Award Number: W81XWH-13-1-0135

TITLE: Altered Placental Tryptophan Metabolism: A Crucial Molecular Pathway for the Fetal Programming of Neurodevelopmental Disorders

PRINCIPAL INVESTIGATOR: Alexandre Bonnin, PhD

CONTRACTING ORGANIZATION: University of Southern California
Los Angeles, CA 90089-9235

REPORT DATE: September 2016

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Programming of Neurodevelopmental Disorders

Altered Placental Tryptophan Metabolism: A Crucial Molecular Pathway for the Fetal Programming of Neurodevelopmental Disorders

AUTHOR(S)
Alexandre Bonnin, PhD; Nick Goeden; Brett Lund, PhD; George Anderson, PhD

E-Mail: bonnin@med.usc.edu

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Southern California
1501 San Pablo Street
Los Angeles, CA 90089-2821

Zilkha Neurogenetic Institute
Keck School of Medicine of University of Southern California

PERFORMING ORGANIZATION REPORT NUMBER

SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited

ABSTRACT

We demonstrated that maternal inflammation during pregnancy, triggered by the viral-mimic poly(I:C), induces a significant increase of tryptophan metabolism in the placenta. This leads to a direct increased output of serotonin from the placenta to the fetal forebrain. Elevation of serotonin at these early stages of fetal brain development alters the development of the endogenous fetal serotonergic system (blunting of axonal growth) and neuronal progenitor cell proliferation in specific forebrain regions. We also demonstrated that pharmacologically interfering with this molecular pathway can potentially protect the fetal brain from the effects of maternal inflammation. Thus our results demonstrate a direct molecular link between maternal inflammation during pregnancy, placental tryptophan metabolism and fetal brain development. A manuscript reporting these findings was published in the Journal of Neuroscience.

SUBJECT TERMS

Autism, placenta, tryptophan, serotonin, kynurenine, maternal immune activation, fetal brain

SECURITY CLASSIFICATION OF:

- a. REPORT: Unclassified
- b. ABSTRACT: Unclassified
- c. THIS PAGE: Unclassified

NUMBER OF PAGES:

Unclassified, 20
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Body</td>
<td>3</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>8</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>8</td>
</tr>
<tr>
<td>Conclusion</td>
<td>8</td>
</tr>
<tr>
<td>References</td>
<td>9</td>
</tr>
<tr>
<td>Appendices</td>
<td>10</td>
</tr>
</tbody>
</table>
INTRODUCTION

Maternal infections in humans increase the risk for neurodevelopmental disorders, including autism spectrum disorders (ASD) in the offspring. In rodents, maternal infections cause behavioral, histological and transcriptional changes in adult offspring that are consistent with those seen in ASD. However, the anatomical and molecular pathways through which inflammation alters fetal brain development are not well understood. Serotonin (5-HT), which is synthesized from the essential amino acid tryptophan (TRP), is a trophic factor for the fetal brain before it acts as a neurotransmitter. 5-HT signaling modulates fetal brain wiring mechanisms and its disruption at early stages of pre- and postnatal development has long-term consequences on adult brain function and behavior. Thus, 5-HT is a good candidate for mediating the fetal programming of mental disorders such as ASD that appear later in life. In early pregnancy the placenta converts maternal TRP to 5-HT, through the tryptophan hydroxylase 1 (TPH1) pathway, thereby providing a source of the amine for the fetal brain. Therefore, altering maternal TRP metabolism in the placenta, and consequently placental 5-HT synthesis, may directly affect fetal brain development and constitute a new molecular pathway for the fetal programming of mental disorders. The goal of this project was to characterize the impact of inflammation during pregnancy on placental TRP metabolic pathways and the consequences on fetal brain development.

KEYWORDS
Autism, placenta, tryptophan, serotonin, kynurenine, maternal immune activation, fetal brain.

OVERALL PROJECT SUMMARY

Our objectives were to determine (1) whether maternal inflammation affects the balance of TRP metabolism through indoleamine deoxygenase (IDO1) and TPH1 placental pathways, resulting in compromised serotonergic modulation of fetal brain development as well as increased exposure to kynurenine, with long-term consequences on postnatal brain function; and (2) whether the timing of inflammation differentially impacts offspring brain development. Placental TRP metabolism and release of metabolites to the fetal blood stream and brain were tested using a technology unique to our laboratory that provides direct analytical capabilities of assessing mouse placenta metabolic pathways ex vivo. This new technology, combined with pharmacological in vivo approaches, was applied to define the mechanisms by which inflammation in early and late gestation affect placental function and offspring brain development.

Aim I and II were fully completed and Aim III partially completed during the period of this award. We focused on the effects of maternal inflammation triggered by the viral-mimic poly(I:C). Results were reported in a new manuscript published in The Journal of Neuroscience in July 2016 (see Appendices). A copy of the manuscript is appended to this progress report.

Aim I: To determine whether maternal inflammation alters placental synthesis and fetal exposure to 5-HT and kynurenine-pathway compounds. This aim tested whether maternal inflammation affects placental TRP metabolism and 5-HT output to the fetus. This was tested ex vivo and in vivo, by measuring changes in placental output of 5-HT and kynurenine-pathway compounds by HPLC at different gestational ages (E12-14; Aim 1A) following induction of maternal inflammation [using viral mimic RNA poly(I:C)] at E12. Short-term changes in placental expression of TRP metabolic genes (24 and 48h after immune activation) and of corresponding TRP metabolic enzyme activities in situ were assessed qualitatively by qRT-PCR and measure
of enzymatic activity. Results were correlated to the neurochemical measurements made in the fetal brain (Aim 1B).

All tasks proposed in Aim I regarding the effect of poly(I:C) injections in pregnant dams were completed (see 2014–2015 Progress Reports for detailed results).

Aim II: To characterize the inflammation-mediated alterations of TRP metabolism effects on fetal brain neurochemistry and postnatal brain structure. The effect of maternal inflammation induced in mice by poly(I:C) on fetal brain tissue concentrations of TRP and its metabolites generated through the IDO1/TDO2 (kynurenine) and TPH1 (5-HT) pathways were assessed by HPLC (Aim 2A). The consequences on thalamocortical and serotonergic neurons and axon pathway formation in the fetal brain were investigated by IHC (Aim 2B).

Task 1: To determine whether maternal inflammation alters placental synthesis and fetal exposure to 5-HT and kynurenine-pathway compounds.

Task 1a. Changes in ex vivo placental output of 5-HT and kynurenine-pathway compounds following induction of maternal inflammation using the viral mimic RNA poly(I:C) at E12.

These tasks were completed and reported previously (see 2014/2015 Progress reports). The results were published (see Appendices).

Methodology: Please see 2014/2015 Progress reports as well as the publication in *The Journal of Neuroscience* in Appendices.

Problems encountered in accomplishing tasks 1 & 1a: none.

