FY16 T45 Contingency Base Site Evaluations for Tactical Environment

Construction Material-Based Methodology for Military Contingency Base Construction

Case Study of Maiduguri, Nigeria

Patrick J. Guertin, George W. Calfas, Michael K. Valentino, and Ghassan K. Al-Chaar

September 2016

Approved for public release; distribution is unlimited.
The U.S. Army Engineer Research and Development Center (ERDC) solves the nation’s toughest engineering and environmental challenges. ERDC develops innovative solutions in civil and military engineering, geospatial sciences, water resources, and environmental sciences for the Army, the Department of Defense, civilian agencies, and our nation’s public good. Find out more at www.erdc.usace.army.mil.

To search for other technical reports published by ERDC, visit the ERDC online library at http://acwc.sdp.sirsi.net/client/default.
Construction Material-Based Methodology for Military Contingency Base Construction

Case Study of Maiduguri, Nigeria

Patrick J. Guertin, George W. Calfas, Michael K. Valentino, and Ghassan K. Al-Chaar

Construction Engineering Research Laboratory
U.S. Army Engineer Research and Development Center
2902 Newmark Drive
PO Box 9005
Champaign, IL 61826-9005

Final report
Approved for public release; distribution is unlimited.

Prepared for Department of the Army Headquarters
101 Army Pentagon
Washington, DC 20310-0101

Under Project 455009, “Contingency Base Site Evaluations for Tactical Environment”
Abstract

To sustain itself as the world’s premier land power, the U.S. Army needs the capability to support expeditionary forces by projecting a minimal basing footprint with reduced logistical burdens. Strategically sited Contingency Bases (CBs) allow the Army’s expeditionary forces to rapidly respond and attack the enemy throughout the joint area of operations (JOA). Strategic conditions will be analyzed through the lens of eight OE variables—political, military, economic, social, information, infrastructure, physical environment, and time (PMESII-PT). The Army has neither a well-grounded methodology nor the tools to enable this type of strategic decision-making capability. Decision makers require reliable information about the situational dynamics of the operational environment to anticipate the impacts that sitting and operating CBs will have on the local context, and to consider the effects of the site on the operation of CBs. The capability to anticipate CB impacts and resources draws upon the local population, which will becomes particularly important for engagement operations when CBs will have a longer duration of use and interaction with the local populace. This report considers access of building materials required for the construction of CBs and develops a methodology to acquire reliable information that can be replicated in other locations through the world. This work then validates the developed methodology with a case study of Maiduguri, Nigeria.
Unit Conversion Factors

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To Obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>feet</td>
<td>0.3048</td>
<td>meters</td>
</tr>
<tr>
<td>hectares</td>
<td>1.0 E+04</td>
<td>square meters</td>
</tr>
<tr>
<td>inches</td>
<td>0.0254</td>
<td>meters</td>
</tr>
<tr>
<td>miles (U.S. statute)</td>
<td>1,609.347</td>
<td>meters</td>
</tr>
<tr>
<td>square feet</td>
<td>0.09290304</td>
<td>square meters</td>
</tr>
<tr>
<td>square miles</td>
<td>2.589998 E+06</td>
<td>square meters</td>
</tr>
<tr>
<td>tons (2,000 pounds, mass)</td>
<td>907.1847</td>
<td>kilograms</td>
</tr>
</tbody>
</table>
Abbreviations

<table>
<thead>
<tr>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOD</td>
<td>argon oxygen decarburization</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society of Testing and Materials</td>
</tr>
<tr>
<td>BPLC</td>
<td>bagged Portland limestone cement</td>
</tr>
<tr>
<td>CB</td>
<td>Contingency Base</td>
</tr>
<tr>
<td>CB-SITE</td>
<td>Contingency Base Site Identification for the Tactical Environment</td>
</tr>
<tr>
<td>CIMENCAM</td>
<td>Les Cimenteries du Cameroun</td>
</tr>
<tr>
<td>CMU</td>
<td>cement masonry unit</td>
</tr>
<tr>
<td>FAS</td>
<td>firsts and seconds</td>
</tr>
<tr>
<td>FEMA</td>
<td>Federal Emergency Management Agency</td>
</tr>
<tr>
<td>FOB</td>
<td>Forward Operating Base</td>
</tr>
<tr>
<td>GIS</td>
<td>geographic information system</td>
</tr>
<tr>
<td>HSS</td>
<td>hollow structural section</td>
</tr>
<tr>
<td>HT</td>
<td>high tensile</td>
</tr>
<tr>
<td>IBP</td>
<td>International Business Publications</td>
</tr>
<tr>
<td>IUCN</td>
<td>International Union for the Conservation of Nature</td>
</tr>
<tr>
<td>JOA</td>
<td>Joint Area of Operations</td>
</tr>
<tr>
<td>JORC</td>
<td>Joint Ore Reserves Committee</td>
</tr>
<tr>
<td>LGA</td>
<td>Local government area</td>
</tr>
<tr>
<td>MDF</td>
<td>medium-density fiberboard</td>
</tr>
<tr>
<td>MS</td>
<td>mild steel</td>
</tr>
<tr>
<td>MTPA</td>
<td>metric tons per annum</td>
</tr>
<tr>
<td>mW</td>
<td>megawatt</td>
</tr>
<tr>
<td>₦</td>
<td>naira (monetary unit)</td>
</tr>
<tr>
<td>NCP</td>
<td>Nigeria Code of Practice</td>
</tr>
<tr>
<td>NIROWI</td>
<td>Nigerian-Romanian Wood Industry</td>
</tr>
<tr>
<td>NIRP</td>
<td>Nigeria Industrial Revolution Plan</td>
</tr>
<tr>
<td>NIS</td>
<td>Nigerian Industrial Standard</td>
</tr>
<tr>
<td>NSDA</td>
<td>Nigerian Steel Development Authority</td>
</tr>
<tr>
<td>OPC</td>
<td>ordinary Portland cement</td>
</tr>
<tr>
<td>PDF</td>
<td>population density factor</td>
</tr>
<tr>
<td>RCC</td>
<td>Reynolds Construction Company</td>
</tr>
<tr>
<td>RHA</td>
<td>rice husk ash</td>
</tr>
<tr>
<td>RMC</td>
<td>ready-mix concrete</td>
</tr>
<tr>
<td>SNC</td>
<td>Société Nigérienne de Cimenterie</td>
</tr>
<tr>
<td>SON</td>
<td>Standards Organisation of Nigeria</td>
</tr>
<tr>
<td>Term</td>
<td>Meaning</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>TPA</td>
<td>tons per annum</td>
</tr>
<tr>
<td>TSNL</td>
<td>TOP Steel Nigeria Limited</td>
</tr>
<tr>
<td>URM</td>
<td>unreinforced masonry</td>
</tr>
<tr>
<td>USDA</td>
<td>U.S. Department of Agriculture</td>
</tr>
<tr>
<td>USGS</td>
<td>U.S. Geological Survey</td>
</tr>
</tbody>
</table>
Contents

Abstract... ii

Unit Conversion Factors.. iii

Abbreviations.. iv

Figures and Tables.. x

Preface .. xv

1 Introduction ... 1
 1.1 Background.. 1
 1.1.1 Concrete .. 4
 1.1.2 Wood.. 5
 1.1.3 Steel... 6
 1.2 Objective... 7
 1.3 Methodology.. 7

2 Methodology .. 1
 2.1 Population density ... 1
 2.1.1 General regions... 1
 2.2 Building types ... 4
 2.2.1 Building Type 1: Wood Light Frames... 4
 2.2.2 Building Type 2: Wood Frames, Commercial and Industrial............................. 5
 2.2.3 Building Type 3: Steel Moment Frame... 5
 2.2.4 Building Type 4: Steel-Braced Frame... 5
 2.2.5 Building Type 5: Steel Light Frame ... 6
 2.2.6 Building Type 6: Steel Frames with Concrete Shear Walls................................. 6
 2.2.7 Building Type 7: Steel Frames with Infill Masonry Shear Walls........................... 6
 2.2.8 Building Type 8: Concrete Moment Frames .. 7
 2.2.9 Building Type 9: Concrete Shear Wall Buildings.. 7
 2.2.10 Building Type 10: Concrete Frames with Infill Masonry Shear Walls...................... 7
 2.2.11 Building Type 11: Precast/Tilt-Up Concrete Shear Wall Buildings............................ 8
 2.2.12 Building Type 12: Precast Concrete Frames... 8
 2.2.13 Building Type 13: Reinforced Masonry Bearing Wall Buildings with Flexible Diaphragms .. 9
 2.2.14 Building Type 14: Reinforced Masonry Bearing Wall Buildings with Stiff Diaphragms ... 9
 2.2.15 Building Type 15: Unreinforced Masonry Bearing Wall Buildings........................... 9
 2.3 Effective proximity factor .. 11
 2.4 Infrastructure .. 13
 2.5 Centers of construction resources ... 16
 2.5.1 Construction resource for each region ... 20
 2.6 Approach ... 22
 2.6.1 Regions... 22
3 Cement ... 29
 3.1 Industry ... 29
 3.1.1 Global scenario ... 29
 3.1.2 Background ... 29
 3.1.3 Cement competitiveness .. 29
 3.1.4 Regionalism .. 30
 3.1.5 Cement producers – Nigeria .. 30
 3.1.6 Cement producers – Benin ... 35
 3.1.7 Cement producers – Cameroon .. 36
 3.1.8 Cement producers – Chad ... 37
 3.1.9 Cement producers – Niger ... 38
 3.2 Product ... 39
 3.2.1 Codes, standards, and methods ... 39
 3.2.2 Cement grades ... 40
 3.2.3 Cement types ... 40

4 Ready-Mix Concrete ... 41
 4.1 Industry .. 41
 4.1.1 Global scenario ... 41
 4.1.2 Background ... 41
 4.1.3 Regionalism .. 41
 4.1.4 Ready-mix concrete producers – Nigeria ... 41
 4.2 Product ... 46
 4.2.1 Codes, standards, and methods ... 46

5 Aggregate .. 47
 5.1 Industry .. 47
 5.1.1 Global scenario ... 47
 5.1.2 Background ... 47
 5.1.3 Regionalism .. 47
 5.1.4 Aggregate sites – Nigeria .. 48
 5.1.5 Aggregate sites – Chad .. 59
 5.1.6 Aggregate sites – Cameroon .. 60
 5.2 Product ... 61
 5.2.1 Codes, standards, and methods ... 61

6 Wood .. 62
 6.1 Industry ... 62
 6.1.1 Global scenario ... 62
 6.1.2 Background ... 62
References... 113

Appendix: Population Data and Construction Materials Database .. 121

Report Documentation Page
Figures and Tables

Figures

Figure 1. Maiduguri location (Google Maps, 2016). ... 3
Figure 2. Regional view of Maiduguri (Google Maps, 2016). ... 3
Figure 3. Population density for Nigeria and Cameroon (World Bank Group 2016). 8
Figure 4. Major regions in and around Nigeria (“Nigeria States – Nigeria maps”)........... 2
Figure 5. Major regions for analysis (“Nigeria States – Nigeria maps”)................................ 4
Figure 6. Population density and distance between major regions (African Development Bank 2013). ... 11
Figure 7. Density and effective proximity factor (African Development Bank 2013)......... 12
Figure 8. Port map for Nigeria (African Development Bank 2013). 14
Figure 9. Railroad network in Nigeria (African Development Bank 2013). 14
Figure 10. Road network in Nigeria (African Development Bank 2013). 15
Figure 11. Airport facilities in Nigeria (African Development Bank 2013). 15
Figure 12. Flood-risk map for Nigeria (Nkeki et al. 2013). ... 16
Figure 13. Geographical centers, gravel resource (“Nigeria States–Nigeria maps”)......... 17
Figure 14. Geographical centers, cement resource (“Nigeria States–Nigeria maps”)........ 18
Figure 15. Geographical centers, concrete resource (“Nigeria States–Nigeria maps”)....... 18
Figure 16. Geographical centers, lumber resource (“Nigeria States – Nigeria maps”). 19
Figure 17. Geographical centers, steel resource (“Nigeria States – Nigeria maps”). 19
Figure 18. Geographical centers, brick resource (“Nigeria States–Nigeria maps”)............ 20
Figure 19. Overlay of site selection construction material factors (ERDC-CERL, 2016). 21
Figure 20. Locations of Dangote Cement in Nigeria, relative to Maiduguri (Google Maps, 2016). .. 31
Figure 21. Dangote Obajana Cement Plant information (“Dangote Group: Welcome”). . .. 31
Figure 22. Dangote Ibese Cement Plant information (“Dangote Group: Welcome”). . .. 32
Figure 23. Ashaka cement locations in Nigeria, relative to Maiduguri (Google Maps, 2016). .. 33
Figure 24. WAPCO Cement location in Nigeria, relative to Maiduguri (Google Maps, 2016). .. 33
Figure 25. Sokoto Cement location in Nigeria, relative to Maiduguri (Google Maps, 2016). .. 34
Figure 26. Bua Cement location in Nigeria, relative to Maiduguri (Google Maps, 2016).. 34
Figure 27. Eastern Bulkcem cement location in Nigeria, relative to Maiduguri (Google Maps, 2016). ... 35
Figure 28. Benin’s cement locations, relative to Maiduguri (Google Maps, 2016).........36
Figure 29. Cement location in Douala, Cameroon, relative to Maiduguri, Nigeria (Google Maps, 2016). ... 36
Figure 30. Cement locations in Chad, relative to Maiduguri (Google Maps, 2016). 38
Figure 31. Société Nigérienne de Cimenterie S.A. location in Niger, relative to Maiduguri, Nigeria (Google Maps, 2016). .. 39
Figure 32. Dangote cement location in Niamey, Niger, relative to Maiduguri., Nigeria (Google Maps, 2016). ... 39
Figure 33. Julius Berger, concrete locations in Nigeria, relative to Maiduguri (Google Maps, 2016). ... 42
Figure 34. Lafarge concrete locations in Nigeria, relative to Maiduguri (Google Maps, 2016). ... 43
Figure 35. Nigerian Concrete Industries Ltd., concrete location in Nigeria, relative to Maiduguri (Google Maps, 2016). ... 43
Figure 36. Ogbonor Concrete Industries Ltd., concrete location in Nigeria, relative to Maiduguri (Google Maps, 2016). ... 44
Figure 37. Quick Mix Nigeria, concrete location, relative to Maiduguri (Google Maps, 2016). ... 44
Figure 38. Sika Group, concrete location in Nigeria, relative to Maiduguri (Google Maps, 2016). ... 45
Figure 39. SPG Nigeria Limited, concrete locations (Google Maps, 2016).45
Figure 40. Julius Berger, aggregate locations in Nigeria, relative to Maiduguri (Google Maps, 2016). ... 48
Figure 41. Macmahon, aggregate locations in Nigeria, relative to Maiduguri (Google Maps, 2016). ... 49
Figure 42. Reynolds Construction Company, aggregate locations in Nigeria, relative to Maiduguri (Google Maps, 2016). ... 49
Figure 43. PW Group, aggregate locations in Nigeria, relative to Maiduguri (Google Maps, 2016). ... 50
Figure 44. Salimonu Company Nigeria Ltd., aggregate locations in Nigeria, relative to Maiduguri (Google Maps, 2016). ... 51
Figure 45. Sehnaoui Plant Nigeria Ltd, aggregate location in Nigeria, relative to Maiduguri (Google Maps, 2016). ... 51
Figure 46. Ekam Quarry Nigeria Limited, aggregate location in Nigeria, relative to Maiduguri (Google Maps, 2016). ... 52
Figure 47. Ebonyi Cement Company, aggregate locations (Google Maps, 2016).........52
Figure 48. Total Mining Limited, aggregate locations in Nigeria, relative to Maiduguri (Google Maps, 2016). ... 53
Figure 49. Gateway Mining Company Limited, aggregate locations in Nigeria, relative to Maiduguri (Google Maps, 2016). .. 53
Figure 50. Reagan Renaissance Limited, aggregate location in Nigeria, relative to Maiduguri (Google Maps, 2016) ... 54
Figure 51. GoldenLand Resources International Limited, aggregate location in Nigeria, relative to Maiduguri (Google Maps, 2016) ... 55
Figure 52. Association of Tipper & Quarry Owners of Nigeria, location in Nigeria, relative to Maiduguri (Google Maps, 2016) ... 55
Figure 53. Anthony Chizea Holding, aggregate location in Nigeria, relative to Maiduguri (Google Maps, 2016) ... 56
Figure 54. S. Pawa Quarry, aggregate location in Nigeria, relative to Maiduguri (Google Maps, 2016) ... 56
Figure 55. Ratcon Construction Company Limited, aggregate locations in Nigeria, relative to Maiduguri (Google Maps, 2016) ... 57
Figure 56. M.F.W. Dredging & Marine Nigeria Limited, aggregate location in Nigeria, relative to Maiduguri (Google Maps, 2016) ... 57
Figure 57. Adazi Nnukwu Town Development Union, aggregate location in Nigeria, relative to Maiduguri (Google Maps, 2016) ... 58
Figure 58. Gateway Holding Limited, aggregate location in Nigeria, relative to Maiduguri (Google Maps, 2016) ... 58
Figure 59. Various fine aggregate locations in Nigeria, relative to Maiduguri (Google Maps, 2016) ... 59
Figure 60. Société d’Exploitation Minière de Pala, aggregate location in Chad, relative to Maiduguri (Google Maps, 2016) ... 59
Figure 61. Chad, various coarse aggregate locations (Google Maps, 2016) ... 60
Figure 62. Cimencam, aggregate location (Google Maps, 2016) ... 61
Figure 63. Bayrem Group International, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016) ... 64
Figure 64. Bellet Construction, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016) ... 64
Figure 65. Bissy King International, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016) ... 65
Figure 66. Cosource Ventures, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016) ... 65
Figure 67. Delta Forestry, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016) ... 66
Figure 68. Eddy Bros Nigeria Ltd, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016) ... 66
Figure 69. EG Woods Ltd, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016) ... 67
Figure 70. Hephzibah Resc and Inv Ltd wood location in Nigeria, relative to Maiduguri (Google Maps, 2016) ... 67
Figure 71. Jasper Wood Industry, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016) ... 68
Figure 72. Malagas Ventures Nigeria, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016) ... 68
Figure 73. Obijiwealth Nig Ltd, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016). ...69
Figure 74. Orlean Farms Ltd, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016). ...69
Figure 75. Shamen Global Concepts Ventures, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016). ..70
Figure 76. Shnahan Trading Investment, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016). ..70
Figure 77. Stanimose, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016). ...71
Figure 78. Tradecorp Investments Nigeria Ltd, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016). ..71
Figure 79. Ulman Investment Nig Ltd, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016). ..72
Figure 80. Woodvantage Ltd, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016). ...72
Figure 81. Yemi Productions Ltd, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016). ...72
Figure 82. Nigerian-Romanian Wood Industry, wood locations in Nigeria, relative to Maiduguri (Google Maps, 2016).73
Figure 83. Epe Plywood Industries Limited, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016). ..75
Figure 84. African Timber and Plywood, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016). ..75
Figure 85. Piedmont Plywood, wood locations in Nigeria, relative to Maiduguri (Google Maps, 2016). ...76
Figure 86. Aframero Limited, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016). ...76
Figure 87. OBM Merchandise Ltd, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016). ...77
Figure 88. Thameswood Products, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016). ...77
Figure 89. Haran Resources Ltd, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016). ...78
Figure 90. Akewa Global Services Ltd, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016). ...78
Figure 91. Famolin Enterprises, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016). ...79
Figure 92. Forthnur Company Ltd location (Google Maps, 2016). ...79
Figure 93. Cotoaz Shipping & Logistics Limited, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016). ..80
Figure 94. Awa Holdings Limited, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016). ...80
Figure 95. Rosohan System Nigeria Limited, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016). ...81
Figure 96. Hilicin Limited location in Nigeria, relative to Maiduguri (Google Maps, 2016). .. 81
Figure 97. Nigeria wood species characterization (Adesogan 2013). ... 83
Figure 98. Frequency of usage of various wood species for construction (Adesogan 2013). .. 84
Figure 99. Nigerian woods, characterized by various properties (Ohagwua 2011). 85
Figure 100. Typical unit operation for wood sawing process (Ohagwua 2011). 86
Figure 101. Bamboo availability in Nigeria (Atanda 2015). ... 89
Figure 102. Integrated mill locations in Nigeria (Google Maps, 2016). 93
Figure 103. Rolling mill locations - 1 in Nigeria (Google Maps, 2016). 93
Figure 104. Rolling mill locations - 2 in Nigeria (Google Maps, 2016). 94
Figure 105. Mini mill locations in Nigeria (Google Maps, 2016). ... 94
Figure 106. Nigerian iron ore deposit locations (Google Maps, 2016). 98
Figure 107. Brick plants in Nigeria (Google Maps, 2016). ... 103

Tables

Table 1. Major division’s populations and densities (Nigeria Population Commission 2016). .. 1
Table 2. Ranking of FEMA buildings from most to least suitable (ERDC-CERL, 2016). 10
Table 3. Effective proximity factor between major regions (Nigeria Population Commission 2016). 12
Table 4. Suitability of construction resources for the major Nigeria regions (ERDC-CERL, 2016). 21
Table 5. Various steel companies in Nigeria (Ohimain 2014). 91
Table 6. Iron ore deposits in Nigeria (Ohimain 2014). 97
Table 7. Principal clay deposits in Nigeria (Otoko 2014). 103
Preface

This study was conducted for the Department of the Army under applied research program element T45, Project 45509, “Contingency Base Site Evaluations for Tactical Environment.” The technical monitor was Mr. Kurt Kinnevan, CEERD-CZT.

