Artificial Oxide Heterostructures with Tunable Band Gap

Xifan Wu
TEMPLE UNIVERSITY-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCA

12/20/2016
Final Report

DISTRIBUTION A: Distribution approved for public release.
REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Executive Services, Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

Please do not return your form to the above organization.

1. REPORT DATE (DD-MM-YYYY) 21-12-2016
2. REPORT TYPE Final Performance
3. DATES COVERED (From - To) 15 Mar 2013 to 14 Aug 2016

4. TITLE AND SUBTITLE
Artificial Oxide Heterostructures with Tunable Band Gap

5a. CONTRACT NUMBER

5b. GRANT NUMBER
FA9550-13-1-0124

5c. PROGRAM ELEMENT NUMBER
61102F

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)
Xifan Wu

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
TEMPLE UNIVERSITY-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION
1801 N BROAD ST
PHILADELPHIA, PA 191226003 US

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AF Office of Scientific Research
875 N. Randolph St. Room 3112
Arlington, VA 22203

10. SPONSOR/MONITOR'S ACRONYM(S)
AFRL/AFOSR RTA1

11. SPONSOR/MONITOR'S REPORT NUMBER(S)
AFRL-AFOSR-VA-TR-2016-0372

12. DISTRIBUTION/AVAILABILITY STATEMENT
A DISTRIBUTION UNLIMITED: PB Public Release

13. SUPPLEMENTARY NOTES

14. ABSTRACT
We have performed the joint experimental and theoretical studies towards the realization of tunable band-gap in artificial oxide multiferroic thin-films and heterostructures under epitaxial strain. In multiferroic oxides, the magnetic exchange interaction is crucially dependent on the hybridization between the magnetic cation and its surrounding oxygen cage. The above is an valence and conduction bands, as well as the band gap. In addition, the magnetic interaction can be also strongly coupled to the ferroelectric polar distortion through the metal-oxygen bonding angles and lengths. By using the coupling between magnetic and the ferroelectric orderings, the band structure, gap as well as the magnetic properties can be tuned by the epitaxial strain. We showed the tunable optical dielectric functions from the surface reconstruction and the epitaxial strain in CaMnO3 films by epitaxial growth. We also demonstrated that the functional properties in hexagonal LuFeO3 have its electronic and structural origins and can be tuned by epitaxial strain. Finally, we also proposed new design rule for room temperature artificial perovskite superlattice, which is closed related with the current topic.

15. SUBJECT TERMS
oxide

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES

19a. NAME OF RESPONSIBLE PERSON
GORETTA, KENNETH

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

https://livelink.ebs.afrl.af.mil/livelink/lisapi.dll

12/21/2016
<table>
<thead>
<tr>
<th>19b. TELEPHONE NUMBER (include area code)</th>
</tr>
</thead>
<tbody>
<tr>
<td>703-696-7349</td>
</tr>
</tbody>
</table>
Final report of the air force research laboratory project “Artificial oxide heterostructures with tunable band gap”

PI: Xifan Wu¹, CO-PIs: Xiaoxing Xi ¹, and Jon Spanier²
1. Department of Physics, Temple University, Philadelphia, PA 19122, USA
2. Department of Materials Science & Engineering, Drexel University, Philadelphia, PA 19104, USA
Contract number: FA9550-13-1-0124

Abstract
We have performed the joint experimental and theoretical studies towards the realization of tunable band-gap in artificial oxide multiferroic thin-films and heterostructures under external stimulus such as epitaxial strain. In multiferroic oxides, the magnetic exchange interaction is crucially dependent on the hybridization between the magnetic cation and its surrounding oxygen cage. The above is an electronic band structure property including both the valence and conduction bands, as well as the band gap. In addition, the magnetic interaction can be also strongly coupled to the ferroelectric polar distortion through the metal-oxygen bonds angles and bonding lengths, which are sensible to the external stimulus. By using the coupling between magnetic and the ferroelectric orderings, the band structure, gap as well as the magnetic properties can be tuned by the epitaxial strain. We showed the tunable optical dielectric functions from the surface reconstruction and the epitaxial strain in CaMnO$_3$ films by epitaxial growth. We also demonstrated that the functional properties in hexagonal LuFeO$_3$ have its electronic and structural origins and can be tuned by epitaxial strain. Finally, we also proposed new design rule for room temperature artificial perovskite superlattice, which is closed related with the current topic.