Results: Please see 2014/2015 Progress reports as well as the publication in Journal of Neuroscience in Appendices.

Conclusions for Tasks 1 & 1a.

As previously reported (see 2014/15 Progress Report), the results show that maternal immune activation by poly(I:C) treatment induces a rapid increase of TRP metabolic gene expression in the placenta. The increase in placental *Ido1* gene expression in response to maternal immune activation is consistent with previously published studies (Hönig et al., 2004; Hemmati et al., 2009; Metz et al., 2014) and was expected to lead to increased conversion of maternal TRP to kynurenine. Maternal inflammation should therefore elevate placental output of kynurenine to the fetus, which is in fact what we observed when measuring fetal brain kynurenine concentration (see 2014/15 report). Surprisingly, the results also show that placental *Tph1* gene expression is rapidly upregulated by maternal immune activation (in the first 24h of treatment). This initial rapid increase in placental *Tph1* gene expression leads to a delayed (48h post-injection) increase in TPH1 enzymatic activity. This was expected to increase placental output of 5-HT to the fetus. We directly tested this possibility in Task 1a using *ex vivo* dual perfusions of immune-activated placentas. Concomitantly to the increased enzymatic activity, a significant increase of placental 5-HT output was measured following maternal poly(I:C) exposure.

Task 2: To characterize the inflammation-mediated alterations of TRP metabolism effects on fetal brain neurochemistry and postnatal brain structure.

Task 2a. The effect of maternal inflammation induced on fetal brain tissue concentrations of TRP and its metabolites generated through the IDO1 (kynurenine) and TPH1 (5-HT) pathways.
This task was completed (see 2014/15 Progress Reports and attached publication for detailed results).

Task 2b. The consequences on 5-HT receptors expression, on thalamocortical and serotonergic neurons and axon pathway formation in the fetal and postnatal brain will be investigated by IHC and in situ hybridization.

Task 2b was partially completed by focusing on maternal inflammation effects on serotonergic axon pathway formation, as well as neurogenesis throughout the fetal forebrain.

Methodology: Please see 2014/2015 Progress reports as well as the Methods section in the publication in *The Journal of Neuroscience* in Appendices.

Problems encountered in accomplishing tasks 2a & 2b: none.

Results: Please see 2014/2015 Progress reports as well as the Results section in the publication in *The Journal of Neuroscience* in Appendices.

Problems encountered in accomplishing task 2a & 2b: none.

Conclusions for Tasks 2a & 2b.

The data showed that maternal inflammation led to elevated fetal forebrain 5-HT tissue concentration measured at E14 resulting from increased placental 5-HT output. In addition, the results showed that increased extracellular 5-HT during this period inhibits serotonergic axon outgrowth, which is consistent with previous *in vitro* studies suggesting that subsets of 5-HT autoreceptors expressed either on dorsal raphe 5-HT neuron cell bodies or axons provide an intrinsic feedback mechanism, whereby extracellular 5-HT concentrations can regulate 5-HT axon outgrowth (Whitaker-Azmitia, 2005; Daubert and Condron, 2010; Daubert et al., 2010). These results are also consistent with the demonstration that 5-methoxytryptamine, a non-specific 5-HT receptor agonist, induced stunted axonal outgrowth when applied to dissociated raphe nuclei cells(Janušonis et al., 2004). Overall, the results suggested that blunted rostral serotonergic axon outgrowth observed after maternal immune challenge may be a direct consequence of elevated concentrations of exogenous placental 5-HT reaching the forebrain. This possibility was further tested using pharmacological manipulations of TPH enzymatic activity in Aim III (see below).

Aim III: To determine if genetic or pharmacological manipulations of placental TRP metabolic pathways *in vivo* can reduce inflammation effect on offspring brain development.

We proposed that the severity of maternal inflammation effects on offspring brain development depends on the relative and absolute flux of TRP through the kynurenine and 5-HT pathway. We investigated whether pharmacologically altering TRP metabolism during pregnancy (using *in vivo* injection of a specific blockers for TPH pathway) can prevent or ameliorate inflammation-mediated effects on fetal brain development.

Task 3: To determine if genetic or pharmacological manipulations of placental TRP metabolic pathways *in vivo* can reduce inflammation effect on offspring brain development.

We performed this task by co-injecting poly(I:C) and 4-Chloro-DL-phenylalanine methyl ester hydrochloride (pCPA; 10 µM) in pregnant dams at E12 and performing measures of 5-HT tissue concentration and serotonergic axons outgrowth in the fetal forebrain.
Methodology: Pregnant CD-1 dams were obtained from Charles-River laboratories (San Diego, CA), and allowed to acclimate to the vivarium. Saline (0.9% sterile solution; BD 297753) or 2 mg/kg poly(I:C) (Sigma-Aldrich P9582; St Louis, MO) or poly(I:C) and para-cholorophenylalanine (pCPA; 300 mg/kg; Sigma-Aldrich, C6506) intraperitoneal (i.p.) injections were performed at E12 (copulatory plug date is considered E1) using 5 µl per gram per pregnant dam. Dams were randomly assigned to each treatment group and time point. 24 or 48h after injection, pregnant dams were anaesthetized through inhalation of isoflurane gas (Western Medical Supply; Arcadia, CA) and sacrificed by cervical dislocation. The uterus was immediately dissected, and the resulting embryos were placed on ice in 1x phosphate buffered saline (PBS). The placenta, forebrain, and hindbrain (a precollicular coronal bisection was made to separate the forebrain + midbrain (termed forebrain) from the hindbrain) were removed, weighed, snap-frozen in liquid nitrogen, and stored at -80 °C until processing. For each embryo, the position in the uterus was recorded and a small tail biopsy was collected for sex determination by SRY genotyping. All procedures involving animals were approved by the Institutional Animal Care and Use Committee.

Fetal brains were dissected in ice cold PBS, immediately transferred to 4% paraformaldehyde (PFA) upon extraction, and incubated at 4 °C for 24 hours. The fetal brains were then incubated in 10%, 20%, and 30% sucrose (dissolved in PBS) for 24 hours each at 4 °C. Following incubation, the brains were embedded in cryomolds on dry ice using tissue tek (VWR, 25608-930; Radnor, PA) and stored at -80 °C until sectioning. Embedded brains were removed from the -80 °C freezer the night before sectioning, and allowed to warm to -20 °C. Fetal brains were sectioned coronally with a thickness of 20 µm, and sectioned tissue was stored at -80 °C until immunohistochemical analysis. Sections were permeabilized with 0.1% Triton X-100 in 2% fetal bovine serum in PBS, and incubated overnight at 4 °C with primary antibodies: rabbit anti-5HT (Final concentration 58 µg/ml; Sigma S5545, St. Louis, MO). After extensive washing in PBS with 0.1% Triton X-100, slides were incubated at room temperature for 2 hours with secondary antibody: Rhodamine Red-X conjugated donkey anti-rabbit (1:800; Jackson ImmunoResearch Laboratories). Images were acquired with a Zeiss AxioCam MRm camera (Carl Zeiss, USA) using Zeiss AxioVision 4.8.2 software (Zeiss). 5-HT fluorescence intensity distribution was quantified using ImageJ (NIH, USA). In every section, the fluorescent intensity was normalized to the background.