The work was performed by the Environmental Processes Branch (CNE) of the Installations Division (CN), U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory (ERDC-CERL). At the time of publication, Mr. Harold G. (Garth) Anderson was Chief, CEERD-CNE; Ms. Michelle Hanson was Chief, CEERD-CN; and Mr. Kurt Kinnevan, CEERD-CZT, was the Technical Director for Adaptive and Resilient Installations. The Deputy Director of ERDC-CERL was Dr. Kirankumar Topudurti, and the Director was Dr. Ilker Adiguzel.

The Commander of ERDC was COL Bryan S. Green, and the Director was Dr. Jeffery P. Holland.
(This page intentionally blank.)
1 Introduction

1.1 Background

To sustain itself as the world’s premier land power, the U.S. Army needs the capability to support expeditionary forces by projecting a minimal basing footprint with reduced logistical burdens. Strategically sited Contingency Bases (CBs) allow the Army’s expeditionary forces to rapidly respond and attack the enemy throughout the joint area of operations (JOA). The Army has neither a well-grounded methodology nor the tools that enable this strategic decision-making capability. Decision makers require reliable information about the situational dynamics of the operational environment to anticipate the impacts that siting and operating CBs will have on the local context and to consider the effects of the site on the operation of CBs. This capability to anticipate CB impacts on a local context becomes particularly important for engagement operations when CBs will have a longer duration of use and interaction with the local populace. Understanding of these potential impacts enables decision makers to evaluate implications of the effects of the CB life cycle for the Commander’s intent in the pre-operational planning stage.

This project will develop a contingency site selection process that does not currently exist for mission planners. The more efficient siting of CBs will assist in the reduction of materiel demand, minimize footprint, reduce risk to Soldiers, and preserve freedom of maneuver and action. Contingency Base Site Identification for the Tactical Environment (CB-SITE) will enable expeditionary planning to occur prior to deployment. A geospatial decision support tool that integrates the operational environment into considerations for CB design, CB-SITE can also be used to train future planners, designers, builders, operators, and managers of CBs. When given a capability to display real-time effects that flow from parametric changes, instructors would have the means to prepare students for both expected and unexpected operational situations, once deployed. This resource would also provide CB operators and managers a tool to help analyze their camps’ operational effectiveness as well as test potential operational/design outcomes based on available local resources and sociocultural impacts, prior to initiating them in practice.
Construction of military facilities is one of the most important aspects of military missions. Lessons learned from past deployments show that the construction of Forward Operating Bases (FOBs) within the boundaries of host nations can be costly in terms of money, time, and effort. As a result, this effort looks at the availability of locally sourced materials and their suitability for supporting the military mission. Future considerations of military site selection for the Army is likely to focus on unconventional warfare and assistance in areas of world that are located in populated, potentially hostile regions. As such, the region around Maiduguri, Nigeria, which is currently a hot zone for hostile activity, is used as a case study to develop and evaluate the CB-SITE methodology.

The main region of focus for this research was Maiduguri, Nigeria’s capital of the Borno State. The Federal Republic of Nigeria is part of Africa’s west coast. Maiduguri is located in the northeastern part of Nigeria, along the Ngadda River (Figure 1 and Figure 2). The country is bordered by Benin to the west, Chad and Cameroon to the east, Niger to the north, and the Gulf of Guinea to the south. Nigeria is the most populated country in Africa, and it is geographically larger than the U.S. state of Texas. Nigeria has a population of 177,156,000 (2014 estimate) and a total area of 356,669 square miles (923,768 square kilometers).\(^1\) The capital city of Nigeria is Abuja, which is located in the Federal Capital Territory, and the country’s monetary unit is the Nigeria naira (₦). The country’s official language is English; however, hundreds of other languages are spoken throughout the country, including Yoruba, Igbo, Fula, Hausa, Edo, Ibibio, and Tiv.\(^2\)

Previous work, published as ERDC-CERL TR-16-14 (Al-Chaar et al. 2016), focused on the area of Dhaka, Bangladesh, and used the same methodology.

The country itself has a diverse geography due to the wide range of climates throughout the country. There are also vast amounts of natural resources available throughout Nigeria, with natural gas and petroleum being the most prominent. The former capital of the country, Lagos, is the country’s leading commercial and industrial city due to its location near the Gulf of Guinea. The leading commercial center of northeastern Nigeria is Maiduguri due to the railway that connects central Nigeria to the north-eastern sector of the country. Maiduguri has an average temperature of
32°C and an average yearly rainfall of 650 mm. The main ethnic groups in Maiduguri include Buarbur/Bura, Kanuri, and Shuwa Arab, among others.3

1.1.1 Concrete

Concrete and its constituents—mainly cement and aggregate—are the materials of interest. Concrete comes from the Latin word “concretus,” which means “to hold together;” that is, concrete is comparable to a formable rock. Concrete is the most widely used construction material throughout the world, and it forms the backbone of many infrastructure systems. Historically, concrete is one of the oldest construction materials, and it is in use throughout the world for its accessibility, economic feasibility, and functionality. Concrete has a much lower cost per pound when compared to other building materials such as aluminum or steel.

There are two main ways to mix concrete: (1) in a batch plant off site or (2) by hand and/or a small machine mixer on site. Ready-mixed concrete is used to refer to concrete that is batched off site and transported to the job site. Ready-mixed concrete is commonly used for structural applications including but not limited to beams, columns, foundations, slabs, walls, and architectural features for curtain walls and decorative columns. Concrete provides an energy-efficient means of construction, because it provides insulation from environmental factors. Also, concrete is durable, inflammable, thermal and water resistant, and low maintenance.

The main constituents of construction concrete include aggregates, cement, water, and air. A finely ground mixture of clay or shale, gypsum, fly ash, limestone, and slag, a mixture better known as Portland cement, is the most common cement type. Aggregates used in concrete production are generally clean gravels, stones, and sands. Aggregates are characterized by their grade, which can either be fine (0.001 to 0.25 inch) or coarse (0.25 to 1.5 inch).4

1.1.2 Wood

Wood is one of the world’s oldest and most important construction resources. The properties of wood make it an excellent building material. Wood is widely available throughout the world and can be easily formed into various shapes, as desired. An estimated 3,000–4,000 species of plants produce wood that is suitable for material use. It has large economic importance, because it can be found throughout the world and is a renewable resource. Wood is also a sustainable construction material, as it is a renewable resource and, if properly managed, the world’s wood resources are indefinite (USDA [U.S. Department of Agriculture] Forest Service 2010).

1.1.2.1 Natural wood

Round wood products are used to make poles, posts, and certain mine timbers and are typically given a preservative treatment. Sawn wood is referring to products derived from sawmill. The main product of sawn wood is lumber, which is used in logs, timber, or members of light-frame construction. Timber is used for heavy construction and can be classified as hardwood or softwood.

1.1.2.2 Layered wood

Veneer, which is a thin sheet of wood of uniform thickness (around 0.02–0.04 inch), is another common product and is used for plywood, furniture, and other household products. Plywood is composed of glued veneer layers, with different grains crossing each other at right angles. The material allows for stability across more dimensions than natural wood, uniform strength, splitting resistance, panel forming, and more decorative value. Structurally it is used for walls, floors, roofs, doors, and has many other applications. Similarly, laminated wood is built with glued layers of wood; however, the grain of the wood pieces are glued parallel to the member length. Laminated wood is used for load-carrying members such as beams or arches.

1.1.2.3 Wood residue and fibers

Particleboard is a product manufactured with flake-like forms of wood (typically from sawmill and other wood industries’ residues) that are glued together. The product is used for interior uses such as furniture, paneling, and doors, as well as for structural purposes. Fiberboard is made from
wood fibers, which are held together by physical forces (hydrogen bonding), flowing of lignin in fibers, or interweaving of fibers. There are two types of fiberboard: insulation and compressed. Insulation board is used in construction for insulation and cushioning, whereas compressed wood has a variety of uses such as furniture, wall paneling, house siding, and concrete forms. A relatively new compressed product is medium density fiberboard (MDF), which is used for the same applications as compressed wood.

1.1.2.4 Bamboo

Bamboo is a subfamily of tall tree-like grasses with over 1,400 species located in tropical, subtropical, and mild temperate regions. It is a fast-growing plant that grows in clusters and consists of woody ringed stems called culms, which are typically hollow. Bamboo has a wide range of uses, especially in East and Southeast Asia. Some of the structural purposes of bamboo culms include planks for houses and rafts, scaffoldings, and flooring.

1.1.3 Steel

Steel is one of the most widely used construction materials, especially in the United States where it is commonly used in building practices for structures. Along with this use, steel has other practical uses in many industries. Steel is a popular material because of its relatively low cost of production, formation, and processing, the abundance of iron ore and scrap metal, and its range of mechanical properties. Steel is a metal alloy of iron and carbon, which has a carbon content from 0%–2%. The carbon content, heat treatment, and added alloy elements determine the properties of the material. There are many options for microstructure, shape, and surface finishes available for steel as a product. There are several thousand steel grades which are standardized, registered, or published globally. Steel is formed into either flat or long products, which are hot-rolled, cold-rolled, or coated on the surface. Flat products are plates, strips, and sheets while long products are made of either blooms or billets (Darity 2008).

Steel is considered to be a sustainable material. It can be recycled many times without incurring the effects of degradation in properties or performance. There is little to no waste of during steel construction. Byproducts include blast furnace slag cement and gas. The increased use of steel scrap in production creates less dependence on the raw materials, iron ore and
coal. Over 80% of steel beams are composed of scrap steel. Compared to concrete, steel has a high strength to weight ratio, which allows for smaller foundations in steel framed buildings. Steel is also a viable solution for long span structures, which offers more flexibility for change during a building’s life (Darity 2008).

1.2 Objective

This effort falls under the CB-SITE program. CB-SITE’s goal is to develop a geographic information system (GIS)-based decision support tool to assist U.S. Army Headquarters-level staffs in siting FOBs in theater.

This effort’s objective is to address the availability of appropriate construction materials within the host nation with information that includes local material standards, quantities, and accessibility. The objective was set in order to address the considerations given below:

1. Development of country-specific construction materials database.
2. Development of a methodology that defines accessibility of construction resources based on FOB location, transportation network, population densities, and centers of material.

1.3 Methodology

Site-selection methodologies are expected to merge into a unified methodology in which all relevant factors are addressed, analyzed, and optimized to yield the best solution for decision making on where best to select a site for military missions. Availability of construction materials near the site is one of many criteria that would impact military missions. This report is a limited study on “Construction Material-Based Methodology for Military Site Selection.”

Because every location in a particular region is unique in many aspects, a single general methodology would not work well, as it would not capture all variables specific to the region under consideration. In rare cases, methodologies can be identical; however, the methodology is likely to have some variations. The approach may be the same, but the methodology should be modified to suit other, similar areas. However, it is critical in any case to identify the relevant set of variables that must be reflected in the adopted methodology. During the planning stage of any mission, a
preparation study is required to finalize a methodology suitable for the mission.

Certainly, site selection in an area such as Maiduguri is influenced by the high density of its population, among other features. Figure 3 shows the recent population density of Nigeria is about 4.04 times that of Cameroon. The population density of Nigeria is about 195 people per square mile. Therefore, any site-selection methodology should include a population density factor (PDF).

For more of the relevant factors involved in this work’s methodology, please see Chapter 3.

Figure 3. Population density for Nigeria and Cameroon (World Bank Group 2016).
2 Methodology

In addition to the summary of methodology provided in Chapter 1, detailed aspects of the study’s methodology follow here. As stated in Chapter 1, this work developed a methodology that defines accessibility of construction resources based on FOB location, transportation network, population densities, and centers of material.

2.1 Population density

An important component of any site-selection methodology is population density.

2.1.1 General regions

Table 1 provides the population and density for the five major regions in Nigeria, along with the largest neighboring city from a nearby country (N’Djamena, Chad). These six total locations are depicted in Figure 4. The populations by state can be found in Tables A1—A6 in the appendix of this report.

<table>
<thead>
<tr>
<th>Region</th>
<th>Population</th>
<th>Density (people/sq. km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Northwest</td>
<td>21,712,604</td>
<td>93.5</td>
</tr>
<tr>
<td>2: Southwest</td>
<td>42,452,154</td>
<td>221.4</td>
</tr>
<tr>
<td>3: Northcentral</td>
<td>29,788,511</td>
<td>182.8</td>
</tr>
<tr>
<td>4: Southcentral</td>
<td>34,512,328</td>
<td>267.5</td>
</tr>
<tr>
<td>5: Eastern</td>
<td>11,966,193</td>
<td>57.6</td>
</tr>
<tr>
<td>6: N’Djamena, Chad</td>
<td>1,092,066</td>
<td>10,921.0</td>
</tr>
</tbody>
</table>
The major regions were determined by the population densities of the region. The country was divided so that there were two high-density regions (Region 2: Southwest and Region 4: Southcentral), one medium-density region (Region 3: Northcentral) and two low-density regions (Region 1: Northwest and Region 5: Eastern).

For site selection in or near the vicinity of Maiduguri, the first requirement is to determine the boundaries so that the effective area can be isolated with minimum effects from adjacent areas. It is recommended here to consider the following effective areas, for simplicity and accuracy of this analysis:

- city effective region (Maiduguri),
- country effective region (Nigeria),
- cross-country effective region (Nigeria and adjacent parts of Cameroon and Chad), and
- cross-countries effective regions (Nigeria and nonadjacent countries with heavy trades).
Each region has a special level of interaction that affects the flow of construction materials to be distributed to a site under consideration. The aforementioned definitions of effective areas will help in determining a methodology for a particular region.

Using the six main regions from Figure 4, in conjunction with the descriptions provided above, it was determined that the six main regions would be considered to be included in the analysis, as they are broken down sufficiently.

The density of the region meant that Nigeria itself was divided into five sections (Figure 4), since people control the activity of a country. For the purposes of this case study, three additional regions were considered. The first additional region is the main city under consideration—Maiduguri. The next region is an adjacent country’s largest nearby city—N’Djamena, Chad. Lastly, the final region to be considered is a nonadjacent country that is a heavy trade partner with the country or city under consideration for base selection. For the purposes of this case study, it was determined there was no heavy trade partner.

Hence, the regions analyzed for this case study are classified as:

- **Region 1**: Northwest Nigeria
- **Region 2**: Southwest Nigeria
- **Region 3**: Northcentral Nigeria
- **Region 4**: Southcentral Nigeria
- **Region 5**: Eastern Nigeria
- **Region 6**: Neighboring country’s largest nearby city – N’Djamena, Chad
- **Region 7**: Maiduguri, Nigeria (subset of Region 5)
- **Region 8**: Heavy trade partner with nonadjacent region – not applicable for this case study

Figure 5 provides the seven regions analyzed for the Maiduguri, Nigeria, case study.
2.2 Building types

The Federal Emergency Management Agency (FEMA) classifies 15 different main types of buildings. These building types must be examined in order to properly evaluate a region’s construction material needs and feasibility, based on structure type. The various building types and their respective key properties are described below.

2.2.1 Building Type 1: Wood Light Frames

W1 – These buildings are single- or multiple-family dwellings of one or more stories with light building loads. The first floor may be slab-on-grade or wood raised above grade, with cripple stud walls and post-and-beam supports. Floor and roof framing consist of short, closely spaced wood joists or rafters supported on wood studs. Lateral support is provided with shear walls of plywood, stucco, gypsum board, and a variety of other materials (ASCE/SEI 31-03 2003).
W1A – These buildings are multistory, multi-unit residences that are framed with the same systems as W1, but they are often built on top of open-front garages. The first story consists of wood floor framing on wood stud walls and steel pipe columns, or concrete or concrete masonry block walls on a concrete slab (ASCE/SEI 31-03 2003).

2.2.2 Building Type 2: Wood Frames, Commercial and Industrial

W2 – These buildings are commercial or industrial buildings with a floor area of 5,000 square feet or more, and they are constructed primarily on wood framing. The floor and roof framing consists of wood joists and wood or steel trusses, glulam or steel beams, and wood posts or columns. Lateral forces are resisted by wood diaphragms and exterior stud walls sheathed with plywood, stucco, or wood sheathing (or sometimes rod bracing or a spot steel-braced frame). Large wall openings are common for storefronts or garage openings (ASCE/SEI 31-03 2003).

2.2.3 Building Type 3: Steel Moment Frame

S1 – These buildings consist of an essentially complete frame assembly of steel beams and columns. Lateral forces are resisted by moment frames that develop stiffness through rigid connections of the beam and columns created by angles, plates, and bolts, or by welding. Moment frames may be developed on all framing lines or only in selected bays. It is significant that no structural walls are required. Floors are cast-in-place concrete slab or metal deck and concrete. When the interior of the structure is finished, frames are concealed by ceilings, partition walls, and architectural column furring. Foundations consist of concrete spread footings or deep pile foundations (ASCE/SEI 31-03 2003).

