced T cell behavior.

In addition to the in vivo studies using the anti-CD3e antibody, we began parallel studies of the influence of controlled release of MMW-HA on T cell behaviors in vivo. For the studies with MMW-HA, we designed a new CI testbed consisting of a polyvinyl alcohol sponge with peripheral holes to hold six alginate spheres, each of 10 µL volume (2 mm diameter) (Figure 7). From our prior experiments, we showed that the release of MMW-HA from uncoated alginate spheres in vitro was compatible with the time required to induce an autoimmune response in our RO/RAG mouse model—essentially 100% of the MMW-HA was released from the spheres within 2 weeks (Figure 8A). Consequently, our initial experiment evaluated the immunomodulatory effects of MMW-HA in vivo, rather than testing the effects of HMW-HA, which has a much slower, more prolonged release from alginate (the relatively slow release of HMW-HA may prove useful for long-term immunomodulatory treatments). CIs incorporating six alginate spheres, each loaded with 32 µg of MMW-HA (for a total of 192 µg of HA in each testbed) were implanted into the mesenteric pockets of two RO/RAG mice (one of these mice died from a post-operative injury). Two additional control mice received CIs with alginate spheres lacking HA. After 11 days, CD4+ T cell behavior in mice. A) Results of an experiment in which B6 mice received CIs, each containing a single alginate controlled-release sphere either loaded with 5 µg of anti-CD3e antibody (black bars) or lacking the antibody (negative controls – gray bars). After 7 days, CD4+ T cells were isolated from four locations within the animals: the spleen (Spln) and the mesenteric, iliac, and axillary lymph nodes (MLN, ILN, and ALN, respectively). These T cells were assessed for their degree of immune "activation", as indicated by their loss of the molecule L-selectin. Implants that contained the anti-CD3e antibody were significantly more effective at activating T cells than were control implants that lacked the antibody. B) An experiment performed using the RO/RAG mouse model of autoimmune (type 1) diabetes. As in the experiment described in Panel A, mice received implants either containing anti-CD3e antibody or lacking the antibody. Subsequently, the mice received an injection of DO11.10 CD4+ T cells and a priming injection of ovalbumin (OVA) peptide. After 11 days, CD4+ T cells were removed from the mice and exposed in culture to various concentrations of the OVA peptide, to reactivate the cells. CD4+ T cells from the three mice that received implants lacking antibody (animals K4525, K4526, and K4534, shown on the left-hand side of the graph) were stimulated by the OVA peptide to proliferate (as measured by incorporation of 3H-thymidine). In contrast, immune cells from the three mice that had received the anti-CD3e antibody-loaded implants (animals K4527, K4528, and K4535, shown on the right-hand side of the graph) had very low proliferative responses after OVA peptide exposure, which indicated that the antibody had strongly influenced T cell behavior.
cells were removed from the mice and exposed in culture to various concentrations of ovalbumin peptide to induce cell activation and proliferation. As shown in Figure 8B, the one surviving mouse that received MMW-HA and the two control mice all had proliferating CD4+ T cells. Therefore, the MMW-HA was not causing T cell apoptosis, which we suspected the anti-CD3e antibody was causing (Figure 6B). A comparison between the proliferation of CD4+ T cells from the MMW-HA-treated mouse and a control mouse showed no significant difference (Figure 8C). Moreover, the CD4+ T cells from both control mice and the MMW-HA-treated mouse produced similar levels of gamma interferon (IFN-γ), a cytokine produced by activated T cells (Figure 8D). Therefore, exposure to MMW-HA in vivo did not negatively affect the survival or the immunocompetence of the CD4+ T cell population. Importantly, however, the CD4+ T cells from the MMW-HA-treated mouse produced significantly more IL-10 than did corresponding cells from the control mice (Figure 8E). IL-10, which is secreted by activated CD4+ T helper and Treg populations, has potent immunosuppressive effects, acting to inhibit T cell proliferation and downregulate antigen presentation by antigen-presenting cells. Our results, therefore, suggest that controlled release of a soluble form of HA in vivo can induce CD4+ T cell-mediated immunosuppression.

Figure 8. Controlled (time)-release of MMW-HA from CI testbeds influences T cell behavior in mice. A) Kinetics of release of MMW-HA (solid circles) and HMW-HA (open circles) from uncoated alginate spheres in vitro over a period of 14 days. Essentially 100% of the MMW-HA is released within this time period. B) An experiment performed using the RO/RAG mouse model of autoimmune (type 1) diabetes, as described in Figure 9B, but substituting MMW-HA for the anti-CD3e antibody. CD4+ T cells from both control (NO HA) and experimental (HA) mice could be stimulated to proliferate by exposure to ovalbumin (OVA) peptide. C, D) Graphs indicating similarity in proliferation (C) and gamma interferon (IFN-γ) production (D) between CD4+ T cells from control (NO HA) and experimental (HA) mice. E) Graph indicating a significant increase in IL-10 production by CD4+ T cells from experimental (HA) versus control (NO HA) mice.
Task 10

Evaluation of prototype CI in rat dermal pockets for histological monitoring of biodegradation and in mouse dermal pockets for evaluation of regulatory T-cell responses (Robert Vernon, PhD).

In initial experiments, we determined that CI scaffolds comprised of denatured collagen (gelatin) sponge (Gelita-Spon™) were degraded in vivo within 3–4 days. In contrast, we observed quite a different cellular response to implanted thiol-crosslinked HMW-HA (Extracel-HP™) hydrogels (a description of these gels is found in reports for Task 3). After 7 days of residence in the peritoneal cavity of mice (in contact with gut mesentery) we found, by histology, evidence of a measured degradation of the HMW-HA hydrogel by macrophage-like “giant cells,” associated with a fibrovascular cellular infiltrate. This degradation was accompanied by vascularization of the site. In general, there was relatively low cellularity in areas of intact hydrogel, indicating that Extracel HP is not easily infiltrated by cells. This difficulty in cellularization may underlie the observation in Task 3 that immune cells do not easily traffic to the thiol-crosslinked HMW-HA-based hydrogels in vivo. It is for this reason that we are pursuing an alternative approach, under development in Tasks 9 and 10, which involves sustained delivery of soluble HA via an implantable, controlled (time) release device. In this system, the HA is not in the form an impenetrable hydrogel (it is not crosslinked), yet, because it is released slowly into the surrounding tissue, it may be available locally for a time sufficient enough to promote immune tolerance (as suggested in Task 9, Figure 8).