Statistical Analyses
In all experiments, dams were treated as individual experimental groups (1 dam, n=1), and fetuses (n=3 to 5 per dam) as biological repeats. Hence, unless otherwise noted, for a single experimental data point multiple fetuses were pooled pre or post-analysis and counted as single data point. At each time point, the effects measured in treated vs untreated groups were compared using two-way ANOVA with correction for multiple comparisons. All analyses were performed using GraphPad Prism 6 (GraphPad Software, La Jolla, CA).

Results:
In order to test if pCPA-mediated blocking of forebrain 5-HT tissue concentration increase measured in embryos from poly(I:C)-treated dams could prevent the blunting of endogenous serotonergic axon outgrowth into the region, we used immunohistochemistry to systematically measure serotonergic (5-HT immunoreactive, 5-HT+) axon density throughout the rostro-caudal extent of the fetal forebrain 48h after maternal poly(I:C), poly(I:C) + pCPA or saline injection at E12 (Figure 1A). When comparing sets of sections at matching rostro-caudal levels, densitometric analysis of fluorescence distribution showed a significant decrease of 5-HT+
axon outgrowth in the rostral 2/3rds of the forebrain in the poly(I:C)-treated group compared to saline (Figure 1B). This effect was blocked by the co-injection of pCPA. The overall 5-HT+ axon density over the entire rostro-caudal axis was also significantly decreased in the poly(I:C)-treated group compared to saline ($p=0.0009$). Most importantly, co-administration of pCPA, which inhibits TPH enzymatic activity, not only prevented the increase of fetal forebrain 5-HT tissue concentration elicited by maternal inflammation (Figure 1C), but also prevented the blunting of the rostral outgrowth of endogenous serotonergic axons into the region (Figure 1A-B).

Conclusions for Task 2b.

Results show that by blocking TPH1/2 enzymatic activity, pCPA prevents the inflammation-mediated increase in fetal forebrain 5-HT (Figure 1C). In addition, the data demonstrates that inflammation-mediated elevation in extracellular 5-HT in the fetal forebrain inhibits endogenous serotonergic axon outgrowth, which is consistent with earlier in vitro observations (Whitaker-Azmitia, 2005; Daubert and Condron, 2010; Daubert et al., 2010). This effect is reversed when pregnant dams are co-injected with poly(I:C) and pCPA, an inhibitor of TPH enzymatic activity. pCPA injection not only restored a normal level of 5-HT tissue concentration in the fetal forebrain despite maternal immune activation triggered by poly(I:C), but also restored a normal level of endogenous serotonergic axon outgrowth into the forebrain. This demonstrates that the blunted rostral serotonergic axon outgrowth observed after maternal immune challenge is a direct consequence of elevated concentrations of exogenous placental 5-HT reaching the forebrain. As described in 2014/15 Progress Reports, mild maternal inflammation impacts thalamic neuronal proliferation in the fetus, potentially through increased 5-HT1A receptor signaling as a

Figure 1: Maternal inflammation disrupts fetal serotonergic axon outgrowth. A, IHC analysis of serotonergic axons in fetal brains 48 h after maternal exposure to either saline or 2 mg/kg poly(I:C) reveals blunted outgrowth of serotonergic axons in a caudal to rostral gradient within the forebrain when comparing saline (control) with poly(I:C) treatments. This effect is not observed in the group coadministered with poly(I:C) and the TPH inhibitor pCPA [pCPA poly(I:C); bottom panels]. B, Quantification of 5-HT axons density (normalized fluorescence intensity) throughout the rostrocaudal extent of E14 fetal forebrains obtained from saline (control)-, poly(I:C)-, or poly(I:C) pCPA-treated dams 48 h after exposure. *$p<0.05$, **$p<0.005$, ns, not significant, Mann–Whitney U test. C, 5-HT is significantly increased in the fetal forebrain (FB) 48 h after maternal poly(I:C), but not poly(I:C) pCPA injection; hindbrain (HB) 5-HT concentration is not affected significantly in either group. *$p<0.05$, unpaired t test with Holm–Sidak correction. n 4 dams per group.

Scale bars, 200 μm.
result of elevated placenta-derived 5-HT. Other important neurodevelopmental parameters, involving signaling through different receptor subtypes, may be specifically affected by the inflammation-mediated increase in fetal forebrain 5-HT. In particular, previous research demonstrated that extracellular 5-HT modulates thalamocortical axon guidance and circuit formation (BONNIN et al., 2007), through 5-HT1B/1D receptors which are also expressed in the fetal brain during this time period (Bonnin et al., 2006). The impact of maternal inflammation on the development of this axonal pathway is under investigation in follow-up studies.

KEY RESEARCH ACCOMPLISHMENTS
- Demonstration that poly(I:C) injections at E12 trigger a rapid increase of TRP metabolic gene expression and enzyme activity specifically in the placenta which directly leads to increased output of 5-HT from the placenta to the fetal forebrain.
- Demonstration that the increase in fetal forebrain 5-HT concentration triggered by maternal immune activation alters serotonergic axon outgrowth, as well as neurogenesis, in the fetal forebrain.
- Demonstration that pharmacological inhibition of TPH enzymatic activity in vivo prevents the effects of maternal inflammation on fetal brain neurochemistry and axon outgrowth.

REPORTABLE OUTCOMES
- A manuscript reporting the results was published in The Journal of Neuroscience in July of 2016 (see Appendices).
- This publication led to widespread public interest (see Press Releases in Appendices).
- Dr Bonnin presented the results at the IFPA 2014 meeting in Paris, France (Sept. 2014), at the annual meeting of the Federation of European Neuroscience (FENS; Milan, Italy, July 2014), the International Neuroplacentology Meeting (online venue hosted by Children's National Center for Neuroscience Research, Washington DC, USA; March 2015), the Molecular Toxicology Dept Seminar at UCLA (Los Angeles, CA, May 2016) and the International Society for Serotonin Research meeting (Seattle, WA, July 2016).
- Based on the work supported by this award Nick Goeden, a graduate student in Dr Bonnin’s laboratory and key personnel in this award, received a predoctoral fellowship awarded in July 2014 by the Autism Science Foundation.
- This work has also been presented in poster form at the Society for Neuroscience annual meeting (Chicago, USA; Oct. 2015 and San Diego, USA; Nov. 2016).