S1A – These buildings are similar to S1 buildings, except for the floors and roof that act as flexible diaphragms, such as wood or untopped metal deck that are flexible relative to the frames (ASCE/SEI 31-03 2003).

2.2.4 Building Type 4: Steel-Braced Frame

S2 – These buildings consist of a frame assembly of steel columns and beams. Lateral forces are resisted by diagonal steel members placed in selected bays. Floor and roof framing consist of cast-in-place concrete slabs or metal deck on concrete. When the exterior of the structure is concealed,
walls consist of metal panel curtain walls, glazing, brick masonry, or pre-cast concrete panels. When the interior of the structure is finished, frames are concealed by ceilings, partition walls, and architectural furring. Foundations consist of concrete spread footings or deep pile foundations (ASCE/SEI 31-03 2003).

S2A – These buildings are similar to S2 buildings, except for the floors and roof that act as flexible diaphragms, such as wood or untopped metal deck (ASCE/SEI 31-03 2003).

2.2.5 Building Type 5: Steel Light Frame

S3 – These buildings are pre-engineered and partially prefabricated with transverse rigid steel frames. They are one-story in height. The roof and walls consist of lightweight metal, fiberglass, or cementitious panels. Rigid frames in the transverse direction and light rod diagonal bracing in the longitudinal direction resist lateral forces. Diaphragm forces are resisted by untopped metal deck, roof panel shear elements, or a system of tension-only rod bracing (ASCE/SEI 31-03 2003).

2.2.6 Building Type 6: Steel Frames with Concrete Shear Walls

S4 – These buildings consist of a frame assembly of steel beams and steel columns. The floors and roof consist of cast-in-place concrete slabs or metal deck with or without concrete fill. The buildings feature a significant number of concrete walls effectively acting as shear walls, either as vertical transportation cores isolated in selected bays, or as a perimeter wall system. The steel column-and-beam system may act only to carry gravity loads or may have rigid connections to act as a moment frame. The buildings will generally be mid- or low-rise (ASCE/SEI 31-03 2003).

2.2.7 Building Type 7: Steel Frames with Infill Masonry Shear Walls

S5 – This is an older type of building that consists of a frame assembly of steel beams and steel columns. The floor consists of masonry flat arches, concrete slabs or metal deck, and concrete fill. Exterior walls and possibly some interior walls are constructed of unreinforced solid clay brick, concrete block, or a hollow-clay tile masonry infilling the space between columns and beams. Windows and doors may be present in the infill walls but to act effectively as shear-resisting elements, the infill masonry must be constructed against the columns and beams (ASCE/SEI 31-03 2003).
These buildings are similar to S5 buildings, except for the floors and roof that act as flexible diaphragms, such as wood or untopped metal deck (ASCE/SEI 31-03 2003).

2.2.8 Building Type 8: Concrete Moment Frames

C1 – These buildings consist of concrete framing, either a complete system of beams and columns or columns supporting slab without gravity beams. Lateral forces are resisted by moment frames that develop stiffness through rigid, monolithic beam-column connections. Moment frames may be developed on all framing lines or only in selected bays. It is significant that no structural walls are required. Floors are cast-in-place or precast concrete. Foundations consist of concrete spread footings or deep pile foundations (ASCE/SEI 31-03 2003).

2.2.9 Building Type 9: Concrete Shear Wall Buildings

C2 – These buildings have floor and roof framing that consists of cast-in-place concrete slabs, concrete beams, one-way joists, two-way waffle joists, or flat slabs. Lateral forces are resisted by cast-in-place concrete shear walls. Floors are supported on concrete columns or bearing walls. The diaphragms consist of concrete slabs and are stiff relative to the walls. Foundations consist of concrete spread footings or deep pile foundations (ASCE/SEI 31-03 2003).

C2A – These buildings are similar to C2 buildings, except for the floors and roof that act as flexible diaphragms, such as wood or untopped metal deck, and they have large aspect ratios (ASCE/SEI 31-03 2003).

2.2.10 Building Type 10: Concrete Frames with Infill Masonry Shear Walls

C3 – These buildings consist of concrete framing, either a complete system of beams and columns or columns supporting slabs without gravity beams. Exterior walls and possibly some interior walls are constructed of unreinforced solid clay brick, concrete block, or hollow-clay tile masonry infilling the space between columns and beams. Windows and doors may be present in the infill walls but to act effectively as shear-resisting elements, the infill masonry must be built against the columns and beams (ASCE/SEI 31-03 2003).
C3A – These buildings are similar to C3 buildings, except for the floors and roof that act as flexible diaphragms, such as wood or untopped metal deck, and they have large aspect ratios (ASCE/SEI 31-03 2003).

2.2.11 Building Type 11: Precast/Tilt-Up Concrete Shear Wall Buildings

PC1 – These buildings are one or more stories in height. They are constructed with perimeter concrete walls precast on the site and tilted up from the exterior of the buildings, to support all or a portion of the perimeter roof load, and they provide seismic shear resistance. Floor and roof framing consists of wood joists, glulam beams, steel beams, or open web joists. Framing is supported on interior steel columns and perimeter concrete bearing walls. Foundations consist of concrete spread footings or deep pile foundations (ASCE/SEI 31-03 2003).

PC1A – These buildings are similar to PC1 buildings, except that diaphragms consist of precast elements, cast-in-place concrete, or metal deck with concrete fill, and they are stiff relative to the walls (ASCE/SEI 31-03 2003).

2.2.12 Building Type 12: Precast Concrete Frames

PC2 – These buildings consist of concrete columns, girders, beams, and/or slabs that are precast off the site and erected to form a complete gravity-load system. Lateral forces are resisted by precast or cast-in-place concrete shear walls. Floor and roof framing consist of precast concrete planks, tees, or double-tees that are supported on precast concrete girders and columns. Diaphragms consist of precast elements interconnected with welded inserts, cast-in-place closure strips, or reinforced concrete topping slabs (ASCE/SEI 31-03 2003).

PC2A – These buildings are similar to PC2 buildings, but obtain lateral support from specially connected precast girders and columns that form moment frames. These connections are either welded inserts or cast-in-place concrete closures. Diaphragms consist of precast elements interconnected with welded inserts, cast-in-place closure strips, or reinforced concrete topping slabs. This type of construction is not permitted in regions of high seismicity for new construction (ASCE/SEI 31-03 2003).
2.2.13 Building Type 13: Reinforced Masonry Bearing Wall Buildings with Flexible Diaphragms

RM1 – These buildings have bearing walls that consist of reinforced brick or concrete-block masonry. Wood floor and roof framing consists of wood joists, glulam beams, and wood posts or small steel columns, whereas steel floor and roof framing consists of steel beams or open web joists, steel girders, and steel columns. Lateral forces are resisted by the reinforced brick or concrete block masonry shear walls. Diaphragms consist of straight or diagonal wood sheathing, plywood, or untopped metal deck, and they are flexible relative to the walls. Foundations consist of brick or concrete spread footings (ASCE/SEI 31-03 2003).

2.2.14 Building Type 14: Reinforced Masonry Bearing Wall Buildings with Stiff Diaphragms

RM2 – These buildings are similar to RM1 buildings, except the diaphragms consist of metal deck with concrete fill, precast concrete planks, tees, or double-tees, with or without a cast-in-place concrete topping slab, and they are stiff relative to the walls. The floor and roof framing is supported on interior steel or concrete frames, or interior reinforced-masonry walls (ASCE/SEI 31-03 2003).

2.2.15 Building Type 15: Unreinforced Masonry Bearing Wall Buildings

URM – These buildings consist of unreinforced masonry (URM) bearing walls, usually at the perimeter and usually brick masonry. The floors are wood joists and wood sheathing supported on the walls and on interior post-and-beam construction or wood-stud bearing walls. Interior bearing walls, when present, also consist of unreinforced clay brick masonry. The diaphragms are flexible relative to the walls, and when they exist, ties between the walls and diaphragms consist of bent steel plates or government anchors embedded in the mortar joints and attached to framing. Foundations consist of brick or concrete spread footings (ASCE/SEI 31-03 2003).

URM-A – These buildings are similar to URM buildings, but features all floors and/or roof constructed of materials that form a rigid diaphragm, usually concrete slabs or steel joists with flat-arched unreinforced masonry. In regions of low seismicity, more recent construction consists of metal deck and concrete fill supported on steel framing (ASCE/SEI 31-03 2003).
Overall, the 15 different buildings types have different construction methods and materials, both of which must be taken into account when determined the most suitable building type for a particular region (ASCE/SEI 31-03 2003).

As stated previously, the importance of these building types must be examined in order to properly evaluate a region’s construction material needs and feasibility, based on structure type. Table 2 provides a ranking of building types’ importance in terms of most and least suitable for the region. It was determined that due to availability of construction resources as well as conditions within the country, unreinforced masonry walls (Building Type 15), reinforced masonry walls – flexible (Building Type 13), and wood light frames (Building Type 1) are the most suitable FEMA building types for the Maiduguri region.

Table 2. Ranking of FEMA buildings from most to least suitable (ERDC-CERL, 2016).

<table>
<thead>
<tr>
<th>Ranking</th>
<th>FEMA building type, ranked from most to least suitable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>15. Unreinforced Masonry Walls</td>
</tr>
<tr>
<td>2.</td>
<td>13. Reinforced Masonry Walls – Flexible</td>
</tr>
<tr>
<td>3.</td>
<td>1. Wood Light Frame</td>
</tr>
<tr>
<td>4.</td>
<td>2. Wood Frames, Commercial and Industrial</td>
</tr>
<tr>
<td>5.</td>
<td>3. Steel Moment Frames</td>
</tr>
<tr>
<td>7.</td>
<td>8. Concrete Moment Frames</td>
</tr>
<tr>
<td>8.</td>
<td>7. Steel Frames with Infill Masonry Walls</td>
</tr>
<tr>
<td>9.</td>
<td>11. Precast/Tilt-up Concrete Shear Wall Buildings</td>
</tr>
<tr>
<td>10.</td>
<td>5. Steel Light Frames</td>
</tr>
<tr>
<td>11.</td>
<td>12. Precast Concrete Frames</td>
</tr>
<tr>
<td>12.</td>
<td>10. Concrete Frames with Infill Masonry Walls</td>
</tr>
<tr>
<td>13.</td>
<td>9. Concrete Shear Walls</td>
</tr>
<tr>
<td>14.</td>
<td>6. Steel Frames with Concrete Shear Walls</td>
</tr>
<tr>
<td>15.</td>
<td>4. Steel-Braced Frames</td>
</tr>
</tbody>
</table>
2.3 Effective proximity factor

The next parameter to be considered is the effective proximity factor. This rough estimate of the influence that neighboring regions have on each other was found by using the density of each region and the distance between each region, as the combination of two neighboring regions’ population density and region proximity play an important role for each respective region. Figure 6 provides the population density map for Nigeria, and the distances between the centers of each of the six regions.

Figure 6. Population density and distance between major regions (African Development Bank 2013).

Using the distances between major regions from Figure 4 and Figure 5, along with the known density for any given region, the effective region proximity factor was determined. This factor is a rough estimate of the influence that neighboring regions have on each other, and it is found by using the density of each region and the distance between them. It was determined that the larger the effective proximity factor was between two regions, the greater influence they have on each other.
Table 3 provides the effective proximity factors between all regions in this case study. Figure 7 provides a visual representation of the adjacent region’s effective proximity factors. The density of each region is listed at the endpoint of each arrow, whereas the effective proximity factor between two regions is located at the midpoint of each respective line. Together, Figure 6 and Figure 7 show that the closer two regions are to each other, the greater is the effective proximity factor.

Figure 7. Density and effective proximity factor (African Development Bank 2013).

<table>
<thead>
<tr>
<th>First Region No. and Name</th>
<th>Second Region No. and Name</th>
<th>Density of First Region (people/sq. km)</th>
<th>Density of Second Region (people/sq. km)</th>
<th>Estimated Distance between Regions (km)</th>
<th>Effective Proximity Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ondo</td>
<td>2. Oshiri</td>
<td>221.4</td>
<td>267.5</td>
<td>350</td>
<td>0.483</td>
</tr>
<tr>
<td>1. Ondo</td>
<td>3. Tsauni</td>
<td>221.4</td>
<td>93.5</td>
<td>475</td>
<td>0.092</td>
</tr>
<tr>
<td>1. Ondo</td>
<td>4. Miya</td>
<td>221.4</td>
<td>182.8</td>
<td>690</td>
<td>0.085</td>
</tr>
<tr>
<td>1. Ondo</td>
<td>5. Damboa</td>
<td>221.4</td>
<td>57.6</td>
<td>980</td>
<td>0.013</td>
</tr>
<tr>
<td>1. Ondo</td>
<td>6. N’Djamena</td>
<td>221.4</td>
<td>28.2</td>
<td>1255</td>
<td>0.004</td>
</tr>
<tr>
<td>2. Oshiri</td>
<td>3. Tsauni</td>
<td>267.5</td>
<td>93.5</td>
<td>605</td>
<td>0.068</td>
</tr>
<tr>
<td>2. Oshiri</td>
<td>4. Miya</td>
<td>267.5</td>
<td>182.8</td>
<td>570</td>
<td>0.151</td>
</tr>
<tr>
<td>2. Oshiri</td>
<td>5. Damboa</td>
<td>267.5</td>
<td>57.6</td>
<td>775</td>
<td>0.026</td>
</tr>
</tbody>
</table>
2. Oshiri 6. N’Djamena 267.5 28.2 1035 0.007
3. Tsauni 4. Miya 93.5 182.8 425 0.095
3. Tsauni 5. Damboa 93.5 57.6 745 0.010
3. Tsauni 6. N’Djamena 93.5 28.2 1000 0.003
4. Miya 5. Damboa 182.8 57.6 320 0.103
4. Miya 6. N’Djamena 182.8 28.2 585 0.015
5. Damboa 6. N’Djamena 57.6 28.2 270 0.022

2.4 Infrastructure

The next parameters examined were the travel infrastructure and other necessary infrastructure parameters within Nigeria. Each figure in this section provides a reference distance between a location on the map and the main city under consideration (Maiduguri is denoted by a yellow star). Figure 8 provides the locations and distances between the major ports in Nigeria. Figure 9 and Figure 10 provide the locations and distances between the centers of the railroad network and the roadway networks in each of the five main regions of Nigeria, respectively. Next, Figure 11 provides the locations and distances between the major airport facilities within Nigeria. Lastly, Figure 12 provides the locations and distances between the centers of high flood-risk areas in Nigeria.
Figure 8. Port map for Nigeria (African Development Bank 2013).

Figure 9. Railroad network in Nigeria (African Development Bank 2013).
Figure 10. Road network in Nigeria (African Development Bank 2013).

Figure 11. Airport facilities in Nigeria (African Development Bank 2013).
2.5 Centers of construction resources

Upon determination of locations for various construction resources, the spatial data was used to infer the geographical centers for the various construction resources in each of the five regions. Figure 13–Figure 18 provide the geographical centers for the various construction resources in each of the five main regions from Figure 5. The construction resources are gravel, cement, ready-mix concrete, lumber, steel, and brick. In some cases, there are multiple central areas in a given region if a particular industry is very large in that region. For other construction resources, there may not be a geographical center for a particular resource in that area if the resource is not heavily or widely produced there.
Figure 13. Geographical centers, gravel resource ("Nigeria States–Nigeria maps").
Figure 14. Geographical centers, cement resource ("Nigeria States–Nigeria maps").

Figure 15. Geographical centers, concrete resource ("Nigeria States–Nigeria maps").
Figure 16. Geographical centers, lumber resource ("Nigeria States – Nigeria maps").

Figure 17. Geographical centers, steel resource ("Nigeria States – Nigeria maps").
2.5.1 **Construction resource for each region**

Using the above information, the most widely available and used construction resource for each of the five regions was determined. Figure 19 provides a visual representation of the overlay of each of the important figures, used in part to determine the most suitable construction resources for each region.
The possible construction resources included: concrete, lumber, steel, and brick. The ranking of feasibility for each resource in each region is listed in Table 4. It should be noted that the various construction resource industries may be seasonal in nature due to climatic conditions. Therefore, Table 4 represents optimal conditions, with no limitations to any of the construction resource industries.

Table 4. Suitability of construction resources for the major Nigeria regions (ERDC-CERL, 2016).

<table>
<thead>
<tr>
<th>Region</th>
<th>Most Suitable Construction Resource</th>
<th>Second Most Suitable Construction Resource</th>
<th>Third Most Suitable Construction Resource</th>
<th>Least Suitable Construction Resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southern Nigeria (Region 2 and 4)</td>
<td>Brick</td>
<td>Concrete</td>
<td>Lumber</td>
<td>Steel</td>
</tr>
<tr>
<td>Central and Northwestern Nigeria (Region 1 and 3)</td>
<td>Brick</td>
<td>Concrete</td>
<td>Steel</td>
<td>Lumber</td>
</tr>
<tr>
<td>Northeaster Nigeria (Region 5 - Maiduguri)</td>
<td>Brick</td>
<td>Steel</td>
<td>Lumber</td>
<td>Concrete</td>
</tr>
</tbody>
</table>
Due to the wide availability of brick/block throughout the region, this construction material was determined to be the most suitable construction resource for all three main regions.

2.6 Approach

2.6.1 Regions

The region of interest for construction materials is one of the most important factors when determining what materials are plausible for construction purposes. Methods of transportation were used to determine the boundaries to set the regions at for each construction material and the respective constituents. For example, since ready-mix concrete (RMC) is concrete that is manufactured and batched in a plant off-site of the actual construction process, a short distance range was used as the boundary. As a result, the analysis of the RMC market was conducted for Nigeria alone.

Conversely, the boundaries for determining cement and aggregate locations were much larger due to the ease of transport of each material. The study boundaries for cement and aggregate were limited to Nigeria and its surrounding countries: Benin, Cameroon, Chad, and Niger.

Wood is a widely available material; thus, the region for wood was limited to locations within the country of Nigeria.

2.6.2 Company sites

Construction materials are part of an interconnected network of resources. Each of the constituents of each construction material must be transported from one location to the next during the production process. As a result, various locations were determined to be important when gathering information on the construction materials. The following types of locations were incorporated in the data collection:

- **Corporate offices**: considered as a company’s most critical location and helps regulates the company’s operations
- **Factories, plants, and other manufacturing sites**: where raw materials are transformed into the final product.
- **Terminals and shipping ports**: where the product is stored for future distribution.
• **Mines, quarries, and raw material deposits:** where raw materials are extracted or available for extraction.
• **Mills:** where wood is processed (e.g., sawmill) or location used for steel manufacturing.

2.6.3 Materials database assumptions

The materials database is a collection of the various construction resources’ availability by location, quantity, type of material, etc. The database includes materials such as concrete, timber, and steel, among others. Table A7–Table A12 in the Appendix of this report provide each respective materials portion of the materials database, with pertinent information for that material included.

For natural resources, research was conducted on both currently exploited resources as well as reserves of resources. In the case of reserves, the feasibility for excavation was disregarded. If the reserves were present in a particular area, they were included in the collected information. There were also assumptions made based on the available information for raw material deposits. Whether or not these material deposit locations are suitable for construction purposes was absent from a number of sources, which may lead to extraneous data in the collected information.

For production plants, data was collected to represent the current status of operation. Data was only collected for currently operating plants, and only installed capacity information was collected. If a company has new plants or capacity gains expected over the coming years, this information was disregarded when creating the materials database.