For evaluation of cellular responses to local delivery of immunomodulatory agents, we have developed a standardized cytoprotective implant (CI) that is implanted into the peritoneal cavity of mice (Figure 9). To provide vascularization, the CI is wrapped in a fold (pocket) of gut mesentery. This form of CI utilizes a polyvinyl alcohol (PVA) sponge scaffold that supports a type I collagen hydrogel. The PVA scaffold is not cytotoxic and appears to elicit a minimal foreign-body response. The type I collagen hydrogel allows for efficient exchange of nutrients and waste products and readily supports ingrowth of mesenteric vasculature from the host mouse. At the center of the CI is placed an alginate sphere for controlled release of bioactive agents. As indicated in Task 9, some versions of the CI can hold up to six alginate spheres (Figure 7).

As a readout for immunomodulation, we are using the DOI11.10 mouse model described under Aim 1, Task 5. We and others have shown that transfer of activated DOI11.10 CD4+ T effector cells, which recognize a peptide of the chicken protein ovalbumin, into lymphopenic (Rag-deficient) mice that express ovalbumin in the pancreas (RIP-OVA/Rag-/-, referred to as RO/RAG mice), results in the rapid onset of diabetes. This model is a rapid, sensitive means to evaluate approaches to suppress the T cell cytotoxic response directed against pancreatic islet cells, which models autoimmune dysregulation as well as elements of the inflammatory response.

In conjunction with the DOI11.10 mouse model, we used the controlled release technology under development in Task 9 to deliver immunomodulatory anti-CD3e antibody and MMW-HA locally within CIs grafted into RO/RAG mice. Histological results of the experiments utilizing the anti-CD3e antibody are shown in Figures 10 and 11. These results indicate that controlled release of the anti-CD3e antibody within the CI...
protects both the transplanted islets within the CI (Figure 10), and the native pancreatic islets (Figure 11) from autoimmune attack. As suggested by the cell proliferation data shown in Figure 9B, this immunoprotective effect is likely the result of elimination of the autoreactive T cell population by anti-CD3e antibody-induced apoptosis.

Figures 10 and 11. Effect of controlled (time) release of immunomodulatory anti-CD3e antibodies on the host response to engrafted CIs (Figure 10) and on autoimmune attack of native, pancreatic islets (Figure 11). CIs incorporating 200 donor islets were implanted into RO/RAG mice in mesenteric pockets. Each CI contained a single alginate controlled-release sphere loaded with antibody carrier buffer only (negative controls – A, B) or loaded with 5 µg of anti-CD3e antibody (C, D). After injection of DO11.10 CD4+ T cells and OVA priming, as described in Figure 6B, the CIs and pancreata were removed at Day 11 of the experiment and processed histologically. Figure 10 A, B) Host cellular infiltrates within negative control CIs include high numbers of lymphocytes, as indicated by the presence of abundant basophilic nuclei (orange arrows) in the section. These lymphocytes have begun to surround and penetrate the donor islets (green arrows). C, D) In contrast to the negative controls, the CIs incorporating the anti-CD3e antibody have a much lower level of lymphocytic infiltrate and the implanted islets (green arrows) are clearly visible. Figure 11 A, B) Native islets (green arrows) in the pancreata of mice that received the negative control CIs have an abundant lymphocytic infiltrate (orange arrows) representing an autoimmune response mounted against the islets. C, D) In contrast to the negative controls, native pancreatic islets (green arrows) of mice that received the CIs incorporating anti-CD3e antibody have no evidence of lymphocytic infiltrate. In both Figures, specimens are stained with H & E. All scale bars are 100 µm.

Task 11
Development of myobridges using uniaxial supports and collagen gels populated with myoblastic cells. Histological evaluation of cultured myobridges for cell survival, new muscle cell generation, proliferation, and differentiation (Margaret Allen, MD).

The goal of Aim 2B is to develop a cell-seeded construct, or “myobridge,” with a biocompatible natural extracellular matrix (ECM) scaffold to support myogenic cell growth. The construct is designed to be “implant ready,” incorporating biodegradable sutures for anchoring the construct to both ends of the native muscle defect. A current focus is on the potential benefits of pre-culturing the seeded cells under tension, so that cells are pre-aligned in the direction of function prior to implantation.
**Construct design**

We have developed a finalized version of the construct that is the appropriate length for transplanting into rats at the site vacated by removal of the tibialis anterior muscle (Figure 12). For the transplant studies, the nylon (nitex) mesh used in the prototype is replaced with surgical-grade Vicryl (polyglactin 910) mesh which biodegrades within six weeks after implantation.

![Final Design](mesh-encased-with-scaffold-on-either-end.png)

**Figure 12.** Final version of the myobridge construct.

**Biomechanical testing**

The relationship between ECM stiffness and myoblast differentiation was tested using C2C12 mouse myoblasts and primary mouse skeletal myoblasts. Constructs were subjected to passive strain testing to quantify construct stiffness/elasticity. Young’s modulus was calculated from the following equation where the numerator is equivalent to tensile stress and denominator represents an applied strain:

\[
E = \frac{F/A_0}{\Delta L/L_0}
\]

Stress/strain curves were generated for each construct. After each stretch, the tensile force was allowed to reach a steady-state value before the next strain interval was introduced. The constructs were not strained to failure, but instead were visually monitored so testing could be halted before tearing occurred. A calibration curve was performed using known masses, allowing the amplitude of the traces to be converted to force readings in pascals. Data were analyzed using Excel.

Mechanical testing data were collected from constructs composed of different ratios of type I collagen to high molecular weight hyaluronan (HMW-HA) (HystemHP™, Glycosan Biosystems). Figure 13A shows the calculated moduli of acellular ECM-only constructs. Even slight alterations in the ratio of collagen to HMW-HA affected the stiffness of the construct. Whereas the 50% collagen/50% HMW-HA constructs had the highest stiffness of the three mixtures, increasing the amount of collagen relative to HMW-HA caused the stiffness to decrease from about 9 Pa to 4 Pa (Table 1). Such a result indicates that the HMW-HA polymerizes into a stiffer hydrogel than does collagen.

Young’s modulus data from cell-seeded constructs are shown in Figure 13B. Constructs made of different matrices were seeded with \(3.33 \times 10^6\) C2C12 cells/ml and incubated for 21 days in differentiation media. The HMW-HA component, HystemHP, has been used to advantage in the growth of other stem cell types, but has not been previously used with myogenic stem cells or skeletal muscle. HMW-HA is expected to have anti-inflammatory properties and the thiol cross-linked HyStemHP is designed to prevent HMW-HA breakdown by host enzymes into pro-inflammatory low molecular weight fragments.