CONCLUSION
The findings indicate that a mild and acute maternal immune activation disrupts placental conversion of TRP to 5-HT upstream of the fetal brain, which ultimately affects specific aspects of fetal neurodevelopment. Importantly, although the simultaneous increase of TRP metabolic flux through both the IDO1 and TPH1 pathways in the placenta in response to maternal inflammation provides an important immune-suppressive protection for the fetus, it also leads to increased fetal brain exposure to elevated concentrations of 5-HT. Such an increase in ligand concentration affects important developmental processes in the fetal brain that are normally modulated by 5-HT at early stages of pregnancy. A mild maternal inflammation triggered by low-dose poly(I:C) exposure, similar to the challenge used in the current study, was shown to have long-term effects on offspring brain function and behavior, including disruption of latent inhibition, spatial working memory impairment, and reduced spatial exploration (Meyer and Feldon, 2012). Thus prenatal inflammation can lead to increased anxiety and depression-like behaviors in the
offspring, behaviors that are influenced by serotonergic function (Butkevich et al., 2003; Enayati et al., 2012; Lin et al., 2012). The possibility that the effect of maternal inflammation on early serotonergic development shown here has long-term consequences on 5-HT-dependent behaviors is under investigation in follow-up studies. Further studies on the effects of actual infectious agents on placentally-derived modulators of neurodevelopment are being investigated, a line of investigation which is particularly relevant to recent infectious diseases outbreaks (such as H1N1 influenza or Zika virus). This work should provide important insights as to why pregnant women and their fetuses are high-risk groups for severe and long-lasting complications resulting from infections (Omer and Beigi, 2016).

The progress made thanks to this Department of Defense award provides strong support to the hypothesis that alteration of placental TRP metabolism by maternal inflammation during early gestation constitutes a new molecular pathway for the fetal programming of neurodevelopmental disorders such as ASD.

REFERENCES

SUPPORTING DATA
Figures and tables were included in the body of this report.

APPENDICES
Press Releases related to the publication of the paper attached below:

5. https://www.sciencedaily.com/releases/2016/05/160531182426.htm
Maternal Inflammation Disrupts Fetal Neurodevelopment via Increased Placental Output of Serotonin to the Fetal Brain

Nick Goeden,1 Juan Velasquez,1 Kathryn A. Arnold,2 Yen Chan,2 Brett T. Lund,3 George M. Anderson,6 and Alexandre Bonnin4

1Neuroscience Graduate Program, Zilkha Neurogenetic Institute, 2Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, 3Multiple Sclerosis Division, Department of Neurology, and 4Zilkha Neurogenetic Institute and Department of Cell and Neurobiology, Keck School of Medicine of the University of Southern California, Los Angeles, California 90089, 5The University of Southern California, Los Angeles, California 90089, and 6Child Study Center and Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut 06519

Maternal inflammation during pregnancy affects placental function and is associated with increased risk of neurodevelopmental disorders in the offspring. The molecular mechanisms linking placental dysfunction to abnormal fetal neurodevelopment remain unclear. During typical development, serotonin (5-HT) synthesized in the placenta from maternal L-tryptophan (TRP) reaches the fetal brain. There, 5-HT modulates critical neurodevelopmental processes. We investigated the effects of maternal inflammation triggered in mid-pregnancy in mice by the immunostimulant polyriboinosinic-polyribocytidylic acid [poly(I:C)] on TRP metabolism in the placenta and its impact on fetal neurodevelopment. We show that a moderate maternal immune challenge upregulates placental TRP conversion rapidly to 5-HT through successively transient increases in substrate availability and TRP hydroxylase (TPH) enzymatic activity, leading to accumulation of exogenous 5-HT and blunting of endogenous 5-HT axonal outgrowth specifically within the fetal forebrain. The pharmacological inhibition of TPH activity blocked these effects. These results establish altered placental TRP conversion to 5-HT as a new mechanism by which maternal inflammation disrupts 5-HT-dependent neurogenic processes during fetal neurodevelopment.

Key words: inflammation/infection; neurodevelopment; placenta; prenatal programming; serotonin; tryptophan

Introduction
Mechanistic links between maternal inflammation during pregnancy and the risk for developmental disorders in the offspring, including autism spectrum disorders (ASDs), cognitive delay, and schizophrenia, are being investigated intensively (Bonnin and Levitt, 2011; Stolp et al., 2011). Intrauterine bacterial infection was shown to be an independent risk factor for early autistic features (Limperopoulos et al., 2008) and systemic maternal viral...
infection (e.g., influenza) has been reported as a risk factor for ASD and schizophrenia in the offspring (Patterson, 2002, 2009). These associations are observed for both vertically (i.e., from mother to fetus) and nonvertically transmitted pathogens, suggesting that maternal inflammation resulting from exposure to these pathogens in and of itself is sufficient to alter fetal neurodevelopment. In support of this possibility, elevated concentrations of soluble proinflammatory and chemo-attractive cytokines in the maternal serum have been linked to neurodevelopmental disorders in the offspring (Bell and Hallenbeck, 2002). Studies in rodents have demonstrated that systemic exposure to high doses of the immunostimulant polyribosinosis-polyribocytidylic acid [poly(I:C)] induces a strong and sustained elevation in several proinflammatory cytokines, most notably interleukin-6 (IL-6), in the maternal serum. This dramatic induction of the maternal inflammatory pathway alters several neurodevelopmental processes and results in abnormal adult behavior in the offspring (Patterson, 2002, 2009; Wang et al., 2009). Intrauterine inflammation is observed in ~20% of all pregnancies and a staggering 85% of very premature births, the latter of which has also been recently infectious diseases outbreaks (such as H1N1 influenza or Zika virus) suggest that pregnant women and their fetuses are high-risk groups for severe and long-lasting complications (Omer and Beigi, 2016). This highlights the need to investigate the causal mechanisms underlying maternal inflammation and fetal neurodevelopment.

During pregnancy, a fraction of the maternal TRP is converted to 5-HT through the placental tryptophan hydroxylase (TPH1) enzymatic pathway, providing an exogenous source of 5-HT to the fetus. Prenatally, 5-HT modulates key neurodevelopmental processes, including axonal circuit formation (Bell and Hallenbeck, 2002), synaptogenesis and results in abnormal adult behavior in the offspring (Patterson, 2002, 2009; Wang et al., 2009). Maternal inflammation is important from an immunosuppressive (countering inflammatory pathway) and the downstream consequences on fetal brain development. Moderate doses of poly(I:C) were used to induce a mild maternal immune challenge that was shown previously to induce significant long-term brain and behavioral deficits in the adult offspring (Meyer et al., 2005). The latter of which has also been shown previously to induce significant long-term brain consequences on fetal brain development. Moderate doses of poly(I:C) (2 mg/kg) and para-chlorophenylalanine (pCPA; 300 mg/kg; Sigma-Aldrich, C6566), were anesthetized and their fetuses were harvested as described previously (Bonnin et al., 2011). SRY genotyping for the purpose of analyzing sex differences was performed on all fetuses. Fetal tissues from each litter were used for subsequent analyses. All procedures involving animals were approved by the Institutional Animal Care and Use Committee.