2.6.4 Construction materials

The data collection and research of materials used in production for concrete and cement were limited to those directly involved in production process. Secondary materials used to produce raw materials were disregarded.

For the case of natural resources (aggregate for use as a construction material), research was conducted on resources that are currently being exploited, along with reserves of these materials. If the reserves were present in a particular area, they were included in the collected information.
The research for wood was limited to companies who sell wood products directly. That is, locations of where companies obtain various wood products was not determined.

There were also assumptions made based on available information of raw materials. Whether or not these materials are suitable for construction purposes was absent from a number of sources, which may lead to extraneous collected information.

2.6.5 Spatial data

Three different types of spatial data were collected for each of the construction materials of interest.

The first type of data are specific and exact site locations. This latitude-longitude coordinate pair will spatially represent what it describes with precision. However, because the preciseness of material sites may vary based on available information, some information may be limited to a much broader area such as a city or a region, which is what the second type of data aims to represent.

The second type of data are approximate locations of individual sites based on limited information. If information on individual sites was not provided, but data representing a larger area was given, then the third type of data was used. It is also important to note that point data were used to capture lines and shapes in addition to specific locations, which is a greater concern for geographical areas of interest such as mountains or rivers. In those cases, a single pinpoint may not accurately represent the data. In some cases, multiple approximate pinpoints were used when expressing the location.

The third type of data are a cluster of sites that represent the characteristics of what is contained within the region. Cluster sites are also created based on researched information for each material, in order to quantify the behavior of the industry within centers of activity.

The extent of research on spatial data for Nigeria and its surrounding countries was limited to the extent of available information. For instance,

5 If a cluster point is superimposed over a region with site or approximate data points, then the points are to be considered exclusive from one another.
because of differences in the political system for each of the countries studied, the availability of government information on products and raw materials may vary.

Within the materials database, these data types are categorized as follows:

- **S**: latitude-longitude coordinate pair that represents the exact site location
- **A**: approximate location of an individual site provided as a latitude-longitude coordinate pair, which may be represented by a region or city if limited information is available
- **C**: cluster of sites to represent the characteristics of a region or city, represented as a latitude-longitude coordinate pair

Spatial data has been represented using decimal degrees with the WGS84 Web Mercator projection.

2.6.6 Data sources

2.6.6.1 Suppliers

Cement suppliers were established by using a cement industry sector search through Google.\(^6\) For Nigeria, information about the prominent companies and locations of their plants were determined from a series of articles and Nigerian government sources. A similar approach was used for the surrounding countries’ cement industries, for which media articles provided major players in the industry. Additional companies were found by using a Google Maps\(^7\) search for cement. For each resource, the locations were then validated by using company websites, Google Maps, Wikimapia,\(^8\) and GIS data sources from the U.S. Geological Survey (USGS).

One of the major sources of spatial data and company identification was Google Maps. Searches for materials using Google Maps unveiled various established locations including corporate offices, plants, and mines. Precise coordinates of sites are reliable through this approach; however, the accuracy for smaller-scale company sites were somewhat questionable be-

6 www.google.com
7 www.maps.google.com
8 www.wikimapia.org
cause data was usually limited to a name and a location. If these sites did not represent what they described visually, then the data was disregarded. This method was used for all materials except natural resource deposits, such as aggregates, iron ore, and limestone.

Wikimapia was additionally used to obtain spatial data for plants and mines. Through this method, boundaries of sites are clearly identified using the maps, and this method usually presented more search results than Google Maps. The category of “production” was selected from the menu, which helped filter the points of interest. Similar to Google Maps, precise coordinates were very reliable, but smaller-scale company locations were limited in information and researchers’ judgment was used as to whether data was pertinent to include. This method was used for all materials except aggregates, wood, and RMC.

GIS data resources were used for spatial data of mines, deposits, and (very minimally) for plants. The USGS provided most of this information through a number of databases. The data itself was very plentiful, yet it was deemed unreliable. Many of the locations did not fully reflect what was described by the data. However, due to the number of data points and clusters of points, it was still possible to determine centers of activity. This method was used for all natural resource deposits.

After spatial data sources were exhausted, company websites were used to fill in the gaps in data and to find remaining locations of material sites. The amount of information provided on a company website varied significantly. However, almost all of the company websites list corporate offices and a significant portion provided plant locations. A fair number of company websites provide addresses, which were untraceable in Google Maps, and so approximations for locations were made. Other pertinent data was found using these websites, including capacity, quality, product, employees, and power usage. A number of the larger-scale companies produce multiple construction materials; therefore, data overlapped for various construction materials. This method was used for cement, RMC, steel, and some raw material.

Lastly, material supplier directories were utilized for additional information. For some directories, such as Cement for cement or Fordaq for timber, this data was reliable but was limited to companies that are a part of the particular collection. Other directories proved to be very unreliable
since many of companies listed may represent another line of work, such as material traders, or they may be out of business. It proved to be impossible to validate this information because company websites or other reliable sources were unavailable. The company addresses listed were also unreliable and varied across multiple directories. This method was used as a last resort, but it was used extensively for timber and somewhat for cement and RMC.

For RMC, an initial collection of factories within Nigeria was located through using any available published resources about the material industry sector. Corporate offices and additional batching plant locations were located through company websites. The office locations were typically available and may even coincide with those in the cement industry. However, most of the data on batching plants was not available or a region was provided for the plant location. Additional plants were found by using a Google Maps search for RMC plants, which provided exact locations for a number of companies.

The determination of aggregate suppliers was made through the Nigerian Mining Cadastre Office. The source contained information regarding locations where a given company had a mining title.

The wood suppliers were determined through a previously published report regarding the wood industry in Nigeria by Adesogan (2013), “Wooden Materials in Building Projects: Fitness for Roof Construction in Southwestern Nigeria.” From this report, research was conducted on the individual companies mentioned in the report.

The above method of data collection has a high level of reproducibility and has provided the most current information about suppliers.

2.6.6.2 Mines and minerals

Information about raw materials and minerals in the country were investigated using the USGS Minerals Yearbook, which is available for a wide range of countries and has been published in recent years. This method of data collection is highly reproducible.

9 www.miningcadastre.gov.ng
The Nigerian Mining Cadastre Office publishes a list of all companies that hold mining titles within the country every year. This data was used to determine where certain companies operate, and what types of materials are in a given region.

Spatial data on mineral resources was partially determined from a series of GIS databases collected by the USGS. Although this data is not recent (newest source from 2008), locations of mines and deposits are not expected to change significantly over the years. Current spatial data on mineral resources, reserves, and exploitation were found through Nigerian government websites.

10 www.miningcadastre.gov.ng
3 Cement

3.1 Industry

3.1.1 Global scenario

Cement is one of the main constituents of concrete, and it an important contributor to the development of the economy of a country as it contributes to growth and urbanization. Global cement production has been increasing due in part to rising investments in infrastructure in developing countries.\footnote{Britannica Academia, Online ed., s.v., “Cement.” Accessed 17 January 2016. \url{http://www.britannica.com/technology/cement-building-material}} Cement is mainly a regional commodity because of the variation due to supply-demand differences between regions, per capita income of regions, and level of industrial development per region (Sumaila 2013).

3.1.2 Background

The federal government of Nigeria regulates the country’s cement industry. Nigeria’s government aims to reduce cement imports to zero by encouraging country self-sufficiency. The cement industry in Nigeria is one of the fastest-growing markets in the world in terms of production capacity and volume. Due to the rapid growth of the industry, cement plants in the country are becoming more sophisticated, resulting in a better quality of product and more of a variety of cement types (Arinze 2015). This expansion and boom is most noticeably seen in the Northern part of Nigeria, near where Maiduguri is located, due to a socio-economic driven country. Along with this, the use of cement within the country has increased dramatically from recent years, leading to additional cement factories throughout Nigeria. The spreading of the cement industry internally has led to competition among manufacturers and distributors, leading to the cement market in Nigeria being completely restructured (Sumaila 2013).

3.1.3 Cement competitiveness

The federal government of Nigeria heavily influences the country’s cement industry. Northern Nigerian covers roughly two-thirds of the land space in the country, resulting in a majority of the major cement factories in Nigeria being located in this area. Due to the competitiveness of the market,
companies are forced to control a certain niche or location of the market in order for the business to thrive and survive (Arinze 2015).

3.1.4 Regionalism

Many industrial considerations to be positioned in the center of a company’s market have been motivated by the calculated and planned role of markets in the cement manufacturing process. The cement businesses located throughout the country cannot exist without there being viable markets for them to operate in. This presents a serious concern, as most cement factories in the country are spread throughout the market. As a result, cement companies are devising certain marketing campaigns to properly respond to consumer demand and the ever-changing commercial environment. These marketing strategies develop into an even more crucial role in an increasingly competitive business environment, particularly in developing economies (Arinze 2015).

3.1.5 Cement producers – Nigeria

There are currently six major cement manufacturers in Nigeria: Dangote Cement, Lafarge Group, Cement Company of Northern Nigeria Plc., Bua Cement, Eastern Bulkcem Company Limited, and Reagan Renaissance Limited. These companies are located throughout the country, and each company holds a certain amount of the cement market share.

3.1.5.1 Dangote Cement

Dangote Cement has three major cement plants located in Kogi, Benue, and Ibese (Figure 20). These three plants have a current total production capacity of over 20 million metric tons per annum (MTPA). The Obajana Plant, located in Kogi, has the single-largest cement plant capacity in Africa, with a capacity of 10.25 million MTPA. The Obajana plant is energy efficient due to the vertical roller mills for the grinding of clinker and raw material. Figure 21 and Figure 22 more information regarding the Obajana and Ibese plants. Dangote Cement is the only Nigerian company on the Forbes Global 2000 Companies and is the largest-quoted company in West Africa. The company also has cement terminals, or distribution centers, in Lagos, Port Harcourt, Onne, Aliko Inland, and Continental (“Dangote Group”).
Figure 20. Locations of Dangote Cement in Nigeria, relative to Maiduguri (Google Maps, 2016).

Figure 21. Dangote Obajana Cement Plant information ("Dangote Group: Welcome").
3.1.5.2 Lafarge Group

The Lafarge Group is a French-based company that operates under multiple names in Nigeria, including Ashaka Cement, Atlas Cement, United Cement Company of Nigeria, and WAPCO Operations.

Ashaka cement is located in Gombe, a region in northeastern Nigeria (Figure 23). Ashaka’s cement is widely used in northern Nigeria, and the Nigerian Industry Standard certifies the cement as CEM I\(^\text{12}\) (“Lafarge in Nigeria”).

Atlas Cement and the United Cement Company of Nigeria are both subsidiaries of the Lafarge Group who produce both CEM I and CEM II\(^\text{13}\) types of cement (“Lafarge in Nigeria”).

\(^{12}\) CEM I is a type of cement classification denoting Portland cement without any main addition.

\(^{13}\) CEM-II is a type of cement classification denoting Portland cement with low (II/A) to moderate (II/B) content of main addition.
WAPCO Operations, located in southwestern Nigeria (Figure 24), manufactures a common low-grade type of cement in Nigeria known as “Elephant brand.” The cement is not suitable for structural purposes; rather it is suitable for backfill operations (“Lafarge in Nigeria”).

3.1.5.3 Cement Company of Northern Nigeria Plc.

The cement company of Northern Nigeria Plc. is located in the far Northwestern region of Nigeria (Figure 25). The company produces Sokoto brand cement in Sokoto, Nigeria. Sokoto cement is certified as CEM II and has a unique quality that makes it the cement of choice for making blocks and for creating plaster. The company has a larger market share in the six states of the Northwestern region, namely: Sokoto, Kebbi, Zamfara, Katsina, Kano, and Kaduna (“Cement Company of Northern Nigeria”).
3.1.5.4 Bua Cement

Bua Cement is located in Okpella, Nigeria (Figure 26). The company produces one of the highest-quality cements available in Nigeria. Although the company is located in the southwestern part of Nigeria, they plan to expand to reach the whole country. Bua Cement also has advanced technology in terms of their clinker conveyor system, clinker silos, feeder units, cement mill, air slides, bucket elevators, cement silos, overhead silos, receiving bins, hoppers, rotary packing and sealing machines, and belt conveyors (“BUA Group”).

3.1.5.5 Eastern Bulkcem Company Limited

Eastern Bulkcem Company Limited manufactures a common low-grade type of cement in Nigeria known as “Eagle Cement.” The company is located in Lagos, Nigeria (Figure 27). The company produces CEM I, oil well cement, and sulfate-resistant cement. Along with these cement types, the
company has the capability to produce high-strength cement, fly ash cement, low-heat cement, and white cement. The overall capacity for the company is just under 1 million MTPA; however, there are plans in place to expand its capacity to over 1.5 million MTPA (“Welcome to Eastern Bulkcem”).

Figure 27. Eastern Bulkcem cement location in Nigeria, relative to Maiduguri (Google Maps, 2016).

3.1.5.6 Reagan Renaissance Limited

Reagan Renaissance Limited owns and operates Reagan Cement Company Nigeria Ltd. The company is known for their efficient and effective business and marketing strategy that has made them successful since opening in 1998. The company has a packing plant in Calabar with a capacity of 1.2 million MTPA. The company also prides itself in employing a dedicated and highly qualified work force (“Reagan Cement”).

3.1.6 Cement producers — Benin

There are currently four major cement manufacturers in Benin, Africa: Societe des Ciments du Benin (Cotonou), Societe des Ciments d’Onigbolo (Onigbolo), Heidelberg Cement (Cotonou), and Layousse Les Ciments Du Sahel (near Cotonou). The various locations are displayed in Figure 28. These companies are located throughout the country, and each company holds a certain share of the cement market (“International Cement Review”).

The four companies produce a lower-grade cement than CEM II; thus, it is concluded that cement from Benin is likely not suitable for structural use.
3.1.7 Cement producers — Cameroon

There are currently three major cement manufacturers in Cameroon, Africa: Dangote Cement, Les Cimenteries du Cameroun (CIMENCAM), and Ciments de L’Afrique Cameroun S.A. Figure 29 shows these companies are located around the city of Douala, and each company holds a certain amount of the cement market share ("International Cement Review").

3.1.7.1 Dangote Cement

Dangote Cement’s plant is located in Douala, Cameroon. The plant has a grinding capacity of 1.5 million MTPA. In order to make CEM I, Cameroon must import limestone due to its limited supplies of native limestone.
However, due to the large amount of pozzolanic14 additives that can be found throughout the country, CEM II is commonly produced at Dangote Cement’s plant in Cameroon (“Dangote Group: Welcome”).

3.1.7.2 Les Cimenteries du Cameroun

CIMENCAM’s plant is also located in Douala. The company is a subsidiary of the France-based Lafarge group, and the plant produces one million MTPA (“Lafarge in Nigeria”).

3.1.7.3 Ciments de L’Afrique Cameroun

Ciments de L’Afrique Cameroun is a France-based subsidiary company which produces CEM II-grade cement. The cement from this plant is likely not suitable for structural purposes; rather it is suitable for backfill operations (“Ciments”).

3.1.8 Cement producers — Chad

There are currently five major cement manufacturers in Chad: Chad Baoare Cement, Ciment de l’Afrique, CIMENTCHAD, Société Nationale de Cimenterie, and Sonacine Usine. These companies are located throughout the country, and each company holds a certain amount of the cement market share. With the exception of Chad Baoare Cement, located in Baoare, the four other cement plants in Chad are located strategically around N’Djamena, the central city of Chad (Figure 30; “International Cement Review”). The five companies produce cement that is similar in grade to CEM II; thus, it is concluded that cement from Benin is likely not suitable for structural concrete use.

14 A “pozzolan” is a siliceous or siliceous and aluminous material, which in itself possesses little or no cementing property, but will—in a finely divided form and in the presence of moisture—chemically react with calcium hydroxide at ordinary temperatures to form compounds possessing cementitious properties.
3.1.9 Cement producers – Niger

There are currently two major cement manufacturers in Niger, Africa: Société Nigérienne de Cimenterie S.A. (SNC) and Dangote Cement. These companies are located strategically around the cities of Niamey and Malbaza, and each company holds a certain amount of the cement market share. Société Nigérienne de Cimenterie S.A.

3.1.9.1 Société Nigérienne de Cimenterie S.A.

Société Nigérienne de Cimenterie S.A.’s cement plant was built in 1963 and is located in Malbaza, Niger (Figure 31), which is roughly 450 km east of the capital city of Niamey. Heidelberg Cement, a German-based company, owns and operates the cement plant. The plant has a capacity of roughly 0.04 MTPA; however, the plant only produces about 0.03 MTPA due to various problems (“International Cement Review”).

Figure 30. Cement locations in Chad, relative to Maiduguri (Google Maps, 2016).
3.1.9.2 Dangote Cement

Dangote Cement is expanding to Niger, the country neighboring Nigeria’s northern border. A cement plant is currently being built in the Niamey region, and it is expected to be complete around mid-2016. The plant is expected to have a production capacity of 1.5 MTPA (“Dangote Group: Welcome”). The plant’s location is shown in Figure 32.

3.2 Product

3.2.1 Codes, standards, and methods

The government of Nigeria requires concrete and its constituent materials, along with the methods and procedures for concrete to conform to the Nigerian Code produced by The Standards Organisation of Nigeria (SON) (Adewole et al. 2015). This is the lone organization allowed to standardize materials, products, and processes in the country.

The citizens of Nigeria generally do not know nor care about the structural stability of the cement. Rather, they are aware of the different cement types by brand name alone, not the grade or strength classes of the cement (Adewole et al. 2014). Nigerians mostly buy bagged cement, or bagged Portland-limestone cement (BPLC). With the old Nigerian industrial standards, ordinary Portland cement (OPC) was the only type of cement that was allowed to be produced in Nigeria. When the new standards took effect and BPLC began being manufactured, Nigerians were not made aware that BPLC was different than the OPC (Ju and Ifeanyi 2015).

3.2.2 Cement grades

There are three types of cement that are commonly available through the Nigerian open market. Two of these include cement grades 32.5 and 42.5, both of which are used for building construction. Grade 42.5 cements have higher compressive strengths than 32.5 grade cement. Use of the 42.5 grade cement leads to concrete structures that last longer and withstand more loads. Many Nigerians believe that BPLC is OPC because it is what they previously used before materials, such as limestone, began being added as a filler material (Adewole et al. 2014; Ju and Ifeanyi 2015).

3.2.3 Cement types

CEM I is typically used to designate the cement grade 32.5 and 42.5, whereas CEM II is used to refer to BPLC. The CEM I is very similar to OPC; however, CEM II is a cheaper version of CEM I that has limestone added. Cement grade 42.5 represents higher-strength cement than the 32.5 grade (Adewole et al. 2014). CEM I is generally only produced in bulk orders for larger construction companies and projects. Overall, it can be said that the Nigerian CEM I is very similar in quality to Type I Portland Cement in America. Also, CEM II is a lower-quality bagged Portland-limestone cement that essentially is a CEM I with limestone additives (Adewole et al. 2014).
4 Ready-Mix Concrete

4.1 Industry

4.1.1 Global scenario

Concrete is the most widely used construction material throughout the world, and it forms the backbone of many infrastructure systems. The RMC industry began growing significantly in the 1960s, and the industry is expected to expand due to the rising worldwide demand for concrete. The most prominent RMC suppliers in the world are Cemex (based in the United States) and LafargeHolcim (based in Switzerland).