Cell seeding profoundly affected construct stiffness. Furthermore, the effect of adding HMW-HA was the opposite in cell-seeded than in unseeded constructs. At the seeding density used, greater relative amounts of
HMW-HA caused the stiffness of the seeded constructs to decrease significantly (95% collagen/5% HMW-HA vs. 50% collagen/50% HMW-HA, p < 0.05). Ideally, we are seeking to match the stiffness of adult skeletal muscle, which is reported in the literature as varying from 6–12 kPa (6,000-12,000 Pascal; Krouskop, 1987; Gilbert, 2010). Notably, in these first pilots, the stiffnesses reported in the cell-seeded constructs are lower than this range. However, it is recognized that these cells are still very immature and not engaging the matrix to the same extent as adult myocytes, so further change is expected after full differentiation and matrix remodeling.

Table 1. Collected stiffness data for unseeded and seeded constructs (corrected).

<table>
<thead>
<tr>
<th>Composition</th>
<th>95% Coll.-5% HA</th>
<th>90% Coll.-10% HA</th>
<th>50% Coll.-50% HA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stiffness</td>
<td>0.0026 kPa</td>
<td>0.0035 kPa</td>
<td>0.0090 kPa</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>0.0018</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 1. Collected stiffness data for unseeded and seeded constructs (corrected).

<table>
<thead>
<tr>
<th>Composition</th>
<th>95% Coll.-5% HA</th>
<th>90% Coll.-10% HA</th>
<th>50% Coll.-50% HA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stiffness</td>
<td>0.0404</td>
<td>0.0173</td>
<td>0.0156</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>0.0027</td>
<td>0.0009</td>
<td>0.0062</td>
</tr>
</tbody>
</table>

Figure 13. Young's modulus for three ECM compositions using C2C12 cells. Young’s modulus in unseeded (A) and cell-seeded (B) constructs cultured for 21 days. Shaded areas show Young's modulus for normal adult skeletal muscle. The cells here are immature, so exact duplication of adult skeletal muscle stiffness is not expected at this early time point. Error bars show standard deviations.

References


**Source of myoblasts (primary satellite cells isolated from mouse hindlimb muscle tissue)**

We have been testing the relationship between ECM stiffness and myoblast differentiation using the C2C12 mouse myoblast cell line and primary mouse myoblasts. Over the past year, we have switched our cell source from preplate-isolated muscle-derived stem cells (MDSCs) to satellite cells, which more reliably produce a higher yield of myogenic precursors. We have successfully isolated and characterized satellite cells from mouse hindlimb and are now using these primary cells in all biomechanical testing and confocal analyses. Notably, we have found that these cells can generate myofibrils within our constructs (Figure 14).

**Confocal microscopy of constructs seeded with primary mouse myoblasts**

Evaluation of primary mouse myoblasts (satellite cells) embedded in a 1 mg/ml collagen construct was performed using confocal microscopy in conjunction with LIVE/DEAD assays (Invitrogen), phalloidin staining to visualize actin organization, and propidium iodide to label cell nuclei. Confocal scans were performed at various resolutions and depths to characterize cell development and interaction within the constructs (Figure 14).

In our initial studies, we observed higher levels of cell death in constructs composed solely of collagen (at 1 mg/ml) that were seeded with C2C12 cells. Our more recent supplementation of collagen with HystemHP appeared to reduce cell death, probably by allowing diffusion of nutrients into the center of the construct, which ranges from 1.5 mm to 5 mm in thickness, depending on ECM composition, cell density, and length of time allowed for myoblasts to differentiate (4 days to 6 weeks). These experiments will be repeated and verified using primary mouse myoblasts. Balancing ECM stiffness and cell viability is essential for defining the optimal conditions for myogenic growth. Experiments are currently in progress to test the effects of various ECM formulations of collagen and HystemHP on the ability of primary myoblasts to grow, differentiate, and increase Young’s modulus towards a stronger, more muscle-like tissue.

**Isolation and culturing of muscle stem (satellite) cells from rat EDL and TA muscle tissue**

Over the past year, we have isolated satellite cells (myoblasts) from rat tibialis anterior (TA) and extensor digitorum longus (EDL) muscles for inclusion in our studies. In brief, rat satellite cells from freshly excised TA and EDL muscles were isolated using Pronase digestion, as described by Kastner (Kastner et al., 2000), then cultured on gelatin-coated tissue culture dishes. Early passages of the muscle cells from the EDL and TA showed that ~30% from the EDL and ~25% from the TA expressed MyoD (Figures 15A and 16A)—a key transcriptional regulator of skeletal muscle commitment and differentiation. When induced to terminally differentiate, these cells formed fused myotubes and began to express contractile proteins such as myosin (Figures 15B and 16B). To expand the cultured myoblasts we tested two previously published mitogen-rich
growth media conditions; one based on DMEM (Kastner et al., 2000) and one based on Ham's F-12K (Rando and Blau, 1994). To test whether the rat satellite cells could be expanded, we compared the myogenic potential of rat satellite cells following passage (Figure 17). Satellite cells from successive passages were grown in either DMEM or F12-K based growth media and then switched to low-mitogen differentiation media. Four days after the switch, the cells were fixed and probed with anti-myosin mAb and DAPI nuclear stain. Myogenic index was taken as the percent of total nuclei associated with a myosin+ cytoplasm. The myogenic index for satellite cells grown in DMEM or F12-K decreased after successive cell passaging. A possible explanation for this is that even in the most favorable culture conditions for the satellite cells, the 70–80% of non-muscle cells in the culture still out-compete them. To solve this problem, we are designing satellite cell isolation strategies that include differential cell adhesion techniques as well as purification based on muscle-specific cell surface antigens, such as α-7 integrin (Blanco-Bose et al., 2001).

Figure 15. Satellite cells isolated from 16-week-old rat EDL muscle express MyoD and can differentiate into myosin-positive myotubes. Cells isolated from the EDL muscle were cultured in mitogen-rich media for several days (A), fixed and then probed with anti-MyoD (red nuclei) and anti-myosin (green cells) antibodies. Nuclei were counterstained with DAPI (blue). B) Four days after mitogen withdrawal, MyoD-positive cells form elongated fused myotubes and express myosin, a marker of late-stage muscle differentiation.
Figure 16. Satellite cells isolated from 16-week old rat TA muscle express early and late markers of skeletal muscle differentiation. A) Cells isolated from the TA muscle were cultured under proliferation conditions and probed with an antibody specific for the early muscle regulatory marker, MyoD (red nuclei). When placed under differentiation conditions (B), the TA satellite cells form myosin-positive (green) myotubes.