Materials and Methods

Animals and maternal immune activation. Pregnant female CD-1 dams (Charles River Laboratories) were injected intraperitoneally at embryonic day 12 (E12; the copulatory plug date is considered E1) with saline (0.9% sterile solution; BD Biosciences, 297753) or 2 mg/kg poly(I:C) (Sigma-Aldrich, P9582) using 5 μl/g per pregnant dam. For pharmacological inhibition of TPH activity experiments, dams were injected intraperitoneally at E12 with either saline or poly(I:C) (2 mg/kg) and para-chlorophenylalanine (pCPA; 300 mg/kg; Sigma-Aldrich, C6566).

Pregnant female CD-1 dams (Charles River Laboratories) were injected intraperitoneally at embryonic day 12 (E12; the copulatory plug date is considered E1) with saline (0.9% sterile solution; BD Biosciences, 297753) or 2 mg/kg poly(I:C) (Sigma-Aldrich, P9582) using 5 μl/g per pregnant dam. For pharmacological inhibition of TPH activity experiments, dams were injected intraperitoneally at E12 with either saline or poly(I:C) (2 mg/kg) and para-chlorophenylalanine (pCPA; 300 mg/kg; Sigma-Aldrich, C6566), and serum were harvested as described previously (Bonnin et al., 2011). SRY genotyping for the purpose of analyzing sex differences was performed on all fetuses. Fetal tissues from each litter were used for subsequent analyses. All procedures involving animals were approved by the Institutional Animal Care and Use Committee.

5-HT-PCR analysis. For mRNA expression analyses, three fresh-frozen fetal tissue samples from each dam were pooled and 40 μg of tissue was extracted for RNA using the Bio-Rad Aurum Total RNA Mini Kit according to the manufacturer’s specifications. Extracted RNA was quantified and tested for purity spectrophotometrically and RNA quality was assessed using an Agilent Technologies 2100 bioanalyzer with high sensitivity RNA Screen-Template. Only samples with an RNA integrity number of 8.5 or higher and a 260/280 ratio of 1.8–2.2 were used for subsequent qRT-PCR analysis. After quality assessment and quantification, 1 μg of RNA was reverse transcribed to cDNA using the Invitrogen SuperScript III First-Strand Synthesis SuperMix for qRT-PCR kit according to the manufacturer’s specifications. qRT-PCRs were performed in triplicate using the Invitrogen Single Tube TaqMan Gene Expression Assays and TaqMan Gene Expression Master Mix and cycled and analyzed using the Invitrogen StepOnePlus Real-Time PCR System. Briefly, for each gene ([TPH1](Mm01206214_m1), [TPH2](Mm00557715_m1), [Idol](Mm00492586_m1), [Maoa](Mm00558804_m1), and reference gene [TATA box binding protein ([Tbp]) Mm00446973_m1]) and template combination 20 μl reactions were set up in triplicate containing 10 μl of TaqMan Gene Expression Master Mix, 1 μl of TaqMan Gene Expression Assay, and 9 μl of cDNA diluted in ultrapure water to a concentration of 10 ng template per well. Once all reactions were set up in 96-well plates, they were transferred to the StepOnePlus thermocycler and run using standard cycling conditions of a 2 min hold at 50°C, a 10 min hold at 95°C, and 30 cycles of 15 s at 95°C followed by 60 s at 60°C. Completed reactions were analyzed using the 2-ΔΔCT method (Livak and Schmittgen, 2001). The 2-ΔΔCT method for quantifying relative changes in gene expression involves comparing expression of a target gene with that of a reference gene that maintains stable expression throughout treatment groups and time points. Several reference genes were tested and [TATA box binding protein ([Tbp]) Mm00446973_m1] was found to be the most stable between treatment groups and time points in our samples. For the 2-ΔΔCT method to be valid, the amplification efficiencies of both the target and reference genes must be similar. To test this, efficiency curves for each TaqMan Assay were performed across a 100-fold template dilution range and compared for each primer–template combination to ensure similarity. After amplification, the relative expression of the control samples was compared with that of the treated samples and expressed in terms of fold change.

In vitro 5-hydroxytryptophan (5-HTP) synthesis assays. Harvested tissue samples (placenta, forebrain, and hindbrain) were thawed on ice and of toluene were extracted for RNA using the Bio-Rad Aurum Total RNA Mini Kit according to the manufacturer’s specifications. Extracted RNA was quantified and tested for purity spectrophotometrically and RNA quality was assessed using an Agilent Technologies 2100 bioanalyzer with high sensitivity RNA Screen-Template. Only samples with an RNA integrity number of 8.5 or higher and a 260/280 ratio of 1.8–2.2 were used for subsequent qRT-PCR analysis. After quality assessment and quantification, 1 μg of RNA was reverse transcribed to cDNA using the Invitrogen SuperScript III First-Strand Synthesis SuperMix for qRT-PCR kit according to the manufacturer’s specifications. qRT-PCRs were performed in triplicate using the Invitrogen Single Tube TaqMan Gene Expression Assays and TaqMan Gene Expression Master Mix and cycled and analyzed using the Invitrogen StepOnePlus Real-Time PCR System. Briefly, for each gene ([TPH1](Mm01206214_m1), [TPH2](Mm00557715_m1), [Idol](Mm00492586_m1), [Maoa](Mm00558804_m1), and reference gene [TATA box binding protein ([Tbp]) Mm00446973_m1]) and template combination 20 μl reactions were set up in triplicate containing 10 μl of TaqMan Gene Expression Master Mix, 1 μl of TaqMan Gene Expression Assay, and 9 μl of cDNA diluted in ultrapure water to a concentration of 10 ng template per well. Once all reactions were set up in 96-well plates, they were transferred to the StepOnePlus thermocycler and run using standard cycling conditions of a 2 min hold at 50°C, a 10 min hold at 95°C, and 30 cycles of 15 s at 95°C followed by 60 s at 60°C. Completed reactions were analyzed using the 2-ΔΔCT method (Livak and Schmittgen, 2001). The 2-ΔΔCT method for quantifying relative changes in gene expression involves comparing expression of a target gene with that of a reference gene that maintains stable expression throughout treatment groups and time points. Several reference genes were tested and [TATA box binding protein ([Tbp]) Mm00446973_m1] was found to be the most stable between treatment groups and time points in our samples. For the 2-ΔΔCT method to be valid, the amplification efficiencies of both the target and reference genes must be similar. To test this, efficiency curves for each TaqMan Assay were performed across a 100-fold template dilution range and compared for each primer–template combination to ensure similarity. After amplification, the relative expression of the control samples was compared with that of the treated samples and expressed in terms of fold change.