Research details

Surface- and strain-tuning of the optical dielectric function in epitaxially grown CaMnO$_3$

From year 2013 to year 2016, the main efforts of our team have been focused on the tunable band gap and band structures in epitaxial grown CaMnO$_3$. The efforts have been devoted to (1) the thin film growth; (2) the tunable optical dielectric function measurement; (3) the theoretical computation and understanding the mechanism in the experimental observations. The details have been summarized in the following.

Our thin-film experimental group under the leadership of Prof. Xiaoxing Xi at physics department of Temple University has grown the perovskite CaMnO$_3$ films under different epitaxial strain conditions by using different substrates in the growth. Epitaxial CaMnO$_3$ thin films were grown by pulsed laser deposition using a KrF excimer laser ($\lambda=248$ nm) on single-crystal (001)-oriented SrTiO$_3$ (STO), LaAlO$_3$ (LAO), 2 and SrLaAlO$_4$ (SLAO) purchased from Crystec. The well controlled coherent growth condition and the good quality of the films are reported in Figure. 1. In order to characterize the optical properties of CaMnO$_3$ thin films, the Variable-angle spectroscopic ellipsometry was performed by Prof. John Spanier’s group (one of our PIs at Drexel material department) at room temperature in ambient atmosphere with an electronically controlled rotating compensator and Glan-Taylor polarizers. The above measurements were performed at multiple angles between 65-75 degrees and in the spectral range of 247 to 1000 nm with a resolution of 1.6 nm. Measurement of the components of linearly polarized reactivity at each selected wavelength were used to obtain the ellipsometric parameters. To determine imaginary part of dielectric function for CaMnO$_3$ we assume a four-layer optical medium comprised of a homogeneous isotropic film layer on a semi-infinite bulk, incorporating surface roughness, in vacuum. The experimental dielectric function is reported in Figure 2. The dielectric functions of the CMO thin-films under different strain conditions in optical measurement were computed by the theoretical group of Xifan Wu at physics department of Temple University. The first-principles calculations were performed by using density functional theory as implemented in the Vienna Ab Initio Simulation Package. The electron exchange and correlation were approximated by the generalized
gradient approximation revised for solid and we adopted an effective on-site Coulomb repulsion $U - J = 3.0$ eV for the d orbitals of Mn atoms.

Based on the above joint experimental and theoretical analysis, in a recently published paper on *Applied Physics Letters* in 2015, we reported a strong thickness dependence of the complex frequency-dependent optical dielectric function over a spectral range from 1.24 to 5 eV in epitaxial CaMnO$_3$ (001) thin films on SrTiO$_3$ (001), LaAlO$_3$ (001), and SrLaAlO$_4$ (001). A doubling of the peak value of the imaginary part of dielectric function and spectral shifts of 0.5 eV for a given magnitude of absorption are observed. On the basis of experimental analyses and first-principles density functional theory calculations, contributions from both surface states and epitaxial strain to the optical dielectric function of CaMnO$_3$ are seen. Its evolution with thickness from 4 to 63 nm has several regimes. In the thinnest, strain-coherent films, the response is characterized by a significant contribution from the free surface that dominates strain effects. However, at intermediate and larger thicknesses approaching the bulk-like film, strain coherence and partial strain relaxation coexist and influence the dielectric function.

Our results pointed out that in the thinnest films the surface contribution is crucial in giving rise to the observed tunable dielectric function properties in optical measurements, whereas in the thicker films progressive partial and full strain relaxation dominates the evolution of dielectric function. The interplay among thickness-driven large surface and substrate-induced strain contributions to dielectric function in an epitaxial perovskite oxide thin film in its non-magnetic phase holds promise for a novel route to thickness-induced engineering of optical properties.
Structural and electronic origin of the magnetic structures in hexagonal LuFeO₃

Besides our main efforts as a joint experimental and theoretical team in studying the tunable band structures and band gap in the CaMnO₃ films by dielectric function measurement, we also study tunable functional properties such as ferroelectric polarization and ferromagnetic moment in the improper oxide multiferroic materials. These tunable properties are closely associated with the band structure properties. We then focus also on the recently discovered multiferroic of hexagonal LuFeO₃. It provides a rare case multiferroic material in which spontaneous electric and magnetic polarizations coexist. On one hand, ferroelectricity appears below Tₑ=1050 K resulting from a P₆₃/mmc → P₆₃cm structure distortion, which can be decomposed in terms of three phonon modes. On the other hand, spin frustration in it presents rich magnetic phases. Intriguingly, below the Neel temperature, magnetic order in hexagonal LuFeO₃ transits from B₂ to A₂ as shown in Figure 3 (b)) at 130 K, resulting in a weak ferromagnetism due to the Dzyaloshinskii-Moriya and single-ion anisotropy mechanism.