4.1.2 Background

Concrete plants were first established in Nigeria sometime from the 1970s to the 1980s. Since that time, RMC plants have become well established throughout the country, with multiple different companies holding a stake in the industry. In present-day Nigeria, numerous companies own and operate batching plants, truck-mounted rotating drum trucks, and concrete pumps.

4.1.3 Regionalism

Many industrial considerations to be positioned in the center of a company’s market have been motivated by the calculated and planned role of markets in the concrete production and distribution process. The concrete businesses located throughout the country cannot exist without viable markets for them to operate in. This presents serious concerns, as most concrete batching plants in the country are spread throughout the market. As a result, concrete companies are devising certain marketing campaigns to properly respond to demand of consumers and the ever-changing commercial environment. These marketing strategies develop into an even-more crucial role in an increasingly competitive business environment, particularly in developing economies (Arinze 2015).

4.1.4 Ready-mix concrete producers – Nigeria

There seven major concrete producers located throughout Nigeria: Julius Berger, Lafarge Africa Plc., Nigerian Concrete Industries Ltd., Ogbebor Concrete Industries Ltd., Quick Mix Nigeria Limited, Sika Group, and SPG Nigeria Limited. There are numerous locations throughout the country
that hand mix concrete for smaller jobs; however these seven companies provide RMC available for purchase. Most of the companies have small mobile batching plants that they relocate near the construction site; however, a few have fixed batching plant locations.

4.1.4.1 Julius Berger

Julius Berger is one of the leading construction companies in Nigeria that offers various construction services. The company has fixed batching plants near Utako and Lagos (Figure 33). The company also follows strict quality-control guidelines to ensure that the concrete produced in their plants will withstand the test of time (“Welcome Julius”).

Figure 33. Julius Berger, concrete locations in Nigeria, relative to Maiduguri (Google Maps, 2016).

4.1.4.2 Lafarge Africa Plc.

Lafarge Africa Plc. owns and operates Lafarge Readymix Nigeria, one of Nigeria’s leading concrete manufacturers. The company has a combined seven plants operating in the cities of Abuja, Port Harcourt, Rivers State, Ogun State, Ikoyi, Ikeja, and Victoria Island, with an eight location being the corporate headquarters in Ikeja (Figure 34). Lafarge Readymix Nigeria is the market leader in quality concrete production due to the integrated systems technology the company and its plants utilize (“Lafarge in Nigeria”).
4.1.4.3 Nigerian Concrete Industries Ltd.

Nigerian Concrete Industries Ltd. is located in Lagos State (Figure 35). The Nigerian government financed the company’s start-up funds. Also, the company is a key contributor to industrial services and business endeavors in Nigeria (Graham 1983).
4.1.4.4 Ogbebor Concrete Industries Ltd.

Ogbebor Concrete Industries Ltd is located in the Idu Industrial Region of the city of Abuja in the Federal Capital Territory (Figure 36). The company is a key contributor to industrial services and business endeavors in Nigeria (Graham 1983).

Figure 36. Ogbebor Concrete Industries Ltd., concrete location in Nigeria, relative to Maiduguri (Google Maps, 2016).

4.1.4.5 Quick Mix Nigeria Limited

Quick Mix Nigeria Limited is located in Lagos State (Figure 37). The company has mobile batching plants, which allows them to produce fresh concrete at the job site. The company does not deliver RMC, as they believe fresh concrete offers increased quality. Quick Mix Nigeria is one of the major concrete producers in North and West Africa due to the Holcombe Mixers utilized in their concrete manufacturing processes (“QuickMix”).

Figure 37. Quick Mix Nigeria, concrete location, relative to Maiduguri (Google Maps, 2016).
4.1.4.6 Sika Group

The Sika Group is worldwide company with locations on almost every continent. Sika Manufacturing Nigeria Ltd. is the Nigerian subsidiary of the company, and their office is located in Lagos (Figure 38). The main function of the company is to manufacture chemical and mineral admixtures for concrete; however, they do produce and supply concrete if needed (“Sika Manufacturing”).

Figure 38. Sika Group, concrete location in Nigeria, relative to Maiduguri (Google Maps, 2016).

4.1.4.7 SPG Nigeria Limited

SPG Nigeria Limited is located in the heart of Victoria Island (Figure 39), and they sell, produce, and deliver quality concrete for customers. The company has new batching plant equipment that is capable of meeting a wide range of production demands (“SPG Nigeria”).

Figure 39. SPG Nigeria Limited, concrete locations (Google Maps, 2016).
4.2 Product

4.2.1 Codes, standards, and methods

The government of Nigeria provides concrete codes and standards through the SON. The relevant Nigerian concrete codes include: – “The Structural Use of Concrete in Building” (Nigeria Code of Practice [NCP] 01:1973) and “Standard Method of Testing Fresh Concrete” (NIS 256:1982). Much of these codes have been written to provide information about placing and testing concrete; however, they also contain small amounts of information regarding methods of manufacturing concrete.
5 Aggregate

5.1 Industry

5.1.1 Global scenario

Aggregate is one of the most available natural resources on Earth. There are coarse and fine aggregate sources located in almost every country. Some regions have a greater amount of coarse or fine aggregate, based on the climate and geography of the region. For example, desert regions contain more fine aggregate (sand) whereas mountainous regions contain more coarse aggregate (stone).

5.1.2 Background

Aggregates used in concrete production are designated either as fine or coarse. Fine aggregates range from 0.001 to 0.25 inch and coarse aggregates range from 0.25 to 1.5 inch. Aggregates are desired to be inert granular materials that are free of impurities. Sands and very finely crushed rocks are typically used as fine aggregate. Coarse aggregate is most commonly gravels or crushed rocks, such as limestone.

For most of the aggregate sources in the country of Nigeria and the surrounding countries, a particular company or organization does not own the aggregate. Rather, in these locations, companies are given mining titles in order to look for and/or use aggregates located in a certain region. With the government giving mining titles, there may be more than one company looking for aggregate in a certain region.

Note: The terms “mine” and “quarry” are used interchangeably in Nigeria.

The main source of data collection for aggregate sources in Nigeria was a list of all companies that hold mining titles in the country, which is an annual list published by the Nigerian Mining Cadastre Office (“Exploration License” 2016). This data was used to determine where certain companies operate and what types of materials are in a given region.

5.1.3 Regionalism

There are numerous unexploited aggregate sources throughout Nigeria and the surrounding countries due to the fact that these countries are still
very much developing regions. As a result, the known sources of aggregates are sporadic throughout the region and are most likely near current or recently completed construction projects. Thus, it is expected there are numerous coarse and fine aggregate sources near Maiduguri that have not been documented.

5.1.4 Aggregate sites – Nigeria

5.1.4.1 Julius Berger

Julius Berger is a Nigerian construction company that owns and operates three quarries that are used to extract high-quality aggregate throughout Nigeria. These quarries are strategically located in the cities of Mpape, Ogbere, and Akampka, providing for a variety of customers. The locations of each are presented on Figure 40. The three quarries have a capacity of over five million MTPA. The aggregates produced by Julius Berger meet international standards, and the size of the aggregate can be adjusted for customer needs (“Welcome Julius”).

![Map of Julius Berger aggregate locations in Nigeria, relative to Maiduguri.](Google Maps, 2016)

5.1.4.2 Macmahon

Macmahon has quarry locations in Ewekoro and Calabar (Figure 41). The company is contracted by other companies to provide high-quality aggregate for various construction projects. Both quarries produce limestone.
aggregate to be used in concrete. In each location, Macmahon has a crushing and sorting capability to provide the highest-quality service for their customers ("Macmahon Holdings").

Figure 41. Macmahon, aggregate locations in Nigeria, relative to Maiduguri (Google Maps, 2016).

5.1.4.3 Reynolds Construction Company

Reynolds Construction Company (RCC) has three office locations, mainly in southwest Nigeria (Figure 42). The company obtains aggregates from sources nearby their office locations in order to produce quality concrete. Both fine and coarse aggregates are utilized by RCC. The aggregates also meet international standards ("RCC Nigeria").

Figure 42. Reynolds Construction Company, aggregate locations in Nigeria, relative to Maiduguri (Google Maps, 2016).
5.1.4.4 PW Group

The PW Group has offices located in the south in Port Harcourt and in the heart of the country near Abuja (Figure 43). Near these locations, the company has quarry sites that have advanced technical equipment available of making very high-quality fine and coarse aggregates. The company has the capability to blast the quarry for the necessary material and to sort the aggregates within a few days in order to meet customer needs (“PW Group”).

![Figure 43. PW Group, aggregate locations in Nigeria, relative to Maiduguri (Google Maps, 2016).](image)

5.1.4.5 Salimonu Company Nigeria Ltd.

Salimonu Company Nigeria Ltd. operates out of the Lagos region (Figure 44), and the company offers quarry materials available for purchase by the public and the government. The company owns and operates its own quarry near its office, and the company has a local delivery service for customers. The company also allows customers to pick up their aggregates from the quarry (“Salimonu Company”).
5.1.4.6 Sehnaoui Plant Nigeria Ltd.

Sehnaoui Plant Nigeria Ltd. is a Middle East-based company that operates in the Lagos State in Nigeria (Figure 45). The company owns and operates their own quarries in the area, and the company has the capability to crush, screen, and sort aggregates on site at its quarries. The company also offers a mobile crushing unit that is available to travel to a construction site and crush nearby aggregate for a project (“Sehnaoui Plant”).

5.1.4.7 Ekam Quarry Nigeria Limited

Ekam Quarry Nigeria Limited has a mining title for the region near the Nigerian city of Calabar (Figure 46). Aggregate from this location includes limestone and crushed stone for concrete production (“Ekam Quarry”).
5.1.4.8 Ebonyi Cement Company

Ebonyi Cement Company owns a mining title for Ebonyi, Nigeria, as shown in Figure 47.† The companies mining title allows them to mine limestone from the region. The limestone aggregate from this mine is ground very finely and used for cement manufacturing; however, the aggregates are very high quality. Thus, the limestone aggregate can be crushed to size and be used in concrete production (“Ibeto Group”).

† In some instances, a map figure does not show the name of the town (as indicated within the figure’s key) due to the town’s small size.
5.1.4.9 Total Mining Limited

Total Mining Limited has two mining locations in Ijumu and Okene, both in the Kogi State (Figure 48). Both locations have a vast range of mineral resources in the region that are suitable for use in concrete. These minerals include limestone, gravel, sand, and shale, all of which can be used for concrete production (“Welcome to Total Mining”).

Figure 48. Total Mining Limited, aggregate locations in Nigeria, relative to Maiduguri (Google Maps, 2016).

5.1.4.10 Gateway Mining Company Limited

Gateway Mining Company Limited has a mining title for Ewekoro in the Ogun state (Figure 49). The aggregate from this location includes limestone for concrete production purposes (“Exploration Licence”).

Figure 49. Gateway Mining Company Limited, aggregate locations in Nigeria, relative to Maiduguri (Google Maps, 2016).
5.1.4.11 Reagan Renaissance Limited

Reagan Renaissance Limited mines for aggregate in Arochukwu in Abia State (Figure 50). The aggregates include limestone and larger coarse gravels that are used in cement and concrete production. Clay and sand are also available from the company in the regions around the Kaduna State. The company has international ties to various companies, and they are willing to work with foreign nations in order to achieve success (“Reagan Cement”).

Figure 50. Reagan Renaissance Limited, aggregate location in Nigeria, relative to Maiduguri (Google Maps, 2016).

5.1.4.12 GoldenLand Resource International Limited

GoldenLand Resource International Limited has a mining title for Oshimili South (Figure 51). The minerals available in this location include river sand and sand, both of which are suitable for concrete production. The company has offices in Lagos, Abia, and Delta States in order to meet customer needs (“GoldenLand Resource”).
5.1.4.13 Association of Tipper & Quarry Owners of Nigeria

The Association of Tipper & Quarry Owners of Nigeria has a mining title for the region of Kuje, a local government area within the Federal Capital Territory of Nigeria (Figure 52). The main mineral available in this location is sand, which is suitable for concrete production (“Exploration Licence” and “Extant Grants”).

5.1.4.14 Anthony Chizea Holding

Anthony Chizea Holding has a mining title for the Delta State in the Isu-Aniocha region (Figure 53). The main mineral available in this location is sand, which is suitable for concrete production (“Exploration Licence”).
5.1.4.15 S. Pawa Quarry

S. Pawa Quarry has a mining title for the Zamfara State in the Gusau region (Figure 54). The main mineral available in this location is sand, which is suitable for concrete production ("Exploration Licence").

5.1.4.16 Ratcon Construction Company Limited

Ratcon Construction Company Limited has mining titles for the Ogun, Osun, and Oyo States in the Oluyole region (Figure 55). The main mineral available in this location is sand, which is suitable for concrete production. The company aims to provide high-quality, cost-effective services to meet certain customers’ needs. Along with their mining titles, the company owns and operates five quarries throughout southwestern Nigeria that produce high-quality aggregate. Three of these quarries are located in the Oyo State, one in the Ogun State, and one in the Osun State. The main aggregates that come from these five mines include limestone and granite ("Ratcon Construction").
5.1.4.17 M.F.W. Dredging & Marine Nigeria Limited

M.F.W. Dredging & Marine Nigeria Limited has a mining title for the Rivers State in the Akpajo-Eleme region (Figure 56). The main mineral available in this location is river sand, which is suitable for concrete production. The company mainly dredges the nearby waterways in order to obtain the river sand for concrete production. The company aims to meet all international standards to provide the highest-quality service possible (“M.F.W. Dredging”).
5.1.4.18 Adazi Nnukwu Town Development Union

Adazi Nnukwu Town Development Union has a mining title for the Anambra State in the Anaocha region (Figure 57). The main mineral available in this location is sand, which is suitable for concrete production. The company is a local organization that has a mining title to obtain the sand they need for their concrete (“Exploration Licence”).

Figure 57. Adazi Nnukwu Town Development Union, aggregate location in Nigeria, relative to Maiduguri (Google Maps, 2016).

5.1.4.19 Gateway Holdings Limited

Gateway Holdings Limited has a mining title for the Ogun State in the Ifo region (Figure 58). The main mineral available in this location is river sand, which is suitable for concrete production (“Exploration Licence”).

Figure 58. Gateway Holding Limited, aggregate location in Nigeria, relative to Maiduguri (Google Maps, 2016).
5.1.4.20 Various fine aggregate sources

There are various fine aggregate sources throughout Nigeria; however, there are ten areas that have been tested and found to be suitable for concrete purposes: Maikunkele, Chanchanga, Dogo, Kodo, Gwada, Pyata, Shata, Paiko, Takuti, and Zaria. These ten locations are located around central Nigeria (Figure 59) (Abdullahi 2006).

5.1.5 Aggregate sites – Chad

5.1.5.1 Société d'Exploitation Minière de Pala

Société d'Exploitation Minière de Pala owns and operates a quarry in Mani, Chad (Figure 60). The main aggregate available in this location is limestone aggregate, which is suitable for concrete production (IBP 2015).
5.1.5.2 Société Tchadienne d’Exploitation des Carrières

Société Tchadienne d’Exploitation des Carrières also owns and operates a quarry in Mani, Chad. The main aggregate available in this location is crushed stone, which is suitable for concrete production (IBP 2015).

5.1.5.3 Various coarse aggregate sources

There are various coarse aggregate sources throughout Chad; however, there are two areas that have been tested and found to be suitable for concrete purposes. The crushed stone aggregate sources in Chad are in the Chari and Logone Rivers regions (Figure 61) (IBP 2015).

Figure 61. Chad, various coarse aggregate locations (Google Maps, 2016).

5.1.6 Aggregate sites – Cameroon

5.1.6.1 Cimencam

Cimencam owns and operates a quarry in Figuil, Cameroon (Figure 62). The main aggregate available in this location is limestone aggregate, which is suitable for concrete production (“Cimencan”).
5.2 Product

5.2.1 Codes, standards, and methods

The governments of Nigeria and the surrounding countries involved in the analysis do not have any specific codes or standards for aggregate mining and/or use. The SON provides one relevant code for sampling aggregate: NIS 014: 1974 – “Methods for the sampling and the testing of minerals aggregate, sand and filler.”

6 Wood

6.1 Industry

6.1.1 Global scenario

Wood is the world’s oldest construction material, excluding stone. Roughly 80%—90% of the certified forests are located in the northern hemisphere. Forest certification allows for forest owners and managers to obtain recognition for their forest management practices. Certification is a means to ensure the forest is being used in an environmentally friendly and sustainable way. Approximately 50%—35% of the forests in Europe and North America are certified, respectively. However, less than 0.1% of the forest on the continents of Africa and Asia are certified. Along with this, the world saw a roughly 9% growth of certified forests from 2007 to 2008 (USDA 2010).

The supply of large clear logs for lumber and veneer has decreased through reduction in the use of old-growth forests in North America. Unfortunately, most of the release of stored carbon is due to deforestation in tropical areas around the world. These deforestations lead to these forests being net contributors of carbon to the atmosphere (Shmulsky 2002). In all, approximately 20% of total human-caused carbon dioxide emissions each year are due to deforestation of tropical areas around the world (USDA 2010).

6.1.2 Background

In Nigeria, wood is a very common construction material. It has become an even more valuable engineering material as a result of technological advances in the country. As a result of the large supply of wood in the region, it is used locally and exported to other countries around the world. Unfortunately, the rabid use of wood as a construction material has begun to deplete the local forests. Despite the fact that wood supply levels are decreasing in Nigeria, the fact that wood can be used for many purposes and there are various species, shapes, and sizes available in the country has kept wood at the forefront of construction materials in Nigeria (Ohagwua 2011).
6.1.3 Competitiveness

Wood production and distribution is a highly competitive market in Nigeria; however, the wood industry in Nigeria is progressively deteriorating in performance, efficiency, and productivity. As a result, the industry’s competitiveness has decreased starting in the mid-to-late 1900s, but the market is still highly competitive (USDA 2010).

6.1.4 Regionalism

Wood is one of the products in Nigeria that drives the economy. In its prime (1970s and 1980s), forested land covered over 17,000,000 ha of the total land mass in Nigeria. Currently, roughly 9,041,000 ha (9.9%) of the approximately 92,500,000 ha of total land mass in Nigeria is forested. Along with the current forested land, 382,000 ha of previously forested land in the country is now replanted. Still, the amount of forest space has decreased on average by 2.38% (409,650 ha) annually from 1990 through 2010. As a result, 8,193,000 ha (47.5%) of the forest coverage in Nigeria has been depleted in that same time period (“Nigeria Forest Information”).

6.1.5 Wood suppliers – Nigeria

Although wood is still a driving force in Nigeria, due to the decrease in volume of available prime wood species, most of the large wood industries and companies have left the market. The main source of wood in the country is now small-scale companies. As a result of the scale of operation by most companies, their production and distribution is inefficient and wasteful, and they make marginal profits. Many of the small-scale companies lack the money needed to grow and the technology desired to advertise and grow the company. Most of the small-scale forestry companies have a poor quality of products that are produced at a low level of productivity and serve very local markets. To offset many of the disadvantages associated with small-scale wood processing and distribution in Nigeria, it is now necessary that plans be put in place to ensure small companies access to optimal production facilities (Ohagwua 2011).