In vitro 5-hydroxytryptophan (5-HTP) synthesis assays. Harvested tissue samples (placenta, forebrain, and hindbrain) were thawed on ice and homogenized ultrasonically in, respectively, 400, 100, or 80 μl of extraction buffer composed of 0.05 M Tris buffer, pH 7.5, containing 1 mM dithiothreitol and 1 mM E GTA. Homogenates were centrifuged at 21,000 × g for 15 min at 4°C and then assayed for tryptophan hydroxylase activity. Briefly, 20 μl of supernatant was added to tubes containing 80 μl of reaction or control buffer to give a final concentration of: 0.05 M Tris buffer, pH 7.5, 1 mM E GTA, 50 μg/ml catalase, 200 μM 5-tryptophan, 100 μM ammonium iron (II) sulfate, and 100 μM tetrahydrobiopterin (BH4;
a cofactor required for TPH1 and TPH2 activity). Control buffers did not receive TRP or BH4. Tubes were incubated for 30 min at 37°C and reactions were terminated through protein denaturation by adding 100 μl of 0.2 m perchloric acid with 100 μA μl EDTA. Samples were stored on ice for 15 min to allow for complete protein denaturation and then centrifuged for 15 min at 21,000 × g at 4°C. TRP metabolism was determined by measuring the 5-HT concentration using HPLC with electrochemical detection (see below). Protein concentration of the supernatants was determined using a detergent-compatible protein assay (Bio-Rad) and enzymatic activity was quantified as picograms of 5-HT/μg of protein/30 min. Results are expressed as percentage of activity measured against saline-injected controls. Unless otherwise noted, all reagents were purchased from Sigma-Aldrich.

HPLC analysis. The HPLC analysis of perfusion samples and enzymatic assay supernatants was performed on an Eicom 700 system consisting of an ECD-700 electrochemical detector, an Eicom 7000 Insight autosampler, and Envision integration software. An Eicomspc-SC-3ODS 3 μm C18 reversed-phase column (3.0 × 100 mm inner diameter) analytical column was used for separation. Samples were extracted in a 1:1 volume of 0.2 m perchloric acid with 100 μA EDTA and a volume of 10 μl was injected into the column. The mobile phase used for separation consisted of 0.1 μl citric acid, 0.2 μl potassium phosphate dibasic, 7% methanol (JT Baker, 9093-03), and 5 μg of EDTA in ultrapure water at a flow rate of 450 μl/min. Unless otherwise noted, all reagents were purchased from Sigma-Aldrich. For measures of biogenic amine concentrations in fetal tissues, see Herve et al. (1996) and Janusonis et al (2006) for detailed methodology.

Cytokine analysis. The maternal and placental inflammatory response to poly(I:C) or saline was quantified in every mouse by measuring the concentration of an array of cytokines and chemokines in serum or tissue homogenates at time of harvesting. Tissue concentrations were measured in the maternal serum, placenta, and fetal brains for the following cytokines/chemokines: CCL2–5, CXCL1, CXCL9, IL-1α/β, IL-2, IL-4, IL-6, IL-10, IL-17, IFNγ, and TNFα. For serum preparation, whole blood was collected and allowed to coagulate at 4°C for 30 min before centrifugation at 2000 × g for 10 min at 4°C. Serum supernatant was collected and stored at −70°C. Placental and fetal brain tissues were homogenized immediately upon collection in 3 volumes (microliters per milligram) of ice-cold PBS supplemented with commercially available protease inhibitor mixture (Cell Signaling Technology, 5871S). Homogenates were clarified by centrifugation at 12,000 × g for 10 min at 4°C, and then supernatants were collected and stored at −70°C. For assessment of solute concentrations, we used commercially available cytometric bead arrays (CBAs) (BD Biosciences) as described previously (Lund et al., 2004). To assay, all samples were thawed on ice, diluted 1:3 in the supplied dilution buffer, and then run in triplicate. The concentration of each solute was calculated based on a standard curve of known concentrations and the intra-assay variability accounted for using internal control samples. The CBA sample data were collected using a BD Biosciences Accuri cytometer and analyzed using the commercially available FCAP Array Software (BD Biosciences). Tissue sample concentration from serum is given as picograms per milliliter and from tissue as picograms per milliliter of tissue homogenate.

Ex vivo placental perfusion 5-HT synthesis assay. For perfusion experiments, a separate cohort of pregnant dams was injected with either saline (n = 4) or poly(I:C) (n = 4) at E12. Briefly, a single placenta per dam was harvested at E14 and quickly transferred to a thermostatically controlled incubation chamber at 37°C. The uterine artery was cannulated with a 200-μm-diameter catheter and perfused at 20 μl/min with DMEM (Life Technologies, 11034-010) containing 200 μg/ml-tryptophan and 100 μM BH4. The umbilical artery was cannulated with a 105-μm-diameter catheter and perfused at 5 μl/min with DMEM. The eluate was collected from the umbilical vein for 90 min and analyzed for 5-HT concentration with HPLC. (For detailed methodology, see Goeden and Bonnin, 2013.

Neurodevelopmental assays. Fetal brains were dissected in ice-cold PBS, immediately transferred to 4% paraformaldehyde (PFA), and incubated at 4°C for 24 h. The fetal brains were then incubated in 10%, 20%, and 30% sucrose (dissolved in PBS) for 24 h each at 4°C. After incubation, the brains were embedded in cryomolds on dry ice using Tissue Tek embed-
sured TPH1/2 enzymatic activity directly in placentas and brains harvested from a subset of the same litters. There was a significant effect of exposure to poly(I:C) on TPH1 activity in the placenta (overall significant effect of treatment: $p = 0.0316, \hat{F} = 6.766, df = 8$); TPH1 activity was significantly increased 48 h after treatment ($p = 0.009$) only. In contrast, TPH2 enzymatic activity was not significantly altered by poly(I:C) exposure in the fetal hindbrain either 24 or 48 h after treatment (no significant overall effect of treatment: $p = 0.3728, \hat{F} = 0.8913, df = 8$; Fig. 2A). To determine whether the increase in placental TPH1 enzymatic activity affects placental 5-HT synthesis and delivery to the fetus, we measured the real-time 5-HT output of ex vivo perfused placentas from saline- and poly(I:C)-injected dams. We observed a significantly increased ($t_{(0)} = 2.7, p = 2.0E-2$) concentration of 5-HT released into the umbilical vein when comparing placentas from poly(I:C) exposed dams with placentas from control dams (Fig. 2B). These results demonstrate that a mild maternal inflammation induces a cascade of genetic and enzymatic changes within the placenta that result in increased 5-HT output to the fetus after 48 h.