![Figure 3](image-url)
Figure 3. (a) Displacement patterns of the FeO₆ local environment (trigonal bipyramid) in the three phonon modes that freeze in the P₆₃/mmc → P₆₃cm structural transition in hexagonal LuFeO₃. The arrows indicate the relative displacement of the atoms. K is the wave vector of the modes in the reciprocal space of the P₆₃/mmc structure. (b) Four independent spin structures (A₁, A₂, B₁, and B₂) of the 120-degree magnetic orders viewed along the c axis. The arrows indicate the spins on the Fe sites.

In order to understand the electronic origin of the relatively high Neel temperature in hexagonal LuFeO₃ and the structural origins of the stabilized A₂ phase that makes the ferromagnetic ground state at low temperature. First, the theoretical group of Xifan Wu at Temple University has applied an extended Kugel-Khomskii model for superexchange interactions based on localized Wannier functions. While the antiferromagnetic exchange coupling is dominated by the intralayer superexchange, the model clearly showed that the singly occupied dₓ²z² orbital in hexagonal LuFeO₃ greatly increases the exchange coupling compared with the empty dₓ²z² in LuMnO₃. The interlayer exchange, although much weaker in magnitude, is key to the stabilization of ferromagnetic ground state. Our first-principles calculations showed that stabilization of A₂ phase is strongly coupled to the K₁ phonon mode and only weakly dependent on K₃ mode. Our theory indicates that the atomic displacements of K₁ phonon mode is responsible for the stabilization of A₂ phase with ferromagnetic moment.

![Figure 4](image-url)
Figure 4 (a) Representative dₓz, dᵧz, and dₓz²-like Wannier functions viewed from [001] direction. (b) Illustrations of two independent super-super-exchange paths J₁ and J₂ between Fe₀ at z/c = 0 and three neighboring iron ions Fe₁, Fe₂, and Fe₃ at z/c = 1/2 (c) Atomic displacements of the K₁ phonon mode. (d) Atomic displacements of the K₃ phonon mode, viewed from [001] direction.

Our theoretically predicted scenario is then confirmed by our experimental collaborators at University of Nebraska-Lincoln with the x-ray diffraction and x-ray absorption measurements. XAS measurements suggest that the K₁ mode undergoes a gradual change at low temperature. Our joint theoretical and experimental discoveries have been published in Physics Review B². Our studies pointed out the important the structural origin of the ferromagnetic ground state of A₂ phase that is responsible for the appearance of spontaneous magnetization, is identified by theory and verified by x-ray diffraction and absorption experiments. It also provides important foundations for the future studies of magnetoelectric coupling and the tunable band gaps properties in this material.
Effects of biaxial strain on the improper multiferroicity in hexagonal LuFeO$_3$ films

Elastic strain is expected to play an important role in tuning the property of improperly multiferroic hexagonal ferrites. In the year of 2016, our theoretical group carried out first-principles calculations to elucidate the structural distortions at the atomic level under the epitaxial strains ranging from -2% to 2% in hexagonal LuFeO$_3$ films. Based on the relaxed structures, the mode decompositions performed based on the group theory. Our theoretical calculations show that the mode amplitude Q_{K3} is enhanced (reduced) by the applied compressive (tensile) epitaxial strains. As schematically shown in Figure 5(c), it can be seen that oxygen atom at the center of the trimer that shared by three bi-pyramids is moving up, while the other oxygen atoms in the bases of the three bi-pyramids are all moving downwards under compressive strain. As a result, the mode amplitude Q_{K3} is increased. However, we found that the tunability of polarization by epitaxial strain is much less than the conventional ferroelectric such BaTiO$_3$. The weak ferromagnetism originates from both the DM interaction and single ion anisotropy. The DM vector $\mathbf{D} \sim |\mathbf{r}_{\text{Fe--Fe}} \times \delta_z|$ in which $\mathbf{r}_{\text{Fe--Fe}}$ is the displacement vector between the two iron atoms and δ_z is the displacement vector along [001] direction for the oxygen atom shared by three bi-pyramids in the trimer shown in Figure 5(a) respectively. Since δ_z is closely associated with the trimerization measured by the Q_{K3}, the weak ferromagnetism was found to intrinsically related to the K_3 mode. However, the compressive strain also brings the two Fe atom closer which reduces the displacement vector $\mathbf{r}_{\text{Fe--Fe}}$ more rapidly as shown in Figure 5(a), which actually reduces magnitude of cross product of the DM vector. As a result, the canting ferromagnetic moment is rather decreased as shown in Figure 6(b).