6.1.5.1 Bayrem Group International

Bayrem Group International owns and operates Bayrem Tropical Timbers based in Lagos, Nigeria (Figure 63). The company is a collection of saw millers and manufacturers. Typically, the company exports wood products; however, they do supply domestically. The company supplies various
types of hardwoods species, specializing in: Iroko, Sapele, African Mahogany/Acajou, Opepe/Bilinga, Red Apa/Doussie, Teak, Gmelina Arborea, Ekki/Azobe, Obeche, and Limba. The hardwood sold by the company is air dried, rough sawn, square edged, and firsts and seconds (FAS)-grade export quality. Bayrem Group International can also plane the material (S4S) and produce tongue and groove, flooring strips, parquet flooring, squares, and pallets upon request (“Bayrem Group”).

Figure 63. Bayrem Group International, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016).

6.1.5.2 Bellet Construction Plc.

Bellet Construction Plc is operated from the Lagos State (Figure 64). They buy construction materials in bulk for various construction projects. As a result, the company has various amounts and types of timber available for purchase by the public (“Bellet Construction”).

Figure 64. Bellet Construction, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016).
6.1.5.3 Bissy King International Ltd

Bissy King International Ltd operates from the Lagos State (Figure 65). The company mainly is in the export business and offers various tropical wood types including mahogany, sapele, teak, gmelina, and iroko (“Bissy King”).

Figure 65. Bissy King International, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016).

6.1.5.4 Cosource Ventures

Cosource Ventures is a Nigerian company that processes wood and exports various wood products. They are mainly in the furniture business; however, they also manufacture and sell sawn timbers and plywood. Cosource Ventures operates from the Edo State, as shown in Figure 66 (“Cosource Venture”).

Figure 66. Cosource Ventures, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016).
6.1.5.5 Delta Forestry

Delta Forestry operates in the Delta State (Figure 67). The company produces exportable timber products, but prides itself in domestic production and manufacturing. The company offers plywood and veneer for purchase by the public (“Delta Forestry”).

Figure 67. Delta Forestry, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016).

6.1.5.6 Eddy Bros Nigeria Ltd

Eddy Bros Nigeria Ltd operates from Port Harcourt in the Rivers State (Figure 68). They are a major exporter of African hard plywood, directly from their sawmill (“Eddy Bros.”).

Figure 68. Eddy Bros Nigeria Ltd, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016).
6.1.5.7 EG Woods Ltd

EG Woods Ltd operates out of the Lagos State in Nigeria (Figure 69). They are mainly exporters of swan woods railway sleeper (ekki), obeche, opepe, okan, parquet and particle board, and block board plywoods; however, they do sell some timber types, including red apa and iroko (“EG Woods Ltd” 2016).

Figure 69. EG Woods Ltd, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016).

6.1.5.8 Hephzibah Resc and Inv Ltd

Hephzibah Resc and Inv Ltd operates from the Lagos State in Nigeria (Figure 70). The company is mainly in the business of exporting wood from Nigeria; however, they do sell wood domestically. The types of wood sold domestically include iroko, red apa, teak, ebony, and mahogany (“Hephzibah”).

Figure 70. Hephzibah Resc and Inv Ltd wood location in Nigeria, relative to Maiduguri (Google Maps, 2016).
6.1.5.9 Jasper Wood Industry

Jasper Wood Industry operates in Benin City in the Edo State in Nigeria (Figure 71). The company is focused on manufacturing furniture products; however, it does offer black alder wood to be purchased by the public (“Jasper Wood Industry”).

Figure 71. Jasper Wood Industry, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016).

6.1.5.10 Malagas Ventures Nigeria

Malagas Ventures Nigeria is located in the Lagos State in Nigeria (Figure 72). They offer various forms of hardwood, softwood, and semi and finished wood (“Malagas Ventures”).

Figure 72. Malagas Ventures Nigeria, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016).

6.1.5.11 Obijiwealth Nig Ltd

Obijiwealth Nig Ltd is a Nigerian-based company, operating from the Lagos State (Figure 73). The company offers various types of woods,
including: Tali (*Erythropheum* /erun), Teak Afrormexia (*Pterocarpus*), Iroko (*Chlorophora excelsa*), Red Apa (*Afzelia or Doussie africana*), Mahogany (Khaya), Ekki /Azobe (*Lophidra alata*), Obeche/Ayous (*Triplochiton scleroxylon*), Eku (*Brachystegia spp*), Okan (*Cylodiscus*), Sterculia (*Koko igbo*) and, Afara/Frake (*Terminalia superba*) (“Obijiwealth Nig Ltd”).

Figure 73. Obijiwealth Nig Ltd, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016).

6.1.5.12 *Orlean Farms Ltd*

Orlean Farms is located in the Lagos State in Nigeria (Figure 74). The main products they manufacture and distribute include: timber logs, sawdust, and sawn woods (“Orlean Farms”).

Figure 74. Orlean Farms Ltd, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016).

6.1.5.13 *Shamen Global Concepts Ventures*

Shamen Global Concepts Ventures operates from Ogun State in Nigeria (Figure 75). The company is in the business of producing exotic woods from
all over Nigeria and distributing them domestically and internationally (“Shamen Global Concepts”).

Figure 75. Shamen Global Concepts Ventures, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016).

6.1.5.14 Shnahan Trading Investment

Shnahan Trading Investment is in the business of selling various wood types, including: alder, aspen, beech, cherry tree, mazonia wood, and tropical timber. The company operates from Port Harcourt, Nigeria, as shown in Figure 76 (“Shnahan Trading Investment”).

Figure 76. Shnahan Trading Investment, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016).

6.1.5.15 Stanimose

Stanimose exports Nigerian hard and soft wood in log and sawn forms, including African mahogany. The company does sell locally, if needed. Stanimose operates from Benin in the Edo State, as shown in Figure 77 (“Stanimose”).
6.1.5.16 Tradecorp Investments Nigeria Ltd

Tradecorp Investments Nigeria Ltd operates from the Lagos state in Nigeria (Figure 78). The company manufactures and distributes parquet and wooden flooring. Apple (*pyrus malus*) is one of the main wood types the company distributes (“Tradecorp”).

6.1.5.17 Ulman Investment Nig Ltd

Ulman Investment Nig Ltd operates from the Lagos State in Nigeria (Figure 79). The company has a full forest of teak wood that can be sawed and manufactured to client specifications (“Ulman Investment”).
6.1.5.18 Wood’vantage Ltd

Wood’vantage Ltd is a Nigeria-based company that operates from the Lagos State (Figure 80). The company manufactures and distributes various types of plank, sawn wood, sawdust, and wood chips and bark (“Wood’vantage”).

6.1.5.19 Yemi Productions Ltd

Yemi Productions Ltd operates from the Lagos State in Nigeria (Figure 81), and the company offers various types of Nigerian tropical wood for purchase by the public (“Yemi Productions Ltd”).
Figure 81. Yemi Productions Ltd, wood location in Nigeria, relative to Maiduguri (Google Maps, 2016).

6.1.5.20 Nigerian-Romanian Wood Industry

Nigerian-Romanian Wood Industry (NIROWI) is a joint venture between Nigerian and Romanian organizations. From Nigeria, the organizations are: the Federal Government of Nigeria, Beeb Holdings Limited, Nigerian Industrial Development Bank, Nigerian Bank for Commerce and Industry, and the Local Governments of Ondo and Ekiti States. FOREXIM of Romania is the Romanian partner, and they focus on the technical aspect of the company. The main Nigerian office is in the Ondo State of Nigeria. The company operates in many different product areas, including: sawmilling, forest exploitation, and plywood, veneer, furniture, and particle board factories. The company also has the following state-owned mechanized subsidiaries in Nigeria:

- Seromwood Industries Limited (located in city of Calabar)
- Calabar Veneer and Plywood (located in city of Calabar)
- Nigeria-Romanian Wood Industry (located in Ondo State)
- Epe Plywood Company Limited (located in Epe, Lagos State)

Along with the above state-owned mechanized subsidiaries, NIROWI controls various mills in the region, including:

- Amo Sawmills (located in city of Ibadan)
- Olukayode Sawmill (Nig) Limited (located in city of Akure)
- Soarse Wood & Timber (located in city of Akure)
- Premier Timber Industries (Nig) Ltd (located in Bolurundoro and the city of Akure)
- NIROWI (located in Ondo State)
- Omoniyi Sawmill (located in city of Akure)
- African Timber & Plywood (located in Sepele, Delta State)
• Iyayi Group of Companies (located in Benin City)
• Calvenwood Veneer & Plywood (located in city of Calabar)
• Wood Complex Ltd (located in city of Calabar)
• Eastern Match Industries (location not provided)
• Woodland Timbers (located in city of Lagos)

The various locations of NIROWI are displayed in Figure 82. No further information (e.g., capacities, wood types) was provided for the state-owned mechanized wood industries or mills that NIROWI owns and operates (“The Impacts of Forest”).

Figure 82. Nigerian-Romanian Wood Industry, wood locations in Nigeria, relative to Maiduguri (Google Maps, 2016).

6.1.5.21 Epe Plywood Industries Limited

Epe Plywood Industries Limited is a major wood processing country in Nigeria that produces plywood, flush doors, veneer, and furniture. The company is located in the Lagos State (Figure 83), and it is jointly owned by Odu’a Investment Company Limited and Bank of Industry (“Epe Plywood”).
6.1.5.22 African Timber and Plywood

African Timber and Plywood is located in the Sapele, a town in the Delta State (Figure 84). The company focuses mainly on plantation forestry maintenance, harvesting, processing, and utilization. The company has large plywood mill and sawmill sectors that allow it to thrive in the market (Okunomo and Achoja 2010).

6.1.5.23 Piedmont Plywood

Piedmont Plywood is a Nigeria-based company that operates from two locations: the main office in Ologbo Bridge and a secondary location in Akure, both of which are shown in Figure 85. Through its two locations, Piedmont Plywood is one of the largest operational sawmills in Nigeria (“Review and Improvement”).
6.1.5.24 Aframero Limited

Aframero Limited is a Nigeria-based company operating in Ilupeju in the State of Lagos (Figure 86). They specialize in distributing within the country and sell Africa tropical wood to be used for construction purposes (“Fordaq: The Timber Network”).

6.1.5.25 OBM Merchandise Ltd.

OBM Merchandise Ltd. is a company of forest managers, harvesters, and loggers based out of Lagos, Nigeria (Figure 87). They are a trading company, importer, and exporter. OBM Merchandise Ltd. focuses on sawn and structural timber, using African tropical wood available within Nigeria (“Fordaq: The Timber Network”).
6.1.5.26 Thameswood Products

Thameswood Products operates from Ogbese (Figure 88), specializing in supplying sawn timber, logs, and decking to be used for construction purposes. Thameswood products use natural air-drying techniques to minimize the energy used in processing wood products. They also operate a sawmill in Ogbese (“Fordaq: The Timber Network”).

6.1.5.27 Haran Resources Ltd

Haran Resources Ltd is a Nigeria-based company operating in the Lagos State (Figure 89). The company mainly focuses on sawn and structural timber, using various types of tropical timber found within Nigeria (“Fordaq: The Timber Network”).
6.1.5.28 Akewa Global Services Ltd

Akewa Global Services Ltd is located in Burutu, Nigeria (Figure 90). The company operates tropical wood sawmills from this location in order to meet the needs of its customers (“Fordaq: The Timber Network”).

6.1.5.29 Famolin Enterprises

Famolin Enterprises is located in Ibadan, Nigeria (Figure 91). The company operates tropical wood sawmills at this location in order to meet the needs of its customers (“Fordaq: The Timber Network”).
6.1.5.30 Forthnur Company Ltd

Forthnur Company Ltd is a Nigeria-based company operating in the Odo Ona, Ibadan region of the country (Figure 92). The company is mainly a wood trading group; however, they manufacture various other wood products, including plywood and other construction wood pieces (“Fordaq: The Timber Network”).

6.1.5.31 Cotoaz Shipping & Logistics Limited

Cotoaz Shipping & Logistics Limited is based in Apapa, Nigeria (Figure 93). The organization is mainly a group of agents and brokers helping import and export wood to and from Nigeria. They specialize in distributing hard, soft, and tropical wood logs. Cotoaz Shipping & Logistics Limited also operates a sawmill that manufactures sawn and structural timber (“Fordaq: The Timber Network”).
6.1.5.32 Awa Holdings Limited

Awa Holdings Limited operates a group of tropical wood sawmills in the city of Jos, Nigeria (Figure 94). The company is comprised mainly of loggers, who also help produce sawn and structural timber for construction purposes (“Fordaq: The Timber Network”).

6.1.5.33 Rosohan System Nigeria Limited

Rosohan System Nigeria Limited is a Nigeria-based company located in the city of Ikeja (Figure 95) that mainly operates as exporters. The company also operates tropical wood sawmills in Ikeja and produces sawn and structural timber (“Fordaq: The Timber Network”).
6.1.5.34 Hilicin Limited

Hilicin Limited is a Nigeria-based company operating in the city of Enugu (Figure 96). The company is a manufacturer and producer of structural timber. Hilicin Limited also operates tropical wood sawmills in Enugu ("Fordaq: The Timber Network").

6.2 Product

6.2.1 Codes, standards, and methods

The government of Nigeria does not have any set codes or standards for wood production and/or distribution. The Federal Department of Forestry of Nigeria enacted the National Forest Policy in 2008 that aimed to reduce poverty, promote food security, allow for environmental and biodiversity conservation, and establish methods for sustainable production of wood and non-wood products ("Forestry").
In the United States, most commercial lumber is graded by standardized rules that make purchasing wood more or less uniform in America. Conversely, in Nigeria, there are no standardized grades, but woods are still graded by various companies (Ohagwua 2011).

Many companies follow guidelines provided by the American Wood Council, including the National Design Specifications for Wood Construction and the Wood Frame Construction Manual.

6.2.2 Wood dimensions

In Nigeria, there are various sizes of wood available (Adesogan 2013 and Ohagwua 2011). These include:

- hard wood: 2 x 2, 2 x 3, 2 x 4, 2 x 5, 2 x 6, 3 x 4;
- soft wood: 2 x 4 x 12, 2 x 3 x 12, 1 x 2 x 12;
- resin coated plywood: 18 mm;
- white plywood: 1/8 x 8, ¼ x 4 x 8, ½ x 4 x 8, ¾ x 4 x 8; and
- veneer plywood: 1/8 x 4 x 8, ¾ x 48.

6.2.3 Wood types

There are numerous wood types available in Nigeria, irrespective of their location and use. They include: apa, black afara, white afara, aframomum, gmelina, idigbo, canarium, okan, antiaria, lagos mahogany, berdilmia, ekki, scented guarea, dry zone mahogany, camwood, pterygota, albizia, alstoria, makore, white sterculia, owewe, dist, okwen, obeche, opepe, african walnut, mansonia, teak, ebony, guarea, iroko, abura, ogea, pterocarpus, eri-mado, agba, akpu, danta, celtis, and walnut (Ohagwua 2011).

The wood species listed above (with some additions and exclusions) are shown in Figure 97, providing a reference as to whether the wood’s purpose is decorative, functional, or structural (Adesogan 2013).
The 17 most commonly used wood types for construction purposes in Nigeria have different conservation statuses. The following seven woods have the following distinction, based on the International Union for the Conservation of Nature (IUCN) Red List of Threatened Species:

- **Threatened category**
 - **Vulnerable**: *Terminalia ivorensis*, *Lovoa trichilioides*, *Khaya ivorensis*, *Afzelia Africana*, *Nauclea diderrichii*
- **Lower-risk categories**
 - **Near Threatened**: *Milicia excelsa*
 - **Least Concern**: *Nassogoidonia papaverifera*

The wood products industry is a very large one in Nigeria. Various wood products in the country include sawn wood, wood-based panels (plywood, particleboard, and paper), and paperboard (newsprint, and printing and writing paper) (Ohagwua 2011). Currently, the country of Nigeria does not produce fiberboard. The nature of statistics on these products is disorganized and disorderly because there are no systematized methodologies for their regular collection at either the federal, state or local government levels; rather, there are ad-hoc studies that contain various amounts of information, but those studies are very periodic and sporadic (Shmulsky 2002).

Although there are numerous types of wood species available in Nigeria, not all of them are suitable for construction purposes. The three most fre-
quent wood types used for construction purposes in Nigeria are Omo (*Cor-
dial millenii*), Afara (*Terminalia ivorensis*), and Teak (*Tectona grandis*). Conversely, Iroko (*Milicia excelsa*), Opepe (*Nauclea diderrichii*), and Araba (*Ceiba pentandra*) are the least-used wood species in building projects. These results are summarized in Figure 98 (Adesogan 2013).

Figure 98. Frequency of usage of various wood species for construction (Adesogan 2013).

<table>
<thead>
<tr>
<th>S/N</th>
<th>Local name</th>
<th>Botanical name</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Afara</td>
<td>Terminalia ivorensis</td>
<td>86</td>
</tr>
<tr>
<td>2</td>
<td>Apado</td>
<td>Conilua grandiflora</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>Erun</td>
<td>Erythrophium suaveolens</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>Agbonyin</td>
<td>Piptadeniastrom africanum</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>Akokokoibo</td>
<td>Loova trichloides</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>Teak</td>
<td>Tectona grandis</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>Omo</td>
<td>Cordial millenii</td>
<td>90</td>
</tr>
<tr>
<td>8</td>
<td>Mahogany</td>
<td>Khaya ivorensis</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>Agba</td>
<td>Gossweileri tendron balsamiferum</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>Atere</td>
<td>Triplochiton aceroyylon</td>
<td>35</td>
</tr>
<tr>
<td>11</td>
<td>Apa</td>
<td>Afzelia Africana</td>
<td>38</td>
</tr>
<tr>
<td>12</td>
<td>Oro</td>
<td>Nassogondonia papaverifera</td>
<td>35</td>
</tr>
<tr>
<td>13</td>
<td>Araba</td>
<td>Ceiba pentandra</td>
<td>16</td>
</tr>
<tr>
<td>14</td>
<td>Ayo</td>
<td>Holoptelea grandid</td>
<td>24</td>
</tr>
<tr>
<td>15</td>
<td>Ayin</td>
<td>Andreissus leicarpus</td>
<td>40</td>
</tr>
<tr>
<td>16</td>
<td>Opepe</td>
<td>Nauclea diderrichii</td>
<td>15</td>
</tr>
<tr>
<td>17</td>
<td>Iroko</td>
<td>Milicia excelsa</td>
<td>15</td>
</tr>
</tbody>
</table>

6.2.4 Wood characterization

Traditionally in Nigeria, wood products have been used mostly for construction purposes, particularly building construction. Over 80% of the timber and timber products in Nigeria are utilized for different purposes within building construction. The major purposes of timber in building construction are for doors, frames, roofing members, and staircases. Additionally, wood products are used for scaffolding and shuttering during construction. There are various other nonconstruction-related uses of wood in the country, which shows how valuable a commodity it is within the country (Ohagwua 2011). In Nigeria, the general properties of wood have been codified as follows:

- **Density coding**: from 1 for very light to 10 for very heavy.
- **Strength coding**: from S1 for very strong to S7 for weak.
- **Durability coding**: from 1 for extremely durable to 10 for least durable.
• **Permeability coding**: from 1 for very permeable (can be penetrated with wood preservation under pressure treatment) to 7 for least permeable.