Fetal forebrain 5-HT increases rapidly after mild maternal immune activation

Consistent with previous findings that placental 5-HT synthesis affects fetal forebrain 5-HT concentration (Bonnin et al., 2011; Goeden and Bonnin, 2013), there was overall a significant effect of poly(I:C) treatment on fetal forebrain 5-HT tissue concentration ($p = 0.0028, \hat{F} = 14.71, df = 11$; Fig. 3A, C); although 5-HT tissue concentration was elevated at both time points after poly(I:C) exposure, the increase was significant only 48 h after treatment (comparison with saline controls: $p = 0.1342$ at 24 h; $p = 0.0130$ at 48 h). The treatment had no significant effect on hindbrain 5-HT tissue concentration at either time point ($p = 0.8094, \hat{F} = 0.0610, df = 11$; Fig. 3B, D). Fetal brain tissue concentrations of 5-HIAA, the primary metabolite of 5-HT, remained unchanged at both time points ($p = 0.1384, \hat{F} = 2.553, df = 11$). The concentration of 5-HTP in the fetal forebrain was below detection levels at these time points (data not shown). Poly(I:C) treatment also had a significant overall effect on KYN tissue concentration in the fetal forebrain ($p = 0.0022, \hat{F} = 15.67, df = 11$; Fig. 3A, C) and hindbrain ($p = 0.0208, \hat{F} = 7.263, df = 11$; Fig. 3B, D). Importantly, there was an overall effect of poly(I:C) exposure on placental TRP concentration ($p = 0.0058, \hat{F} = 11.67, df = 11$; Fig. 3E), with a significant increase at 24 h (1.4-fold over saline-injected controls, $p = 0.0006$), but not 48 h ($p > 0.9999$). To test the possibility that increased substrate (TRP) availability in the placenta 24 h after poly(I:C) injection leads to increased metabolic conversion to 5-HT, we performed dose–response studies in placentas 24 h after poly(I:C) or saline injections. The in vitro enzymatic activity assays demonstrated that increasing input concentrations of TRP led to a linear increase of 5-HTP production in both the saline ($r^2 = 0.9996$) and poly(I:C) ($r^2 = 0.9972$) groups. Therefore, placental 5-HT synthesis is correlated linearly to TRP substrate availability (Fig. 3F).
Decreased 5-HT axon outgrowth in the fetal forebrain

In addition to increased placental output, elevated forebrain 5-HT tissue concentration could have resulted from increased endogenous serotonergic axon outgrowth into the region. To test this possibility, we measured serotonergic (5-HT-immunoreactive, 5-HT\(^+/+\)) axon density systematically throughout the rostrocaudal extent of the fetal forebrain 48 h after maternal exposure to saline, poly(I:C), or poly(I:C) and the TPH inhibitor pCPA (Fig. 4A). When comparing sets of sections at matching rostrocaudal levels, densitometric analysis of fluorescence distribution showed a significant decrease of 5-HT\(^+/+\) axon density in the rostral two-thirds of the forebrain in the poly(I:C)-treated, but not the poly(I:C)\(^+/+\) pCPA-treated group, compared with saline (Fig. 4B). The overall 5-HT\(^+/+\) axon density over the entire rostrocaudal axis was significantly decreased in the poly(I:C)-treated group compared with saline, but not after the coadministration of poly(I:C) with pCPA (Fig. 4B; Mann–Whitney test, \(U = 60, p = 0.0009\)). Furthermore, HPLC analyses showed that coadministration of pCPA prevents the accumulation of 5-HT in the fetal forebrain that is induced by poly(I:C) exposure alone versus the poly(I:C) + pCPA group (\(t_{6} = 4.94, p = 0.002\); saline group versus poly(I:C) + pCPA group: \(t_{6} = 1.81, p = 0.119\); Fig. 4C). These results show that the elevation of 5-HT in the forebrain after mild inflammation is not due to increased serotonergic axon outgrowth into the region. Rather, the results suggest that elevated placental output of 5-HT after mild immune activation leads to increased extracellular 5-HT accumulation in the fetal forebrain that affect serotonergic axon rostral outgrowth negatively.

Discussion

Our results identify a novel molecular pathway by which maternal inflammation during pregnancy alters specific aspects of fetal brain development. We used a mild maternal immune challenge [2 mg/kg poly(I:C) administered i.p. at E12] with the following characteristics: (1) it does not lead to the accumulation of cytokines in the fetal brain, (2) it mimics clinically common mild inflammation with transient cytokine elevations in the maternal serum (Giovanoli et al., 2013; Meyer, 2014), and (3) it induces significant long-term brain and behavioral deficits in the adult offspring (Meyer et al., 2005; Meyer and Feldon, 2012). Importantly, whereas the mild immune challenge induced the expected transient IL-6 increase in the maternal serum, there was no evidence of cytokine accumulation in the fetal brain tissue (Fig. 1). This suggests, not only that mild subclinical maternal inflammation does not alter overall placental permeability to cytokines, but also that it primarily involves indirect effects on the fetal brain through alteration of placental function, our results show that low-dose poly(I:C) exposure affects placental TRP metabolism directly upstream of the fetus. The increase in

Figure 2. Maternal inflammation increases placental TPH1 enzymatic activity and ex vivo 5-HT output to the fetus. A, Twenty-four and 48 h after saline (control) or poly(I:C) (2 mg/kg) injections at E12, TRP to 5-HTP conversion, which reflects TPH enzymatic activity, was measured in placenta (TPH1) and fetal hindbrains (TPH2). Maternal inflammation induces a significant increase in TPH1 activity over saline (control) level (measured in placental extracts from saline injected dams) at 48 h only. TPH2 activity in the hindbrain is unchanged at both the 24 and 48 h time points. *\(p < 0.05\), two-way ANOVA with Bonferroni correction. B, Ex vivo placental perfusions showing that significantly more 5-HT is synthesized and released from the placenta 48 h after maternal poly(I:C) exposure compared with saline (control) exposure. *\(p < 0.05\), unpaired \(t\) test with Holm–Sidak correction. Error bars indicate SEM percentage change (A) or SD (B). \(n = 3\) (A) or \(n = 1\) (B) placenta per dam.
placental *Ido1* gene expression in response to inflammation demonstrated here is consistent with previously published studies (Shayda et al., 2009; Wang et al., 2010) and, together with cytokine measures, confirms that the injection of low-dose poly(I:C) at E12 induces an inflammatory response in the mother that is attenuated locally in the placenta. This upregulation of the IDO1 pathway is critical for the localized suppression of the maternal immune response to protect the semiallogeneic fetus from rejection (Du et al., 2014). It was hypothesized recently that such upregulation would lead to decreased TRP substrate availability for the competing TPH1 pathway, ultimately decreasing placental output of 5-HT to the developing fetal brain (Sato, 2013). However, the maternal TRP, but not 5-HT, blood level is increased 24 h after poly(I:C) injection. Importantly, placental TPH1 enzymatic activity is normal at the 24 h time point (Fig. 2A); however, dose–response studies (Fig. 3F) show that increasing concentrations of TRP substrate (up to fourfold above the normal physiological concentrations of ~60 μM; Schröcksnadel et al., 2006) induce a linear increase of 5-HT synthesis. By 48 h after poly(I:C) injection, the placental TRP concentration returns to control level (Fig. 3E), whereas placental TPH1 enzymatic activity is increased significantly compared with saline-injected controls (Fig. 2A).