Figure 17. Passaging primary rat muscle cell cultures has a negative effect on the myogenic capacity of the cells. Rat muscle cells from the TA were expanded in DMEM or F12-K based growth media and tested for myogenic potential after being switched to low-mitogen differentiation media. Four days after the switch, the cells were fixed, probed with anti-myosin antibody and then counterstained with DAPI nuclear stain. Myogenic potential of the muscle cultures was quantified as the percent of nuclei associated with myosin⁺ cells expanded in either DMEM or F12-K mitogen-rich media. In both media conditions, a decrease in the percentage of cells capable of muscle differentiation was observed with successive passages.
Fibrin Construct Design

Thus far, our myobridge constructs have consisted of embedded myoblasts in collagen/HMW-HA matrix. When induced to differentiate, these myobridges formed twitching constructs in vitro that express well-organized sarcomeres. However, after two weeks of culture, most of the muscle cells were distributed in the outer periphery of the construct. The central core was found to be more sparsely populated. To address this problem, we are collaborating with Drs. Marta Scatena and Michael Regnier from the University of Washington to utilize the porous scaffolds they have designed for engineering cardiac muscle tissue (Madden et al., 2010), which has similar physical properties to skeletal muscle. The scaffold is based on a novel “bimodal” architecture that includes parallel channels large enough to contain differentiating myofibers. The channels are surrounded by smaller, interconnected pores that provide passages for diffusion and neovascularization. The original design of the cardiac tissue scaffolds used poly (2-hydroxyethyl methacrylate-co-methacrylic acid) (pHEMA-co-MAA).

To improve biodegradation of the scaffold, Drs. Scatena and Regnier have replaced the pHEMA-co-MAA with fibrinogen, a native plasma protein mediating clot formation and platelet aggregation. In the presence of the protease thrombin, fibrinogen polymerizes into strong, elastic fibers (fibrin). Fibrin has been successfully used in tissue engineering as biodegradable scaffold that could be autologously sourced (i.e., from the patient’s own plasma) (Linnes et al. 2007). Experiments are underway to evaluate bimodal, fibrin-based myobridge scaffolds that are 2 mm in diameter and 4 mm in length. The new scaffolds have been seeded with 2 x 10^6 myoblasts and will be cultured for one week under conditions that will induce either proliferation or differentiation. After culture, the constructs will be evaluated histologically by H&E (to assess cell density of the construct), trichrome blue (to measure ECM content), and anti-MyoD and myosin immunostains (to determine levels of muscle-specific differentiation).

References


Task 12

Implantation of cell-seeded myobridges into female F344 rat tibialis anterior, with histological analysis after 3 weeks (Margaret Allen, MD).

In vivo pilot experiments in rats are in progress. As previously reported, the tibialis anterior muscle was first excised and fixed to determine the size and shape of the molds needed for construct fabrication. Following the dimensional analyses, we tested various suturing techniques for securing Vicryl sutures to the tibialis anterior tendon and native muscle remnants.

Control experiments in which acellular scaffold materials are implanted alone (without cell seeding) are ongoing. These serve as baseline studies to examine the extent and time course of native muscle regeneration.
and muscle cell repopulation of the various scaffolds without cell implantation. Also, we are examining the time course of leukocyte infiltration and host vascularization/angiogenesis of the different ECM scaffolds, with and without the cytoprotective agent cobalt protoporphyrin (CoPP). These studies should determine not only the optimal forms of ECM for in vivo use, but also establish the appropriate time points for implantation of cell-seeded constructs. Neither collagen, nor HystemHP, nor the combined collagen/HystemHP scaffolds elicited an inflammatory reaction in rats.

**Task 13**

**Supplementation of myobridges with CoPP and regulatory modulators from Aim 1, prior to implantation (Margaret Allen, MD).**

We have previously shown that upregulation of the cytoprotective factor heme oxygenase-1 (HO-1) by its transcriptional activator, CoPP, increases the survival of MDSCs in vitro under hypoxia/reoxygenation protocols designed to mimic the ischemic stress of in vivo cell implantation. For these in vitro studies, CoPP is simply added to the cell culture medium. In addition to planned pre-treatment of cells with CoPP prior to construct seeding and implantation, we have explored whether CoPP (+/- other cytoprotective factors developed in Aim 9) would be appropriate additives to be released from within construct scaffolds and thus available to modify the myobridge environment post-implantation.

**In vitro studies of CoPP effects on satellite cells**

We evaluated the effects of CoPP on primary mouse myoblast differentiation and proliferation/dedifferentiation (Figure 18). Mouse myoblasts were seeded onto collagen-coated plates in proliferation medium (Ham’s F-12K supplemented with 20% FBS, 2% horse serum, 10 ng/ml of basic fibroblast growth factor, and antibiotics). Twenty-four hrs after plating, cells were switched to differentiation medium (DMEM supplemented with 20% horse serum and antibiotics) with and without 25 µM CoPP. Plates were collected for analyses at 0 hrs, 12 hrs, 24 hrs, 36 hrs, and 48 hrs after the change of medium. Cultures were pulsed with BrdU 1 hr prior to collection at each time point. Proliferating cells (identified by BrdU incorporation) and terminally-differentiated muscle cells (identified by expression of myosin) were scored as a

![Figure 18](image-url). Effects of CoPP on satellite cell proliferation and differentiation at 48 hrs. (A) Undifferentiated. (B) Differentiation in absence of CoPP. (C) Differentiation in presence of CoPP. Blue = DAPI-stained cell nuclei; Green = MF20 antibody staining for myosin; Red = BrdU-staining of nuclei in proliferating cells.
percentage of the total cell number (determined by counting all cell nuclei). This assay will provide a means to
analysis of the effects of CoPP on muscle cell proliferation and differentiation.

**Addition of CoPP to collagen/HMW-HA-scaffolded constructs**

Experiments have also been performed to examine how CoPP affects the growth and differentiation of
satellite cells seeded into collagen, HystemHP, and collagen/HystemHP hydrogel constructs. For these *in vitro*
 studies, a hypoxia chamber was used to mimic the ischemic conditions that cells experience in the critical
period immediately after *in vivo* implantation, but prior to host vascularization. Experiments explored the
effects of adding CoPP to cell-seeded, three-dimensional constructs exposed to hypoxia. Also, HMW-HA was
added to the construct in the form of the thiol-crosslinked HA hydrogel, HystemHP.

Murine satellite cells were isolated, expanded, and seeded at 1 x 10^6 cells/ml into matrices prepared of
collagen:HystemHP ratios of either 0.95: 0.05 mg/mg per ml or 0.50:0.50 mg/mg per ml. 25 µM CoPP, the HO-
1 inducer, or 25 µM SnPP, an HO-1 activity inhibitor, was added to the matrix at the time of cell seeding.

Constructs were incubated for 24 hrs in proliferation medium, then switched to differentiation medium. Half
the constructs were placed in a hypoxia chamber (0.5% O_2, 5% CO_2, 37°C) and half were incubated under
normoxic conditions (atmospheric O_2, 5% CO_2, 37°C) for 72 hrs. Constructs were imaged by phase contrast
microscopy at 24, 48, and 72 hrs.