• **Color of heartwood**: the appearance has an important effect on the wood’s end use.

Various species of wood in Nigeria are characterized by using the above methods of coding its properties, and the results are displayed in Figure 99.

Figure 99. Nigerian woods, characterized by various properties (Ohagwua 2011).

<table>
<thead>
<tr>
<th>Species</th>
<th>Group</th>
<th>Colour of heartwood</th>
<th>Density code</th>
<th>Strength group</th>
<th>Natural durability code</th>
<th>Use code</th>
<th>Permeability code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afxelia africana</td>
<td>2</td>
<td>Yellow brown</td>
<td>0</td>
<td>S3</td>
<td>1</td>
<td>1,2,3</td>
<td></td>
</tr>
<tr>
<td>Acacia albida</td>
<td>4</td>
<td>Yellow</td>
<td>7</td>
<td>S5</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Balanionella toxisperma</td>
<td>3</td>
<td>Red brown</td>
<td>8+</td>
<td>S3</td>
<td>1</td>
<td>1,2,3,5,6</td>
<td></td>
</tr>
<tr>
<td>Berlina spp</td>
<td>3</td>
<td>Purple brown</td>
<td>10+</td>
<td>S1</td>
<td>1</td>
<td>3,6</td>
<td></td>
</tr>
<tr>
<td>Coulia edulis</td>
<td>2</td>
<td>Red brown</td>
<td>9</td>
<td>S1</td>
<td>1</td>
<td>2,3,6</td>
<td>1</td>
</tr>
<tr>
<td>Cola gigantean</td>
<td>4</td>
<td>Grey brown</td>
<td>7</td>
<td>S6</td>
<td>4</td>
<td>2,4</td>
<td></td>
</tr>
<tr>
<td>Coryntha papyrocarpa</td>
<td>3</td>
<td>Yellow brown</td>
<td>8</td>
<td>S3</td>
<td>3</td>
<td>2,3,6</td>
<td></td>
</tr>
<tr>
<td>Dicrcopyrosoma</td>
<td>6</td>
<td>Black</td>
<td>0+</td>
<td>S2</td>
<td>4</td>
<td>2,6</td>
<td>3</td>
</tr>
<tr>
<td>Danielliaea</td>
<td>3</td>
<td>Red brown</td>
<td>7</td>
<td>S6</td>
<td>2</td>
<td>2,4</td>
<td>2</td>
</tr>
<tr>
<td>Eucalyptus robusta (p)</td>
<td>2</td>
<td>Red brown</td>
<td>9</td>
<td>S3</td>
<td>2</td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td>Khaya ivorensis</td>
<td>3</td>
<td>Red brown</td>
<td>7</td>
<td>S5</td>
<td>3</td>
<td>1,2</td>
<td>3</td>
</tr>
<tr>
<td>Pianus muco</td>
<td>5</td>
<td>Yellow</td>
<td>6</td>
<td>S7</td>
<td>4</td>
<td>1,2,4</td>
<td></td>
</tr>
<tr>
<td>Gymelina arborea</td>
<td>4</td>
<td>White</td>
<td>7</td>
<td>S6</td>
<td>3</td>
<td>1,2,4,5</td>
<td>3</td>
</tr>
<tr>
<td>Hannoa klaneana</td>
<td>5</td>
<td>White</td>
<td>4</td>
<td>S7</td>
<td>4</td>
<td>1,2,4,5</td>
<td>3</td>
</tr>
<tr>
<td>Lophira alata</td>
<td>1</td>
<td>Park brown</td>
<td>10</td>
<td>S1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Morus miconyza</td>
<td>2</td>
<td>Yellow brown</td>
<td>9</td>
<td>S1</td>
<td>3</td>
<td>1,2,3</td>
<td></td>
</tr>
<tr>
<td>Newtonian spp</td>
<td>2</td>
<td>Brown</td>
<td>8</td>
<td>S3</td>
<td>3</td>
<td>1,2,3</td>
<td></td>
</tr>
<tr>
<td>Xylopia rubescens</td>
<td>3</td>
<td>Yellow</td>
<td>8</td>
<td>S3</td>
<td>4</td>
<td>1,2,4</td>
<td></td>
</tr>
</tbody>
</table>

6.2.5 Wood storing and moisture removal

There are two major methods along the wood sawing process that are used to store processed wood and remove excess moisture in the process. These two methods are air seasoning and kiln seasoning. A typical wood sawing operation is shown in Figure 100.
6.2.5.1 Air seasoning

Air seasoning is a moisture removal process that is achieved by stacking the converted timber into various piles, and then separating the boards by using skids or stickers, so that the free circulation of air evaporates the moisture by natural convection. A dry site with a firm foundation is necessary for air seasoning. This method is the prevalent situation for wood storing and moisture removal in Nigeria (Ohagwua 2011).

6.2.5.2 Kiln seasoning

Kiln seasoning is achieved by having a fan circulate hot air from various heating pipes in the floor and ceiling. This drying room (kiln) also has jets that introduce steam into the drying process. Most kilns in Nigeria are of the compartment type in which the load of timber remains in the kiln throughout the drying process, and the air conditions are regulated in accordance with a suitable schedule (Ohagwua 2011).

Kiln-dried timber will normally have a lower moisture content than air-dried material—typically in the range of 6%–15%, depending on the set objectives of kiln drying. For proper kiln operation, the kiln environmental
conditions must be known (i.e., temperature and humidity of the circulating air) (Shmulsky 2002).

6.2.6 Wood data collection constraints

There are many limitations to data collection and forest section statistics in Nigeria, including funding and appropriate infrastructure, public attitude and opinions, and poor communication.

6.2.6.1 Funding and appropriate infrastructure

In Nigeria, funding is the main issue facing forestry data. There is much talk about this issue; however, not much action is being taken. Resources are not distributed properly for the needed data collection. Lastly, the technological equipment needed for proper data collection is not yet available in the region (Ohagwua 2011).

6.2.6.2 Public attitude and opinions

The public of the country perceives the government of Nigeria as very self-serving and calculated. As a result, the public is not in favor of having their concerns heard since it is believed the government misconstrues them. Overall, the poor attitude of the public needs to be improved if various forest sector statistics are to be successfully collected and interpreted (Ohagwua 2011).

6.2.6.3 Poor communication

In conjunction with the lack of funding, poor communication does not allow for information to be shared among various groups of people. If there was greater coordination among the various parties who collect forestry statistics, it is likely that collecting various statistics would be easier. Currently, some effort is being put forth by various organizations within the country; however, there are few results to show for it (Ohagwua 2011).

6.2.7 Bamboo

Bamboo is a subfamily of tall tree-like grasses with over 1,400 species, and it is located in tropical, subtropical, and mild temperate regions. It is a fast-growing plant, which grows in clusters and consists of woody ringed stems called culms, which are typically hollow. Bamboo has a wide range of uses, and some of the structural purposes of bamboo include planks for
houses and rafts, scaffoldings, and flooring. Bamboo is more advantageous than wood, as bamboo can be gathered within 3–5 years of planting, whereas wood can only be gathered within 10–30 years (Atanda 2015).

In its current state, Nigeria does not utilize the native bamboo resources properly. The country is highly dependent on wood, which is depleting the wood amounts within the country. As a result, it will become necessary for bamboo to be utilized as a building material to counteract Nigeria’s high rate of wood exploitation. There are abundant amounts of bamboo available in Nigeria due to it not being utilized as a construction material. Figure 101 demonstrates the regions in Nigeria where bamboo is available (Atanda 2015).

As a result of the lack of dependence on bamboo, few to none of the companies in the region are distributors of bamboo for construction purposes. Although bamboo is currently not a widely used construction material, a sustainable environment in Nigeria will only be achieved through the added use of bamboo as a construction material. There is a large amount of bamboo available in the country, and it is plausible for the material to be utilized as a construction material in Nigeria. Currently, not much research is being conducted on the bamboo industry in Nigeria, and more is needed to determine the true state of bamboo within the country (Atanda 2015).
Figure 101. Bamboo availability in Nigeria (Atanda 2015).
7 Steel

7.1 Industry

7.1.1 Global scenario

The rise of steel for construction purposes began in the 1850s. Since its emergence as a construction material since that time period, steel has been a vital component of the world’s economy. Henry Bessemer’s process of forming steel allowed for the cost to become much more affordable, making it a widely used construction material throughout the world. A country’s steel industry is the core industry (Nigeria 2014). Such an industry produces a wide variety of products, and consumers input various elements as well. In the 20th century, global steel production grew significantly, from 30.9 million tons at the beginning of the 20th century to 860.9 million tons at the end. Throughout the 20th century, production of crude steel also has increased very rapidly, approaching a production level of 1.8 billion tons per year. Today, it is difficult to imagine a world without steel (Darity 2008).

7.1.2 Background

Although Nigeria is a developing country, there is a steel industry present in the country. Initial planning for a steel industry within Nigeria began around 1958. Under the Federal Ministry of Industries, various companies were brought in to determine the feasibility of operating large-scale steel plants. The Nigerian Steel Development Authority (NSDA) was created in 1971 with the goal of heading the efforts to actualize a steel plant, which was operational by 1983 (Ajayi 2014). Nigeria has yet to efficiently start exploiting the steel industry in terms of revenue within the country. For example, Nigeria’s steel consumption per capita is only 10 kg, compared to the world average of 150 kg (Nigeria 2014). Despite this low consumption and based on numerous studies, there is the capability for the steel industry to succeed in Nigeria (Obikwelu 2012).

7.1.3 Regionalism and competitiveness

The steel industry in Nigeria is not one that is highly competitive yet (Obikwelu 2012). This is due to the lack of infrastructure needed for companies to compete against each other. Despite this, the 2014 Nigeria Industrial Revolution Plan (NIRP) aims to create a highly competitive steel industry within the country. Currently the country of Nigeria specializes in the
production of the raw materials needed for steel production, and the country exports those materials. The NIRP states that “history shows that no country has ever become rich by exporting raw materials without also having an industrial sector, and in modern terms an advanced services sector. The more a country specializes in the production of raw materials only, the poorer it becomes.” Thus, part of the plan is to create a highly regional and competitive market (Nigeria 2014).

Since the creation of Nigeria’s steel industry in the late 1950s, the sector has failed to adapt as necessary, leading it to lack the needed economic growth and development. Overall, the industry does not have the basic infrastructure in place for steel and iron. Along with this, there are not enough skilled workers to allow for true competitiveness in the industry. Consequently, the sector is unable to attract the necessary investment for economic growth and remains a small player in the economy. Despite this, Nigerians are optimistic of their steel industry’s future (Nigeria 2014).

7.1.4 Steel producers – Nigeria

As a result of the NIRP, the country’s steel industry has grown tremendously compared to the mid-2000s. Based on various news reports, more than 21 functional steel mills and 22 steel companies have been established as a result of the growing Nigerian steel industry (Aluko 2015).

7.1.4.1 Various steel producers in Nigeria

The following companies are newly created steel companies in Nigeria that only have available the information provided in Table 5. The various locations of these mills are depicted in Figure 102 (integrated mills), Figure 103 (rolling mills – 1), Figure 104 (rolling mills – 2), and Figure 105 (mini mills).

<table>
<thead>
<tr>
<th>Type of Mill</th>
<th>Company</th>
<th>Location</th>
<th>Rolling Capacity (tons per annum)</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated Mill</td>
<td>Ajaokuta Steel Co. Ltd.</td>
<td>Ajaokuta</td>
<td>540,000</td>
<td>Bars, rods, light sections</td>
</tr>
<tr>
<td>Integrated Mill</td>
<td>Delta Steel Co.</td>
<td>Aladja-Owian</td>
<td>320,000</td>
<td>Bars, rods, sections</td>
</tr>
<tr>
<td>Rolling Mill</td>
<td>Alliance Steel Co.</td>
<td>Ibadan</td>
<td>20,000</td>
<td>Bars</td>
</tr>
<tr>
<td>Rolling Mill</td>
<td>Alliance Steel Co.</td>
<td>Onitsha</td>
<td>20,000</td>
<td>Bars</td>
</tr>
<tr>
<td>Type of Mill</td>
<td>Company</td>
<td>Location</td>
<td>Rolling Capacity (tons per annum)</td>
<td>Products</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>----------------</td>
<td>----------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Rolling Mill</td>
<td>Asiatic Manarin Ind.</td>
<td>Ikeja</td>
<td>60,000</td>
<td>Bars, sections</td>
</tr>
<tr>
<td>Rolling Mill</td>
<td>Jos Steel Rolling Company</td>
<td>Jos</td>
<td>210,000</td>
<td>Bars, rods</td>
</tr>
<tr>
<td>Rolling Mill</td>
<td>Kastina Steel Rolling Co.</td>
<td>Kastina</td>
<td>210,000</td>
<td>Bars, rods</td>
</tr>
<tr>
<td>Rolling Mill</td>
<td>Kwara Commercial, Metal and Chemical Industries</td>
<td>Ilorin</td>
<td>40,000</td>
<td>Bars</td>
</tr>
<tr>
<td>Rolling Mill</td>
<td>Mayor Eng. Co.</td>
<td>Ikorodu</td>
<td>220,000</td>
<td>Bars, sections</td>
</tr>
<tr>
<td>Rolling Mill</td>
<td>Metcombe Steel Co.</td>
<td>Owerri</td>
<td>10,000</td>
<td>Bars, sections</td>
</tr>
<tr>
<td>Rolling Mill</td>
<td>Dangote Steel (formerly Oshogbo Steel Co.)</td>
<td>Oshogbo</td>
<td>400,000</td>
<td>Bars, rods</td>
</tr>
<tr>
<td>Rolling Mill</td>
<td>Qua Steel Products</td>
<td>Eket</td>
<td>600,000</td>
<td>Bars, sections</td>
</tr>
<tr>
<td>Rolling Mill</td>
<td>Selsametal</td>
<td>Otta</td>
<td>100,000</td>
<td>Bars</td>
</tr>
<tr>
<td>Rolling Mill</td>
<td>Union Steel Co.</td>
<td>Ilorin</td>
<td>20,000</td>
<td>Bars</td>
</tr>
<tr>
<td>Rolling Mill</td>
<td>Baoyao Futurelex</td>
<td>Abuja</td>
<td>20,000</td>
<td>Bars</td>
</tr>
<tr>
<td>Mini Mill</td>
<td>Federated Steel Industry</td>
<td>Otta</td>
<td>140,000</td>
<td>Bars, sections</td>
</tr>
<tr>
<td>Mini Mill</td>
<td>General Steel Mill</td>
<td>Asaba</td>
<td>50,000</td>
<td>Bars</td>
</tr>
<tr>
<td>Mini Mill</td>
<td>Universal Steel Co.</td>
<td>Ikeja</td>
<td>80,000</td>
<td>Bars, sections</td>
</tr>
<tr>
<td>Mini Mill</td>
<td>Nigerian Spanish Eng. Co.</td>
<td>Kano</td>
<td>100,000</td>
<td>Bars</td>
</tr>
<tr>
<td>Mini Mill</td>
<td>Nigersteel Co.</td>
<td>Enugu</td>
<td>40,000</td>
<td>Bars, sections</td>
</tr>
<tr>
<td>Mini Mill</td>
<td>Continental Iron & Steel Co.</td>
<td>Ikeja</td>
<td>150,000</td>
<td>Bars, sections</td>
</tr>
<tr>
<td>Mini Mill</td>
<td>Kew Metal Industries</td>
<td>Ikorodu</td>
<td>20,000</td>
<td>Bars, sections</td>
</tr>
</tbody>
</table>
Figure 102. Integrated mill locations in Nigeria (Google Maps, 2016).

Figure 103. Rolling mill locations - 1 in Nigeria (Google Maps, 2016).
Figure 104. Rolling mill locations - 2 in Nigeria (Google Maps, 2016).

1. Maiduguri, Nigeria
2. Ibadan, Nigeria
3. Onitsha 430, Nigeria
4. Ikeja, Nigeria
5. Jos, Nigeria
6. Katsina, Nigeria
7. Ilorin, Nigeria
8. Ikorodu, Nigeria
9. Owerri, Nigeria
10. Osogbo, Nigeria
11. Eket, Nigeria
12. Otta, Nigeria
13. Abuja, Nigeria

Figure 105. Mini mill locations in Nigeria (Google Maps, 2016).

1. Maiduguri, Nigeria
2. Otta, Nigeria
3. Asaba, Nigeria
4. Ikeja, Nigeria
5. Kano, Nigeria
6. Enugu, Nigeria
7. Ikorodu, Nigeria
7.1.4.2 Ajaokuta Steel Company Limited

Ajaokuta Steel Company (from Table 5) is located in Ajaokuta, Nigeria. The company has an integrated steel plant on 800 ha of land. For steel production, the company uses blast furnace—basic oxygen furnace technology. The company produces 1.3 million MTPA of steel, with plans to increase its capacity to 2.6 MTPA in the near future and to 5.2 MTPA after that. The company produces wire rod (5.5–12 mm) and rebar (8–30 mm). Ajaokuta Steel Company also has a billet mill (795,000 tons per annum [TPA]), wire rod mill (130,000 TPA), light section mill (400,000 TPA), and medium section and structural mills (560,000 TPA). The company also has a thermal power plant on site that can produce a total of 110 mega Watt (mW) from 2 generators of 55 mW each. The type of steel the company produces from each of the mills is further expanded below (“Ajaokuta Steel”).

- **Billet Mill**
 - 100 x 100 mm

- **Wire Rod Mill**
 - Wire rods of size between 5.5 mm to 12.5 mm
 - Rebars of size between 6.0 mm to 12 mm

- **Light Section Mill**
 - Plain and rebar: 10–30 mm
 - Squares: 10–30 mm
 - Hexagons: 10–14 mm and 20–26 mm
 - Angles: 25 x 25 to 50 x 50 mm in thickness, between 3 – 6 mm
 - Channels: 30–45 mm
 - T-sections: 30–60 mm
 - Strips: 6–12 mm (tall) x 12–70 mm (wide)

- **Medium Section and Structural Mill**
 - I beams: 80–300 mm
 - Channels: 80–300 mm
 - Equal angles: 70 x 70 mm–130 x 130 mm
 - Unequal angles: 50 x 80 mm and 100 x 160 mm
 - Flats: 70–150 mm (width) x 10–20 mm (thickness)

7.1.4.3 Dangote Steel

Dangote Steel acquired the assets of Oshogbo Steel Rolling Mills (from Table 5). The company has upgraded the production capacity from 210,000 to 400,000 TPA. Currently the company operates as a rolling mill and produces steel bars and rods. These products include mild steel (MS) and high
tensile (HT) ribbed bars from billets, plain bars, and rebar (“Dangote Steel”).

7.1.4.4 TOP Steel Nigeria Limited

TOP Steel Nigeria Limited (TSNL) is a 100% wholly owned subsidiary of Top Metals Limited, with its manufacturing unit located at Lagos, Nigeria. The company has an integrated steel plant with rolling capacity of 219,000 TPA. Also, TSNL operates the following facilities: steel melting shop, continuous casting machine, high-speed rolling mill, 132/33 kV substation, oxygen / nitrogen plant, argon oxygen decarburization (AOD) plant (“TOP Steel”).