Our theoretical calculation is consistent with the experimental work performed at physics department of University of Nebraska-Lincoln. Prof. Xu’s group employed a method of studying the effect of biaxial strain in thin films involving restrained thermal expansions [Figure 5(b)]. In general, thermal strain may be generated in a material in all crystalline dimensions in isobaric thermal expansion. In an epitaxial thin film, on the other hand, if the film is selectively heated, the in-plane dimensions of the film is restrained by the substrate, while the out-of-plane dimension is free to expand (restrained thermal expansion). By comparing the material properties in the isobaric and restrained thermal expansions, the effect of isothermal compressive strain at a higher temperature can be obtained [Figure 5(c)]. Using the method of restrained

![Figure 5. (a) Model of the K_1 lattice distortion pattern and the atomic displacement under a compressive strain. (b) Schematics of the strain generated by the restrained thermal expansion in comparison with the isobaric thermal expansion. (c) Illustration of the restrained thermal expansion and isobaric thermal expansion in the (a, T) space, where a is the in-plane lattice constants, T is temperature, f is a general physical property. (d) Illustration of the experimental setup for the pump (laser) and probe (x-ray) measurements.](image)

![Figure 6. Effect of the biaxial strain Δ on the K_3 distortion (a) and on the electric polarization and the weak ferromagnetic moment, calculated using the density functional theory.](image)
thermal expansion, they have studied the strain effect on the K_3 ferrodistortion in LuFeO$_3$. Experimentally, they found that the biaxial strain in the basal plane of LuFeO$_3$ does significantly couple to the ferrodistortive structural distortion, which agrees exactly with the first principle calculation.

We have submitted our results to *Physics Review Letter* which is currently under active review. These findings are important for understanding on the strain effect as well as the coupling between the lattice and the improper multiferroicity in LuFeO$_3$. The experimental elucidation of the strain effect in LuFeO$_3$ films also demonstrates that the restrained thermal expansion combined with first-principles theories can be a viable method to unravel the strain effect in many other epitaxial thin film materials.

Theoretical design of room temperature multiferroism in CaTcO$_3$ by interface engineering

Besides the joint experimental and theoretical work as described in the above, the Wu’s theoretical group at Temple University has been also taking an effort in the theoretical design of functional multiferroic materials, which could be used as the material for tunable band gap with applied stimulus. In the year of 2014 and 2015, we used the density functional theory to perform a systematic investigation of the structural instabilities and distortions in ATcO$_3$ (A= Ca, Sr, Ba), in which a variety of structural instabilities has been identified. At ground state of CaTcO$_3$ and SrTcO$_3$, the antiferrodistortive modes associated with oxygen octahedral rotations are found to originate from the zone boundary phonon instabilities at Brillouin zone boundary points. An antipolar structure is found in CaTcO$_3$ and SrTcO$_3$ originating from the antiferroelectric instability at X point and a trilinear coupling with M and R instabilities that lowers the free energy. A ferroelectric instability is discovered in only CaTcO$_3$, which is however suppressed by the large anti-ferrodistortive mode at the ground state. In the latter case, we theoretically investigate the interface induced ferroelectric polarization in CaTcO$_3$/BaTcO$_3$ superlattice. By taking advantage of the intrinsic structural instabilities in CaTcO$_3$, including antipolar and polar ones, we propose that the ferroelectricity can be induced at the interfaces of the superlattice by two interface engineering approaches. First, the electric polarization can be induced by the mismatch of antipolar structure between BaTcO$_3$ and CaTcO$_3$. Second, the large oxygen octahedral rotation will be suppressed at the interface which can be used to enhance the intrinsic ferroelectric mode. This picture is confirmed by our first-principles’ calculations and the analysis of CaTcO$_3$/BaTcO$_3$ superlattices. Finally, the Neel temperature of the superlattice is calculated to be ~ 816 K by a following Monte Carlo simulation. Our theoretical predictions clearly suggest that therom temperature multiferroism can be achieved in CaTcO$_3$ by interface engineering.