Under phase contrast microscopy, hypoxia appeared to enhance cell alignment within the constructs
(Figure 19A,B) and this phenomenon was more evident in constructs with higher HA content (Figure 19B,
black arrow). The addition of CoPP to the matrices appeared to further enhance cell alignment, again most
notable at 72 hrs in the constructs with higher levels of HA (Figure 19B, black arrow). Whether this alignment
is actually an indication of satellite cell differentiation is now being investigated by immunostaining the cells
for the muscle differentiation markers MyoD and myosin.

After 72 hrs, constructs were stained with the LIVE/DEAD staining kit (Invitrogen), fixed overnight in
4% paraformaldehyde, and then stained with phalloidin to visualize F-actin filaments and with propidium iodide
to visualize cell nuclei (Figure 19C,D). Cells were then analyzed by confocal microscopy as z-stacks
comprised of 76 scans, each 2 µm deep across a depth of 150 µm. The z-stacked images showed enhanced axial
alignment of F-actin positive cells and greater cell density with the combination of CoPP and higher HA content
under conditions of hypoxia (Figure 19D, black arrow). This effect of CoPP on hypoxic cultures seemed to be
lost with the addition of the HO-1 inhibitor, SnPP. These preliminary observations, however, will be confirmed
with formal quantitative analysis.

A focus over the past year has been to explore the potential advantage of culturing the cellularized
myobridge constructs under tension so that the cells become pre-aligned along the axis of the myobridge prior
to implantation. The time required for alignment will determine how long the constructs would need to be kept
in culture prior to implantation *in vivo*. Our results in Year 2 suggest that, even for constructs cultured under
tension, exposure to hypoxia and the addition of CoPP to the scaffold may improve the degree of cell alignment.
These findings suggest that cell alignment could be maintained even after the constructs are implanted *in vivo*. 
Figure 19A. Three-dimensional constructs composed of collagen/HMW-HA matrices seeded with primary mouse myoblasts. Photographs taken under phase contrast microscopy at 48 and 72 hrs. Constructs are composed of 0.95 mg/ml type I collagen and 0.05 mg/ml HystemHP HMW-HA hydrogel.
Figure 19B. Three-dimensional constructs composed of collagen/hyaluronan matrices seeded with primary mouse myoblasts. Photographs taken under phase contrast microscopy at 48 and 72 hrs. Constructs are composed of 0.5 mg/ml type I collagen and 0.5 mg/ml of HystemHP.
Figure 19C. Confocal analysis of constructs after 72 h of normoxia (atmospheric O$_2$). LIVE/DEAD staining

*green = actin, blue = cell nuclei, red = dead cells

Figure 19D. Confocal analysis of constructs after 72 h of hypoxia (0.5% O$_2$). LIVE/DEAD staining

*green = actin, blue = cell nuclei, red = dead cells
Task 14
Co-transplantation of myobridges and CIs to evaluate effects of CI-mediated immunomodulation on integration of the myobridge with host tissues (Margaret Allen, MD).

For Task 14, our ongoing studies will evaluate the performance of a CI comprised of cytokine-releasing alginate spheres (Task 9) carried in a soft, conformable, biodegradable scaffold of type I collagen. The scaffold will be comprised of Gelita-Spon™ gelatin sponge or a 2.5 mg/ml native fibrillar collagen hydrogel. Both collagenous media can be molded to fit the surgical bed and will degrade within a few days, leaving the spheres distributed throughout the myobridge implantation site. Preliminary surgical experiments on rats will test the following implants introduced into the tibialis anterior cavity: 1. collagen scaffold alone, 2. collagen scaffold carrying alginate spheres, 3. myobridge construct with the collagen scaffold carrying alginate spheres, and 4. myobridge construct with embedded alginate spheres plus the collagen scaffold carrying alginate spheres. Parameters to be evaluated include: level of cytotoxicity and inflammation at the implantation site, degradation of the collagen scaffold and alginate spheres, and influence of the scaffold/sphere construct on the characteristics of the myobridge. As an alternative to use of alginate spheres for cytokine delivery, the HystemHP incorporated into the construct matrix could be utilized for controlled release of growth factors, as it is formulated with thiolated heparin specifically for this purpose.

Task 15
In vitro seeding of myobridge prototypes with human myogenic stem cells for evaluation of human cell compatibility with hydrogel components (Margaret Allen, MD).

IRB approval for the continuing review of this protocol was obtained from BRI, with USAMRMC acknowledgement of continuing review received 11/28/11. We are in the final stages of setting up the protocols with the physicians, nurses, and operating room staff in the Virginia Mason Medical Center Orthopedics Department for procuring donated skeletal muscle tissue from surgeries. We expect to begin receiving human tissue specimens and beginning human satellite cell isolations within the next month.
3. KEY RESEARCH ACCOMPLISHMENTS FOR AIM 2 (Tasks 9–15)

**Task 9**
- Expanded our studies of controlled release of immunomodulatory agents. We showed that the release of HMW-HA from small alginate spheres can be modulated by coating the spheres with poly-L-lysine (PLL). Importantly, our preliminary data indicate that PLL coatings can regulate the release of antibodies from alginate: specific coating parameters resulted in linear release of antibodies from alginate for at least 2 weeks.

- Established that the release kinetics of HA from small alginate spheres can be modulated by altering the molecular weight of the HA. In addition, we expanded our studies of antibody release from poly-L-lysine-coated alginate, demonstrating that an immunomodulatory antibody to CD3e can be released in a linear fashion for at least 10 days. These results demonstrated the feasibility of delivering specific immunomodulatory antibodies such as CD3e or others (e.g., anti-CD28, anti-IL-2/IL-2 complex) locally within graft and wound sites.

- Supplemented our alginate-based, controlled-release studies of anti-CD3e antibody and HA in vitro with new studies in vivo in which alginate spheres loaded with either MMW-HA or anti-CD3e antibody were incorporated into CI testbeds and implanted into mice in a mesenteric pocket. These studies showed that the alginate spheres are highly biocompatible and release the compounds in bioactive forms that elicit appropriate (i.e., angiogenic/immunomodulatory) responses from their target cell types within the host.

**Task 10**
- Developed a standardized cytoprotective implant (CI) for implantation into mice, thereby enabling the use of well-defined models of autoimmunity established for this species. The CI utilizes a polyvinyl alcohol sponge scaffold that supports a type I collagen hydrogel and encloses one or more alginate spheres for controlled release of bioactive agents.

