Use of atomic hydrogen to prepare GaSb substrates for subsequent ZnTe growth by MBE

ABSTRACT

ZnTe is of current interest for photovoltaic applications and as a possible buffer layer for growth of HgCdTe or HgCdSe. Moreover, the ZnTe/GaSb heterostructure itself is of potential interest for cascade solar cells. Thus, different approaches geared towards optimizing the epitaxial growth of high quality ZnTe/GaSb are under active investigation. Atomic hydrogen was investigated for surface preparation of GaSb for subsequent growth of ZnTe and ZnTeSe. A detailed microstructural study of these ZnTe/GaSb samples was performed using cross-section transmission electron microscopy as well as x-ray photoelectron spectroscopy, x-ray diffraction, atomic force microscopy, and other techniques.

SUBJECT TERMS

atomic hydrogen GaSb ZnTe MBE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

REPORT TYPE

Related Material

5a. CONTRACT NUMBER

W911NF-10-1-0335

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

61102

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES

Texas State University
601 University Dr.
San Marcos, TX 78666 -4684

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS (ES)

U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

10. SPONSOR/MONITOR'S ACRONYM(S)

ARO

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

57432-EL.20

12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

14. ABSTRACT

ZnTe is of current interest for photovoltaic applications and as a possible buffer layer for growth of HgCdTe or HgCdSe. Moreover, the ZnTe/GaSb heterostructure itself is of potential interest for cascade solar cells. Thus, different approaches geared towards optimizing the epitaxial growth of high quality ZnTe/GaSb are under active investigation. Atomic hydrogen was investigated for surface preparation of GaSb for subsequent growth of ZnTe and ZnTeSe. A detailed microstructural study of these ZnTe/GaSb samples was performed using cross-section transmission electron microscopy as well as x-ray photoelectron spectroscopy, x-ray diffraction, atomic force microscopy, and other techniques.

15. NUMBER OF PAGES

5

16. SECURITY CLASSIFICATION OF:

a. REPORT

UU

b. ABSTRACT

UU
c. THIS PAGE

UU

17. LIMITATION OF ABSTRACT

UU

19a. NAME OF RESPONSIBLE PERSON

Thomas Myers

19b. TELEPHONE NUMBER

512-245-6711
REPORT TITLE
Use of atomic hydrogen to prepare GaSb substrates for subsequent ZnTe growth by MBE

ABSTRACT
ZnTe is of current interest for photovoltaic applications and as a possible buffer layer for growth of HgCdTe or HgCdSe. Moreover, the ZnTe/GaSb heterostructure itself is of potential interest for cascade solar cells. Thus, different approaches geared towards optimizing the epitaxial growth of high quality ZnTe/GaSb are under active investigation. Atomic hydrogen was investigated for surface preparation of GaSb for subsequent growth of ZnTe and ZnTeSe. A detailed microstructural study of these ZnTe/GaSb samples was performed using cross-section transmission electron microscopy as well as x-ray photoelectron spectroscopy, x-ray diffraction, atomic force microscopy and imaging photoluminescence measurements. We will present results indicating that we are able to get smooth, clean and stoichiometric GaSb surfaces suitable for subsequent epitaxial growth without using an Sb overpressure. In particular, ZnTe layers with thicknesses of 200 nm and below have highly coherent and sharp interfaces with the GaSb, and exhibit very low densities of dislocations. Thick ZnTeSe/GaSb layers with dislocation densities in the mid-10^4 cm^-2 have been grown.
ZnTe is of current interest for photovoltaic applications and as a possible buffer layer for growth of HgCdTe or HgCdSe. Moreover, the ZnTe/GaSb heterostructure itself is of potential interest for cascade solar cells. Thus, different approaches geared towards optimizing the epitaxial growth of high quality ZnTe/GaSb are under active investigation. Atomic hydrogen was used to prepare GaSb substrates for subsequent ZnTe growth by MBE.

Growth Details
- Grown with Elemental Zn and Te.
- Oxides removed by 20 min exposure at 400°C to atomic hydrogen.
- During nucleation, the substrate temperature was raised to 320°C and the surface was exposed to Zn for 60s, Zn and Te for 5s and Zn for 60s.
- This was followed by ten periods of alternating exposures of ZnTe during epitaxial growth without using an Sb overpressure. In particular, ZnTe layers with thicknesses of 200 nm and below have highly coherent and sharp interfaces with the GaSb, and exhibit very low densities of dislocations. Thick ZnTe/GaSb layers with dislocation densities in the mid-10^4 cm^-2 have been grown.

Oxide Removal Methods

1. **Thermal Oxide Desorption**

 \[2 \text{Sb}_2\text{O}_5 \rightarrow \text{Sb}_4 + 5\text{O}_2 \]
 \[\text{Ga}_2\text{O}_3 \rightarrow \text{Ga}_2\text{O} + \text{O}_2 \]
 Decomposes > 550 °C

 \[4\text{GaSb} + 3\text{O}_2 \rightarrow 2\text{Ga}_2\text{O}_3 + \text{Sb}_4 \]

2. **Atomic Hydrogen Cleaning**

 Desorbs > 400 °C
 \[\text{Ga}_2\text{O}_3 + 4\text{H} \rightarrow \text{Ga}_2\text{O} + 2\text{H}_2\text{O} \]
 \[2\text{Sb}_2\text{O}_5 + 20\text{H}_2 \rightarrow \text{Sb}_4 + 10\text{H}_2\text{O} \]

Use of atomic hydrogen to prepare GaSb substrates for subsequent ZnTe growth by MBE

Materials Science, Engineering and Commercialization Program, Texas State University-San Marcos, TX; Department of Physics, Arizona State University, Tempe, AZ

acknowledgements

This work is supported by, or in part by, the U. S. Army Research Laboratory and the U. S. Army Research Office under contract/grant number W911NF-10-2-0103, W911NF-10-1-0335, and W911NF-10-1-0524.