The results suggested new routes to engineer non-polar perovskite into new room temperature multiferroic materials. The theory has been published in the journal of *Computational Materials Science*. The work is now awaiting for experimental confirmation.

References Cited

1.

Report Type
Final Report

Primary Contact Email
Contact email if there is a problem with the report.
xifanwu@temple.edu

Primary Contact Phone Number
Contact phone number if there is a problem with the report
215-204-7637

Organization / Institution name
Temple University

Grant/Contract Title
The full title of the funded effort.
Artificial oxide heterostructures with tunable band gap

Grant/Contract Number
AFOSR assigned control number. It must begin with "FA9550" or "F49620" or "FA2386".
FA9550-13-1-0124

Principal Investigator Name
The full name of the principal investigator on the grant or contract.
Xiaoxing Xi and Xifan Wu

Program Officer
The AFOSR Program Officer currently assigned to the award
GORETTA, KENNETH

Reporting Period Start Date
03/15/2013

Reporting Period End Date
08/14/2016

Abstract
We have performed the joint experimental and theoretical studies towards the realization of tunable band-gap in artificial oxide multiferroic thin-films and heterostructures under external stimulus such as epitaxial strain. In multiferroic oxides, the magnetic exchange interaction is crucially dependent on the hybridization between the magnetic cation and its surrounding oxygen cage. The above is an electronic band structure property including both the valence and conduction bands, as well as the band gap. In addition, the magnetic interaction can be also strongly coupled to the ferroelectric polar distortion through the metal-oxygen bonds angles and bonding lengths, which are sensible to the external stimulus. By using the coupling between magnetic and the ferroelectric orderings, the band structure, gap as well as the magnetic properties can be tuned by the epitaxial strain. We showed the tunable optical dielectric functions from the surface reconstruction and the epitaxial strain in CaMnO3 films by epitaxial growth. We also demonstrated that the functional properties in hexagonal LuFeO3 have its electronic and structural origins and can be tuned by epitaxial strain. Finally, we also proposed new design rule for room temperature artificial perovskite superlattice, which is closed related with the current topic.

Distribution Statement
This is block 12 on the SF298 form.

Distribution A - Approved for Public Release

Explanation for Distribution Statement
If this is not approved for public release, please provide a short explanation. E.g., contains proprietary information.

SF298 Form
Please attach your SF298 form. A blank SF298 can be found here. Please do not password protect or secure the PDF. The maximum file size for an SF298 is 50MB.

Upload the Report Document. File must be a PDF. Please do not password protect or secure the PDF. The maximum file size for the Report Document is 50MB.

Upload a Report Document, if any. The maximum file size for the Report Document is 50MB.

Archival Publications (published) during reporting period:

New discoveries, inventions, or patent disclosures:
Do you have any discoveries, inventions, or patent disclosures to report for this period?

No

Please describe and include any notable dates

Do you plan to pursue a claim for personal or organizational intellectual property?

Changes in research objectives (if any):

Change in AFOSR Program Officer, if any:

Program officer has been changed from

Dr. Hwang, James

to

Dr. GORETTA, KENNETH

Extensions granted or milestones slipped, if any:

The extension has been granted from the original ending date of 03/14/2016 to 08/14/2016.

AFOSR LRIR Number

LRIR Title

Reporting Period

Laboratory Task Manager

Program Officer

Research Objectives

Technical Summary

Funding Summary by Cost Category (by FY, $K)

<table>
<thead>
<tr>
<th></th>
<th>Starting FY</th>
<th>FY+1</th>
<th>FY+2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment/Facilities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Report Document
2. Thank You

Dec 20, 2016 05:38:57 Success: Email Sent to: xifanwu@temple.edu