- Used the PVA sponge/collagen CI to evaluate the delivery of an immunomodulatory agent (CD3e antibody) into RO/RAG mice (a model of autoimmune dysregulation). As a readout, we performed histological analyses of CIs implanted for 11 days into RO/RAG mice primed for induction of autoimmune responses against transplanted islets that were incorporated into the CIs. Autoimmune responses directed against native islets (i.e., in the animals’ pancreata) were also evaluated. Results indicated that controlled release of anti-CD3e antibody within the CI (via the alginate microspheres) protected both the transplanted islets and the native pancreatic islets from autoimmune attack.

**Tasks 11–15**
- The design and fabrication methods for the “myobridge” construct have been developed, including a means to deliver tension to the construct during culture to encourage cell pre-alignment. Construct size has been increased such that the length is now suitable for replacement of rat tibialis muscle.

- Biomechanical testing shows that adding cells to scaffold matrices induces marked changes in the stiffness and elasticity of the constructs, which is further influenced by the ratio of collagen to HMW-HA in the scaffold. Notably, higher cell density in the constructs promotes cell-cell interactions that allow cell fusion during differentiation.

- Rat myoblasts (satellite cells) have been successfully isolated, allowing experiments to begin examining the effect of CoPP on myoblast proliferation and differentiation.

- Demonstrated that extent of satellite cell alignment within constructs is markedly affected by matrix composition.

- Animal model development is underway. In vivo pilots with implants of acellular scaffold materials of different compositions are ongoing. Preliminary results show that collagen and HMW-HA scaffolds do not elicit an inflammatory response.
• Preliminary results from in vitro pilot experiments suggest that the addition of the cytoprotective agent CoPP to the scaffold may have an effect on cell reorganization of scaffold matrix.

• Initial studies suggest that the addition of the cytoprotective agent CoPP to the scaffold also facilitates cell alignment during hypoxia. An HO-1 inhibitor appeared to abrogate this effect. Also, addition of CoPP to construct scaffolds also results in improved cell survival in three-dimensional constructs under hypoxic stress.

• Preliminary findings suggest that exposure of myoblast-seeded three-dimensional constructs to hypoxic conditions, as would occur after construct implantation in vivo, also fosters myoblast alignment.

• We have found that addition of thiol-crosslinked HMW-HA (HystemHP) to collagen gel constructs seeded with cells appears to reduce cell death within the scaffolds.

• Novel fibrinogen scaffolds are being tested as an alternative support system for myobridges.

• For Task 15, IRB approval for the continuing review of the protocol was obtained from BRI, with USAMRMC acknowledgement of continuing review. We are in the final stages of setting up the protocols with the physicians, nurses, and operating room staff in the Virginia Mason Medical Center Orthopedics Department for procuring donated skeletal muscle tissue from surgeries.
4. REPORTABLE OUTCOMES

Publications and Manuscripts


Abstracts/Presentations


Pending Grants

1. NIH R01 Application, (Dual submission NIDDK/NIBIB) “In vivo Islet Survival and Tolerance Induction in Non-Encapsulated Islet Transplants” (J. Gebe, Benaroya Research Institute, PI; R. Vernon, Co-Investigator, February, 2012. This proposal incorporated data generated from Tasks 9 and 10.

2. American Diabetes Association Basic Science Award, "Islet Survival and Tolerance Induction in Non-Encapsulated Islet Transplants" (J. Gebe, Benaroya Research Institute, PI; R. Vernon, Co-Investigator), March, 2012. This proposal incorporated data generated from Tasks 9 and 10.

3. NIH R01 Application (NIA) “Hyaluronan and Aging” (M. Reed, U. of Washington, PI; R. Vernon, Co-Investigator), February, 2012. This proposal incorporated data and technology generated from Task 9.

Patents and Licenses Applied For

1. IMPLANTABLE DEVICE FOR CELL TRANSPLANTATION AND METHODS OF USE. JA Gebe and RB Vernon. U.S. Patent Application No. 61/593,040 Filed: 01/03/12. This patent incorporated data generated from Tasks 9 and 10.
Degrees Obtained that are Supported by this Award

Jon McMichael (Margaret Allen, Michael Regnier, mentors). Thesis accepted June 8, 2011, by the University of Washington Bioengineering Undergraduate Program. Bachelor’s degree in Bioengineering, awarded June, 2011.
5. CONCLUSION

5.1. Task Summaries (Tasks 9–15)

Task 9 (Aim 2A)

Task 9 focuses on engineering and fabrication of the CI. In Year 2, we have made significant progress in technologies for controlled release of bioactive compounds within the CI. Methods were developed to fabricate 2 mm diameter spheres (macrospheres) comprised of Ca\(^{++}\)-crosslinked alginate hydrogel. Subsequent experiments with the macrospheres demonstrated their capability for controlled release of angiogenic cytokines (VEGF) and HMW-HA, which has been shown to suppress inflammation and scar formation. Importantly, it was shown that HMW-HA could be released in vitro from the alginate in a linear manner for extended periods of time—potentially up to 3 months, which suggests the potential of this method of drug delivery to provide long-term suppression of inflammation and fibrosis in wound and graft sites. Also of significance was the finding that release of HMW-HA could be controlled by varying the degree of Ca\(^{++}\) crosslinking of the alginate or, alternatively, by coating the alginate with poly-L-lysine (PLL). These methods of control may make it possible to tailor the rate and duration of HMW-HA administration to specific therapeutic requirements.

In addition to our studies of HMW-HA release from alginate, we have shown that PLL coatings can influence the release rate of relatively low molecular weight compounds, such as antibodies, from alginate hydrogel. In this context, we have shown that an immunomodulatory antibody to CD3e can be released in vitro in a linear fashion for at least 10 days. This finding may prove to be particularly important for the function of the CI, in that controlled delivery of TCR signaling molecules (e.g., anti-CD3/CD28 antibodies) and cytokines from alginate could augment the stimulation provided by HMW-HA, thereby resulting in an extra, prolonged presence of these agents for maximal induction of Treg persistence and function.

Task 10 (Aim 2A)

In Year 2, we developed a standardized cytoprotective implant (CI) for implantation into mice, thereby enabling the use of well-defined models of autoimmunity established for this species. The CI utilizes a polyvinyl alcohol sponge scaffold that supports a type I collagen hydrogel and encloses one or more alginate spheres for controlled release of bioactive agents (developed under Task 9). Task 10 has evaluated the responses of tissues in vivo to prototypical components of the CI. By histology, it was shown that thiol-crosslinked HMW-HA hydrogels (e.g., Extracel-HP) are not easily infiltrated by cells prior to degradation by macrophage-like cells. Degradation of the HMW-HA hydrogel is followed by penetration of the CI with a fibrovascular cellular infiltrate. In contrast to the properties of the HMW-HA hydrogel, supportive hydrogels made from type I collagen are readily cellularized by the host.