Therefore, two different mechanisms contribute successively to the elevation of fetal forebrain 5-HT measured 24 and 48 h after maternal poly(I:C) injection: (1) 24 h after induction of maternal inflammation, the transient elevation of maternal blood/placental TRP leads to increased output of placental 5-HT to the fetus and (2) at 48 h, the placental TRP concentration has returned back to normal levels (Fig. 3E) but TPH1 enzymatic activity is increased (Fig. 2A), leading to increased placental 5-HT output to
the fetus (Fig. 2B). This chronological sequence of molecular changes results in a sustained elevation of fetal brain 5-HT lasting for at least 48 h after induction of maternal inflammation. The 5-HTP intermediate metabolic product produced by placental TPH1 activity (Fig. 3F) might also get converted to 5-HT within the fetal forebrain; however, 5-HTP was not detected in the fetal forebrain at either time point, suggesting that the contribution of this pathway to the increase in 5-HT concentration is minimal. The results also suggest that transfer of maternal blood 5-HT to the fetus is unlikely to contribute to elevated fetal brain 5-HT levels. Indeed, poly(I:C) injections do not alter total maternal blood/placental 5-HT concentration significantly (Fig. 3E) and, to our knowledge, there is no evidence of active transport of 5-HT across the placenta. Early studies (Robson and Senior, 1964) and more recent studies (Bonnin et al., 2011) show that maternal blood 5-HT does not cross to the fetal compartment to a measurable extent. In fact, the absence of active maternal-fetal 5-HT transport during this time period (E12–E14) may be consistent with the lack of 5-HT-specific transporter SERT expression in early pregnancy in the mouse placenta (Verhaagh et al., 2001). Importantly, the increase of forebrain 5-HT is not associated with a decrease in 5-HIAA concentration, indicating that it does not result from decreased 5-HT degradation in the fetal brain.
The direct in vivo measure of increased 5-HT output from the placenta to the fetal blood compartment in response to inflammatory challenge was not possible due to the very small volumes of blood collected at E13/14. However, the data indicate that the elevation of fetal forebrain 5-HT concentration measured after the maternal immune challenge results directly from increased placental 5-HT output. First, maternal inflammation upregulates TRP substrate availability and TPH1 enzymatic activity in the placenta, but not TPH2 activity in the fetal hindbrain (Fig. 2A). Second, the increase of 5-HT tissue concentration is significant in the fetal forebrain, but not hindbrain, where endogenous 5-HT neuronal cell bodies and proximal axons are located. Third, immunohistochemical analysis shows that maternal inflammation induces a significant decrease, not increase, of 5-HT axon outgrowth specifically into the rostral forebrain (Fig. 4B). Fourth, coadministration of the selective TPH inhibitor pCPA prevents, not only the accumulation of 5-HT, but also the blunting of endogenous serotoninergic axon outgrowth induced by maternal inflammation in the fetal forebrain. This effect took place between E12 and E14, a period of active serotoninergic axon outgrowth into the rostral forebrain (Lidov and Molliver, 1982; Wallace and Lauder, 1983). The simultaneous increase in total tissue 5-HT concentration and decrease of 5-HT axons density in the forebrain indicates that, at early stages of development (before E14), tissue concentrations of 5-HT measured by HPLC reflect mainly extracellular rather than immunohistochemically visible axonal 5-HT. A similar observation was made in the fetal forebrain of E14 Pet-1 knock-out embryos, in which most of the rostral forebrain serotoninergic axon bundle is missing but which contain a normal tissue concentration of 5-HT (Bonnin et al., 2007). Increased extracellular 5-HT of placental origin may in fact affect endogenous serotoninergic axon outgrowth directly in the rostral forebrain. Indeed, earlier studies showed that extracellular 5-HT concentrations regulate 5-HT axon outgrowth through subsets of 5-HT autoreceptors expressed either on dorsal raphe 5-HT neuron cell bodies or axons (Daubert and Condron, 2010). This suggests that the blunted rostral serotoninergic axon outgrowth observed after maternal immune challenge may be a direct consequence of elevated concentrations of exogenous placental 5-HT reaching the forebrain.

Together, these findings indicate that a mild and acute maternal immune challenge disrupts placental conversion of TRP to 5-HT upstream of the fetal brain, which ultimately affects specific aspects of fetal neurodevelopment (Fig. 4A, B). Importantly, although the simultaneous increase of TRP metabolic flux through both the IDO1 and TPH1 pathways in the placenta in response to maternal inflammation provides an important immunosuppressive protection for the fetus, it also leads to increased fetal brain exposure to elevated concentrations of 5-HT. Such an increase in ligand concentration affects important developmental processes in the fetal brain that are normally modulated by 5-HT at early stages of pregnancy. A mild maternal inflammation triggered by low-dose poly(I:C) exposure, similar to the challenge used in the current study, was shown to have long-term effects on offspring brain function and behavior, including disruption of latent inhibition, spatial working memory impairment, and reduced spatial exploration (Meyer and Feldon, 2012). Although these studies included doses and routes of administration for poly(I:C) similar to those used in the present study, results indicated that offspring behavioral outcomes are dose dependent and potentially mouse strain dependent (Meyer and Feldon, 2012). Nevertheless, it appears that prenatal inflammation can lead to increased anxiety and depression-like behaviors in the offspring, behaviors that are influenced by serotoninergic function (Butkевич et al., 2003; Enayati et al., 2012; Lin et al., 2012). The possibility that the effect of maternal inflammation on early serotoninergic development has long-term consequences on 5-HT-dependent behaviors is also supported by studies showing that low-dose poly(I:C) exposure during pregnancy decreases serotoninergic tone in specific brain regions of the adult offspring, such as the nucleus accumbens and hippocampus (Winter et al., 2009). However, to what extent the early specific disruptions of serotoninergic circuit formation reported here contribute to these long-term alterations of offspring brain function requires additional characterization. Further studies on the effects of infectious agents on placentally derived modulators of neurodevelopment are warranted, particularly in view of recent infectious diseases outbreaks (such as H1N1 influenza or Zika virus) suggesting that pregnant women and their fetuses are high-risk groups for severe and long-lasting complications (Omer and Beigi, 2016).

References

CrossRef Medline

Medline

CrossRef Medline

Goeden et al., Maternal Inflammation Affects Fetal Neurodevelopment