We also used the PVA sponge/collagen-based CI to evaluate the delivery of an immunomodulatory agent (CD3e antibody) into RO/RAG mice (a model of autoimmune dysregulation). As a readout, we performed histological analyses of CIs implanted for 11 days into RO/RAG mice primed for induction of autoimmune responses against transplanted islets that were incorporated into the CIs. Autoimmune responses directed against native islets (i.e., in the animals’ pancreata) were also evaluated. Results indicated that controlled release of anti-CD3e antibody within the CI (via the alginate microspheres) protected both the transplanted islets and the native pancreatic islets from autoimmune attack.

Tasks 11–15 (Aim 2B)

Major loss of skeletal muscle from battlefield injuries and compartment syndrome is one of the most devastating, but common, problems encountered in military medicine. Although many devices and therapies exist for correcting defects in bone, there is currently no way to generate suitable functioning replacement tissue for skeletal muscle. Tasks 11–15 address the production and testing of “myobridges,” composed of autologous muscle stem cells and natural ECM materials as a means to solve this problem.

During Year 2, the design and fabrication methods for the “myobridge” construct have been refined, including a means to deliver tension to the construct during culture to encourage cell pre-alignment. Construct
size has been increased such that the length is now suitable for replacement of rat tibialis muscle. *In vivo* pilots with implants of acellular scaffold materials of different compositions show that collagen and HMW-HA scaffolds do not elicit an inflammatory response.

For the *in vitro* arm of Aim 2B, rat myoblasts (satellite cells) have been successfully isolated, allowing experiments to begin examining the effect of cell density, ECM components, and the cytoprotective agent CoPP on myoblast proliferation and differentiation. We have found that adding cells to myobridge scaffold matrices induces marked changes in the stiffness and elasticity of the constructs, which is further influenced by the ratio of collagen to HMW-HA in the scaffold. Not unexpectedly, higher cell densities in the scaffolds promote cell-cell interactions that allow cell fusion during differentiation. Moreover, addition of HMW-HA in the form of a thiol-crosslinked gel (HystemHP) to type I collagen gel-based scaffolds appears to reduce cell death. With respect to use of cytoprotective factors in the myobridge, our preliminary findings suggest that addition of CoPP to cellularized ECM scaffolds influences cell-mediated reorganization of the matrix and, under hypoxic stress, improves cell survival and facilitates cell alignment.

The overall goal of Aim 2B is to regulate the local micro-environment around the implanted myobridge to maximize the survival and proliferation of seeded cells, to foster host vascularization, and to dampen the innate immune response of the host to the graft. This will be accomplished by choice of biomaterials and supplements within the myobridge graft, as well as by the presence of the CI under development in Aim 2A.

### 5.2. “So What Section” – Evaluation of the Knowledge as a Scientific or Medical Product

**Contribution of Aim 2 (Tasks 9–15) to the Project**

This research program has a strongly translational focus—the primary objective being to develop a means to control the process of wound repair to achieve an optimal outcome where inflammation is controlled in a fashion that promotes healing and minimizes scarring. To achieve this objective, the problem has been addressed using a number of novel approaches (represented by Tasks 1–15) that are constituted to yield results that can be combined into a single device (medical product) that we refer to as the *Cytoprotective Implant* (CI). The overarching “theme” of each of these approaches—and of the CI as a whole—is that they make use of *natural* cellular processes and materials to achieve the desired result. These approaches include: 1) stimulation of the expansion, persistence, and activity of Tregs to make use of their native capacity to control the inflammatory process (*cytoprotection*), 2) the use of natural extracellular matrix (ECM) hydrogels, of specific formulations, as key stimulators of Treg-mediated cytoprotection, 3) the incorporation of strategies for local, controlled release of natural cytokines and ECM components from within the CI that will accelerate vascularization, provide long-lasting stimulation of Treg activity, and inhibit scar formation, and 4) the use of mechanically-strong natural, biodegradable ECMs as a supportive scaffold for the ECM hydrogel components.

We believe that use of natural cellular processes and materials to promote cytoprotection, combined with strategies of local delivery of bioactive agents, will optimize healing and minimize undesirable systemic side-effects.

The four approaches listed above are concerned with development of the CI itself and include *basic science* studies in Aim 1 to identify specific ECM components that influence Treg activation and persistence (Tasks 1–3), to investigate the properties of genes that control both the generation and functional phenotype of Tregs (Tasks 4 and 5), to characterize cell surface molecules that influence macrophage inflammatory responses (Tasks 6 and 7), and to evaluate the protective effects of inflammatory cytokine blockade (Task 8). The basic science studies are contributory to the development of the CI in that their results identify specific molecules that control immune cell behavior that could be targeted by bioactive agents incorporated within the CI.

The basic science studies of Aim 1 are coordinated with elements of *applied science and engineering* conducted in Aim 2. Work in Aim 2 includes the development of ECM-based materials that provide mechanical support, bioactivity, and controlled release functions for the CI. This is the primary objective of Aim 9, which, in Year 2, has focused on the creation of a CI designed for implantation into mice (thereby enabling the use of well-defined models of autoimmunity established for this species). In conjunction with development of the CI
for mice, Aim 9 has continued to devise controlled-release strategies (e.g., the alginate/alginate-poly-L-lysine sphere technology) for delivery of a variety of immunomodulatory compounds from the CI.

The elements of basic science, applied science, and engineering are sufficient to produce a prototypical CI; however, the objective of generating a functional medical product will be substantially facilitated by the in vivo arms of Aim 2, which evaluate tissue responses to components of the CI (Task 10) and which develop a novel, engineered tissue (the myobridge) (Tasks 11–15) that will serve as a test-bed for CI performance in the setting of a graft designed to reconstruct extensive skeletal muscle wounds. The myobridge is a critical element of the program—not only will it serve to evaluate CI performance in the scenario of wound repair and engraftment, but, if successful, it will in its own right be a highly useful medical device for treatment of skeletal muscle trauma. In Year 2, significant progress has been made in Aim 2, and we are confident that our results, collectively, will contribute to the development of a CI that controls inflammation and improves healing.
6. REFERENCES


7. APPENDICES

Publications and Manuscripts (see Appendices, Aim 1)


Abstracts/Presentations


**Abstracts**


**Introduction:** A 3–D construct seeded with autologous cells on a biodegradable scaffold could serve as tissue replacement in pelvic floor reconstruction. Our goals are to design a scaffold that incorporates suture suitable for implantation and optimizes the conditions for a seeded implant in a 3–D construct by testing various formulations of collagen and hyaluronan. **Methods:** The C2C12 mouse myoblast cell line was used. Scaffold matrix components included collagen and hyaluronan (Hystem HP™, Glycosan Biosystems). Constructs were seeded at 3, 4.5, and 6 x10^5 cells/ml and polymerized in a silicone mold. 1:1, 10:1, and 20:1 ratios of collagen:hyaluronan (C:H) were tested. Three scaffold designs were tested: constructs with a suture running through the middle, with Nitex mesh at the ends only, and with suture and mesh just inside the edges of the matrix. After 21 days, constructs were tested for passive stiffness. The constructs were then stained for dead cells, cell nuclei and filamentous actin, and confocal imaging was performed. **Results:** All construct conditions resulted in elongated, differentiated muscle cells with filamentous actin that appeared fused and multinucleated. C:H at 1:1 produced a more cellular construct with a greater proportion of elongated cells and fewer dead cells at 3 weeks than the 20:1 and 10:1 (C:H) samples (Figure 1). Constructs seeded with 6 x10^5 cells/ml and C:H of 1:1 were 2x stiffer than those seeded at lower densities. The suture-only design (tension-free) resulted in random cell aggregation. Mesh alone also resulted in cell aggregation due to lack of integration of cells into the mesh. Combining suture and mesh allowed cells to integrate into the mesh and promoted rearrangement of the cells and matrix with development of uniaxial tension between suture ends which promoted cell elongation and alignment. **Conclusions:** Greater cell viability was observed in constructs with an equal ratio of C:H. Combining suture with mesh located inside the matrix promoted the development of uniaxial tension that allowed the cells to align in the direction of tension. A higher seeding density resulted in a stiffer construct. Further testing is needed to determine the viability and functionality of constructs in vivo.

**Background:** Massive muscle loss due to traumatic injury has little chance of repair by endogenous or standard therapeutic pathways. Bioengineered skeletal muscle using muscle stem cells and natural scaffold matrices is being developed to address such injuries. The goal of this research is to develop therapeutic skeletal muscle constructs using autologous muscle stem cells with natural matrix scaffolds. **Methods:** Primary stem and satellite cells with myogenic potential have been isolated to purity and rapidly expanded in the presence of bFGF. Theses myoblasts were used to generate “myobridges,” which are elongated, implantable, skeletal muscle constructs formed using collagen and hyaluronan. To facilitate myobridge innervation, two diffusible neurotrophic growth factors, brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), are being tested for their potential to induce interconnection with neurons. **Results:** Upon withdrawal of bFGF, the muscle stem cells differentiate into multinucleated, twitching myotubes that express muscle-specific structural proteins and form well-organized myofibrils. In these myotubes, acetylcholine receptors (AChRs), the transmembrane receptors required to form motor end plates, are frequently observed in clusters when stained with fluorescently-labeled bungarotoxin. When used to fabricate myobridges and kept at low growth factor conditions, the muscle stem cells form nodes along the myobridges that showed coalesced twitching. Immunohistochemical analysis of myobridge sections revealed myosin⁺/α-actin⁺ myotubes throughout the construct, with the majority of staining localizing to the periphery. In addition, clusters of AChRs were found associated with myosin⁺ regions in the myobridge. **Conclusions:** Isolation and purification of highly proliferative muscle stem cells can be used to generate cellularized and functional myobridge constructs in vitro that express well-organized sarcomeres and clustered AChRs. **Future plans:** Future experiments are focused on identifying methods to produce more cellular, innervation-competent muscle constructs. These methods include increasing myobridge cell density, as well as the addition of BDNF and/or NGF.
Skeletal muscle healing following severe trauma is often limited by the fact that electro-mechanical conduction between myocytes is damaged. This compromised interface means that stimulatory signals generated in the brain and peripheral nerves might not reach the muscle tissue distal to the traumatic site, leading to denervation atrophy, which can increase the risk of limb amputation. Currently, muscle flaps can be transferred to the wound to replace major muscle loss; however, success in increasing the level of neuromuscular signal transduction across the trauma site is rare because these additions generally do not become innervated. We present a seeded skeletal muscle implant to act as a unifying bridge between proximal and distal sides of the wound. The work was approached in a series of three phases. In the first, cell lines from rat muscle-derived stem cells were generated from three muscles in the leg. These cell lines maintain the potential to differentiate into the desired skeletal muscle cells, and thus were valuable for the seeding of the implant. Following this work, a series of collagen implant designs were created and evaluated for their mechanical properties. This design step ensured the highest possible level of uniformity between the implant and the surrounding tissue, and also encouraged proper stem cell differentiation. The final project phase was a biomechanical study of the seeded implant, focusing on the ability of muscle-derived stem cells and C2C12 cells to align and fuse, forming functional muscle fibers.
Introduction: Stem cells derived from autologous skeletal muscle biopsies are currently in clinical trials for stress urinary incontinence via transurethral injection. However, for use in pelvic floor repair procedures, it may be advantageous to organize implanted muscle-derived stem cells (MDSC) on biodegradable scaffolds. We sought to optimize the conditions for MDSC growth within candidate scaffolds by varying the seeding densities and scaffold composition. Methods: MDSC were isolated from rat anterior tibialis using the pre-plating technique and were seeded at densities of between 2.2x10^6 cells/ml and 4.4x10^6 cells/ml onto Nitex frames using biodegradable scaffolds, which included 100% collagen and 95% collagen/5% high molecular weight hyaluronic acid (Hystem HP™, Glycosan Biosystems). Hystem HP is a hydrogel designed to promote expansion of stem cells. A mixture of collagen and Hystem HP was selected to achieve a balance, allowing a proportion of MDSC to proliferate, while still allowing differentiation of MDSC to muscle fibers. The fully polymerized constructs were incised on the long edges to induce uniaxial tension for cell and scaffold fiber alignment. These constructs were observed for up to 21 days. Constructs were fixed and stained at 13 and 21 days with H&E. Results: Seeding densities of 3.3 x 10^6 and 4.4 x 10^6 cells/ml caused excessive scaffold traction that resulted in construct dehiscence within 48 hours. However, a seeding density of 2.2 x 10^6 cells/ml provided stable constructs that did contract, but were able to remain intact for 21 days. At that density, H&E staining showed a higher cell density with a definite subpopulation of cells that retained proliferative ability in the constructs seeded on 95% collagen/5% Hystem HP when compared to 100% collagen. Conclusions: The preliminary findings here demonstrate that seeding density and scaffold composition are critical parameters to control in the generation of usable MDSC-seeded constructs suitable for in vivo implantation. Further studies are currently underway to quantify these differences for future creation of organized MDSC constructs for in vivo implantation.