7.1.4.5 Nigeria Gas and Steel Ltd

Nigeria Gas and Steel Ltd. is located in the Oregun Industrial Estate in Ikeja, Lagos, Nigeria. Currently, the company operates at a capacity of 30,000 TPA, with an installed capacity of 72,000 TPA. The products the company specializes in include steel tubes and hollow structural sections (HSS), which are available in round, square, and rectangular sections, with a broad range of sizes and thicknesses (“Nigeria Gas and Steel Ltd”).

7.2 Product

7.2.1 Codes, standards, and methods

In past years, there has not been a great deal of information regarding the codes, standards, and methods for steel production and distribution (Ajayi 2014). This resulted from a very weak steel industry and very few companies that were manufacturing steel products in the country. Currently, with the help of the NIRP, the country is trying to create a prosperous steel industry to industrialize the country. As a result, the Nigerian government plans to enforce international steel production measurement standards. For example, the government of Nigeria is currently assisting the country’s Ministry of Mines to help various mineral deposits meet Joint Ore Reserves Committee (JORC) standards (NIRP 2014). The JORC codes are the Australasian professional code of practice that sets minimum standards for public reporting of exploration results, mineral resources, and ore reserves (“JORC”). There are various Nigeria codes in place for steel production and testing; however, it has been determined that many concerns of these codes are being cut in order to save on costs. These codes include: “Methods of Testing of Steel” (NIS 199: 1984), “Standards for Iron and

As of 8 March 2016, various Nigeria news outlets, including “This Day Live,” began reporting that the SON has stated it plans to introduce stricter measures on erring steel and iron producers who fail to meet the minimum requirement of the NIS; however, these measures have yet to be determined (“SON to Enforce” 2016).

7.2.2 Ore reserves

Nigeria has almost 3.3 billion tons of iron ores located in six fields throughout the country: Agbaja, Itakpe, Ajabanoko, Chokochoko, Agbade-Okudu, and Nsude Hills. Along with these proven ore deposits, there are other deposits currently under investigation. The iron content of the proven ore reserves is in the range of 36%–54%. Of the six Nigerian iron ore fields, thus far only Itakpe (with an iron content of 36%) has been developed (Ohimain 2014). The Nigeria National Iron Ore Mining Company Ltd, which is located at the Itakpe ore deposit, was designed to supply iron ore to both of the integrated mills in Nigeria, Ajaokuta Steel Company and Delta Steel Company. In turn, the Nigeria National Iron Ore Mining Company hopes to supply billets to rolling mills in the country as well (Nigeria 2014). Table 6 provides information about the ore deposits within Nigeria. The various locations are depicted in Figure 106.

<table>
<thead>
<tr>
<th>Location</th>
<th>Iron Content (%)</th>
<th>Reserves (million tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agbaja</td>
<td>45–54</td>
<td>2204.6</td>
</tr>
<tr>
<td>Itakpe</td>
<td>36</td>
<td>220.5</td>
</tr>
<tr>
<td>Ajabanoko (Kogi State)</td>
<td>35.61</td>
<td>68.9</td>
</tr>
<tr>
<td>Chokochoko</td>
<td>37.43</td>
<td>77.2</td>
</tr>
<tr>
<td>Agbade-Okudu</td>
<td>37.43</td>
<td>77.2</td>
</tr>
<tr>
<td>Nsude Hills</td>
<td>37.43</td>
<td>66.1</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>2714.4</td>
</tr>
</tbody>
</table>
7.2.3 Steel types

Based on the NIRP, there are various products included in the scope of production for the country. These products include: blooms, billets, sheet metal, plates, bars, rods, wire, and structural frames. Along with this, the NIRP scope aims to focus the country on smelting, hot rolled products, cold rolled products, and local distribution (Nigeria 2014).

7.2.4 Mill types

There are three different types of mills in Nigeria: integrated, rolling, and mini mills.

- **Integrated Mills**: These mills have all the functions for primary steel production including iron making, steelmaking, casting, roughing/billet rolling, and product rolling. The principal raw materials for an integrated mill are iron ore, limestone, and coal (or coke).
- **Rolling Mills**: Rolling mills are metal-forming locations that process metal stock. This metal stock is passed through one or more pairs of rolls to reduce the thickness and to make the thickness uniform. Most
steel mills have rolling mill divisions that convert the semi-finished casting products into finished products.

- **Mini Mills**: A mini mill is traditionally a secondary steel producer that obtains most of its iron from scrap steel that is recycled from used automobiles and equipment or from byproducts of manufacturing.

7.2.5 Steel constraints

There are many factors that have led to the current state of the steel industry in Nigeria, including lack of will, unnecessary linkages, and improper feasibility work (Obikwelu 2012).

7.2.5.1 Lack of will

In Nigeria, there is currently a lack of will to thrive as a major player in the worldwide steel industry. Because not much is known about steel processing or manufacturing in the country, companies and individuals are reluctant to join the steel industry (Obikwelu 2012).

7.2.5.2 Unnecessary linkages

There are various unnecessary linkages for nontechnical reasons that cause poor operation of the steel plants in Nigeria. Various companies believe that they must manufacture all things steel in order to be competitive, when in reality, it would be better for some companies to focus on one type of product (Obikwelu 2012).

7.2.5.3 Improper feasibility work

Many Nigerians believe that the initial feasibility work was improperly conducted. One of the main feasibility studies was conducted with the intent to import over 70% of the raw materials needed for steel production. Some Nigerians now believe that this intent was improperly recommended, as the country is struggling with importing the necessary materials (Obikwelu 2012).

7.2.6 Steel goals of Nigerian Industrial Revolution Plan

There are various goals that are laid out in the NIRP for how Nigeria will be able to create a thriving steel industry. These goals include: investment promotion downstream (with gradual backward integration upstream),
prove up mineral resources, reduce exportation of scrap metal, and create clusters of steel companies.

7.2.6.1 Investment promotion downstream

Nigeria plans to promote very strategic investments in large-scale downstream rolling mills (cold- and hot-rolled) that are near known mineral deposits and/or near port areas, in order to make steel processing and distribution more viable. Also, the NIRP plans to assist the key players who have a large, installed, cold-rolling mill capacity integrate backwards to a hot-rolled process. Once this integration is complete, the final phase is to integrate the smelting process (Nigeria 2014).

7.2.6.2 Prove up mineral resources

The government of Nigeria plans to work with the country’s Ministry of Mines to bring the key mineral deposits for steel production up to international measurement standards (JORC standards). Lastly, the NIRP hopes to engage existing downstream steel companies with investment packages that link proven deposits to their existing operations to help meet international standards (Nigeria 2014).

7.2.6.3 Reduce exports of scrap metal

The third goal of the NIRP for increasing the viability of the steel industry is focusing on reducing exportation of scrap metal. The NIRP plans to review various methods the government currently uses for enforcing restrictions on scrap metal and steel exportation. The Nigerian government plans to integrate various Nigerian ministries to ensure that restrictions are properly implemented (Nigeria 2014).

7.2.6.4 Create steel clusters

As a medium- to long-term goal, the NIRP aims to create various clusters of steel companies throughout the country. The NIRP plans to centralize new players in the steel industry around specific industrial cities (clusters and zones) in each of Nigeria’s geopolitical zones. The NIRP hopes to create at least eight of these type of industrial cities. By doing so, the NIRP hopes to ensure that infrastructure will be shared, to lower operating costs. Since the steel industry is energy-intensive, the NIRP also plans to focus on developing gas infrastructure around these industrial cities, to meet the industry’s energy demands (Nigeria 2014).
8 Masonry units: block and brick

8.1 Industry

8.1.1 Global scenario

Brick is one of the oldest building materials in the world and continues to be the most popular and leading construction material in developing regions because of being cheap, along with other properties. Bricks are also chosen for their attractive appearance and superior properties such as: high compressive strength and durability, excellent fire and weather resistance, good thermal and sound insulation, and being easy to handle and work with (Jock et al. 2013).

Concrete blocks are becoming increasingly more popular throughout the world, including in developing nations, and the production of these construction materials is becoming the backbone of infrastructural development in almost every country worldwide. Concrete is one of the most widely used construction materials in the world, making the production of concrete blocks easier. The raw materials used to prepare concrete blocks include cement and aggregates. Aggregates are usually cheaper than cement, and aggregates constitute over 70% the volume of concrete (Apebo 2013).

8.1.2 Background

A survey done on raw materials research and development by the Council of Nigeria looked at the types of block/brick available for construction purposes within Nigeria. These construction materials include: cement/lime stabilized bricks/blocks, sundried soil (adobe) blocks, burnt clay bricks/blocks, cast in-situ walls, rice husk ash (RHA), mud and straw, and lime and stonecrete blocks (Sholanke 2015).

A brick is typically used to denote any rectangular unit that is laid in mortar. There are two main types of brick-like products used in the construction industry: clay bricks and concrete blocks (the latter also known as concrete masonry unit [CMU]). Clay bricks are a building material used to make walls and other masonry construction elements. Conversely, concrete blocks are brick-like; however, blocks are larger in nature.

Clay bricks are those that are fired upon formation to create the brick. These bricks are typically red or maroon in color due to the materials used
to make them. These bricks are one of the strongest and longest-lasting building materials. Clay bricks have been used longer than other brick types. There are also air-dried bricks (mudbricks) used for construction purposes; however, these are typically weaker than fired bricks.

Concrete blocks are grey in color as a result of the concrete used in their manufacture. These products mainly began being used in the construction industry in the early to mid-1900s. Concrete blocks are typically used for walls (foundation, basement, partition, exterior, and cavity). This construction material is durable, easy to install, fireproof, inexpensive, lightweight, low maintenance, and can be ornamented.\(^{17}\) Another type of concrete block is yellow-white in color and known as sandcrete block, which is comprised of natural sand, water, and binder. In Nigeria, 95% of wall materials for building construction are made of sandcrete blocks (Jock et al. 2013).

8.1.3 Regionalism and competitiveness

As a result of the high level of poverty among West African countries such as Nigeria, blocks and bricks are one of the most widely used and accepted construction materials in the country. These materials are used widely across the country in order to minimize the cost of construction works (Sholanke 2015). Along with this high rate of use, the block and brick manufacturing and distribution industry is one of the largest production sectors of the construction industry in Nigeria (Jock et al. 2013).

Practically every local government area (LGA) in Nigeria has one or more small- or large-scale block/brick production factories, because block production is a profitable business if properly managed. At present, numerous block molding firms have started operations within Nigeria to meet the requirements of construction and infrastructural development, because there are no set guidelines for who is qualified to produce blocks for use in Nigeria (Sholanke 2015).

8.1.4 Brick producers – Nigeria

There are various large-scale brick producers in Nigeria. In general, these producers are located around major clay deposits. There are roughly 10 brick-producing areas in the country (Figure 107) (Otoko 2014).

Figure 107. Brick plants in Nigeria (Google Maps, 2016).\(^\text{18}\)

The clay brick site locations are generally located around the principal clay deposits in Nigeria, which are listed in Table 7.

<table>
<thead>
<tr>
<th>State</th>
<th>Location of Principal Deposits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benue and Plateau State</td>
<td>Jos, Ropp and Markurdi areas</td>
</tr>
<tr>
<td>Imo, Ebonyi, Enugu and Anambra States</td>
<td>Enugu, Ezi Akwu, Ekwe and Agbahara</td>
</tr>
<tr>
<td>Kano State</td>
<td>Kano and Rimi areas</td>
</tr>
<tr>
<td>Lagos State</td>
<td>Epe, Ikorodu and Badagry areas</td>
</tr>
<tr>
<td>Edo and Delta States</td>
<td>Benin city, Sapele and Ugheli areas</td>
</tr>
<tr>
<td>Borno State</td>
<td>Maiduguri and Gombe areas</td>
</tr>
<tr>
<td>Sokoto State</td>
<td>Sokoto and Kuban village</td>
</tr>
</tbody>
</table>

\(^\text{18}\) Each point represents a brick planted operated by: red – Nigerian Mining Cooperation and private entrepreneurs, green – Nigerian Mining Cooperation, and blue – private entrepreneurs.
8.1.5 **Block producers – Nigeria**

Block producers in Nigeria can be categorized into private and commercial producers (Sholanke 2015).

Private-Use Producers. Private-use producers are those who produce blocks strictly for private use. Some clients and contractors engage in the business of making blocks for private use on their buildings and infrastructural projects. These clients and building contractors employ block makers and provide them with materials and all other necessary logistics to produce the block requirement of their projects for the purpose of ensuring quality and reducing cost. Such blocks are usually produced on the project site. On small projects the manual method of mixing and molding are predominately used while on large-scale projects mixers and block molding machines are employed (Sholanke 2015).

Commercial Producers. Commercial producers include both small- and large-scale producers. Small-scale producers use manual methods of mixing and molding, while large-scale producers employ mixers and block molding machines. Commercial block production customers are people who could not produce block on their own (Sholanke 2015).

Because the block molding industry is one of the largest production sectors of the construction industry in Nigeria, it is difficult to pinpoint exact locations of either private-use or commercial producers. Many of these locations are scattered throughout the country. Due to the lucrative nature of block production, virtually every LGA has one or more small- or large-scale block production factories (Sholanke 2015).

8.2 **Product**

8.2.1 **Codes, standards, and methods**

As the following information will depict, the government has enacted adequate laws and guidelines to standardize and regulate production of blocks and brick to ensure quality; however, there are little or no practical
measures in place to ensure that block manufacturers adhere to such guidelines. The responsibility of making sure that blocks to be used for construction purposes in Nigeria are of good quality falls on the relevant supervisory professionals on the respective projects (Sholanke 2015).

According the first edition of the National Building Code of the Federal Republic of Nigeria (Nigeria 2006), there are the following stipulations for sandcrete block manufacturing in country:

- **Sandcrete Blocks**: a composite material made up of cement, sharp sand, and water.
 - Blocks shall be molded for sandcrete using metal (wood) molds of:
 * 450 mm x 225 mm x 150 mm
 * 450 mm x 225 mm x 225 mm
 * 450 mm x 225 mm x 100 mm
 - Blocks are usually joined by mortar, which is a rich mix of sandcrete.
- **Aggregate**: includes both coarse and fine aggregate, from natural sources, blast furnace slag, crushed clay and furnace clinker.
- **Sand**: shall be of approved clean, sharp, fresh water or pit sand, free from clay, loam, dirt, organic or saline water of any description and shall mainly pass 4.70 mm test sieve. If lagoon sand is used this must be properly washed to the approval of the supervisor.
- **Mix Proportion**: Mix used for blocks shall not be richer than 1 part by volume of cement to 6 parts of fine aggregate (sand) except that the proportion of cement to mix-aggregate may be reduced to 1:4 1/2 (Where the thickness of the web of the block is one 25 mm or less).
- **Strength Requirements**: Sandcrete blocks shall possess resistance to crushing as stated below and the 28-day compressive strength for a load-bearing wall of two or three story building shall not be less than: average strength of 6 blocks, lowest strength of individual block 2.00 N/mm² (300 psi), 1.75 N/mm² (250 psi).
- **Molding**: The 28-day compressive strength of a sandcrete block for load bearing wall of two or three story buildings shall not be less than the values given above and shall comply with the existing NIS specification for sandcrete blocks.
- **Compaction**: Two methods to be applied, depending on the availability of materials (tools), are by:
 - approval (standard) machine compaction, or
 - metal mold (hand) compaction.
• Production/Processing: The sandcrete block shall be cast using an appropriate machine with cement/sand ratio of 1:6 measured by volume. Where hand mixing is carried out, the materials shall be mixed until an even color and consistency throughout is attained. The measure shall be further mixed and water added through a fire hose in such sufficient quantity as to secure adhesion. It shall then be well rammed into molds and smoothed off with a steel face tool

• Curing: After removal from machine, the blocks shall be left on pallets under cover in separate rolls, one block high, with a space between each block for at least 24 hours, and kept wet by weathering through a fire watering hose. The blocks may then be removed from the pallets, and the blocks may be stacked (during which time the blocks shall be kept wet). The blocks may be stacked not more than 5 blocks high under cover at least seven (7) days before use after the previous period.

• Physical Requirement: Special sizes and shapes of blocks and bricks—11.25 mm (i.e., 4 ½ in.) thick or less shall be solid with grove and tongued joints. Blocks of thickness greater than 11.25 mm (i.e., 4 ½ in.) shall be hollow or used above damp-proof course. Hollow blocks shall be more than 50 mm thick. Hollow blocks shall be used only where vertical steel reinforcement is to be fixed.

As previously mentioned, there are no set guidelines for who is qualified to produce blocks/bricks for use in Nigeria. The quality of blocks and bricks in the country is inconsistent as a result of the different production techniques utilized by various producers. Along with this production inconsistency, the properties of the constituent materials used also can significantly alter the structural capacity of a particular block/brick. In Nigeria, there is not a specific standard for sizes and weights of block/brick materials. As such, these materials are of sizes and weights that can be easily handled by bricklayers, with the facing surface layer than that of a brick but conveniently dimensioned (Sholanke 2015).

In many parts of Nigeria, the major cost components of the most common buildings are the sandcrete hollow blocks. These blocks are usually manufactured with the use of a vibrating machine. Lastly, in Nigeria, bricks are an alternative to sandcrete blocks; however, the clay suitable for making high-strength bricks is not available everywhere in Nigeria, and the clay bricks produced and presently used for construction in Nigeria are not uniform in quality (Sholanke 2015).
In order to improve the overall quality of blocks and bricks being used for construction purposes in Nigeria, the citizens of Nigeria believe that the government should begin to look more into block production practices in order to enhance quality, with the overall aim of reducing building collapse. Also, Nigerians believe that quality controls should be introduced to assist block producers to produce strong and durable blocks at minimum cost (Jock et al 2013). It is the general belief in Nigeria that government regulatory agencies need to take other necessary measures of ensuring quality such as requiring compressive tests on blocks from time to time as a mandatory quality control measure needed to secure a quarterly government certification that will enable them to continue in operation. Lastly, block manufacturing should not be left to people only in it for the business and who have no knowledge of the necessary block and brick characteristics (Sholanke 2015).

8.2.2 Operation

Brick-working facilities in Nigeria commonly operate in close proximity to nearby clay quarries in order to satisfy their needs for raw materials, and most facilities and quarries are owned and operated by the same company. The brick market in the country has been presented with significant changes as a result of the introduction of concrete blocks, as the blocks have begun to replace clay bricks for construction purposes (Apebo 2013). As a result of this change, the market has shifted, and clay bricks are now being used for aesthetic purposes in the country. Over the past seven years and into the present, over 90% of the demand and production of clay bricks are for aesthetic purposes (Jock et al. 2013).

8.2.3 Block and brick constraints

Many people in Nigeria accept the use of sandcrete blocks as a substitute to actual concrete blocks made with OPC. This acceptance results from the high cost of cement, which is used as a binder in actual concrete blocks. As such, producers of block in Nigeria produce blocks with low OPC content so that it is affordable to clients and helps reduce the overall cost of construction. The use of sandcrete blocks does not come without drawbacks, however. Improper use of sandcrete blocks in the country leads to microcracks of the blocks after construction. This cracking results in an increased amount of structural damage to a building, which has turned out to be problematic to the construction industry in Nigeria (Jock et al. 2013).
There are several other factors that are responsible for the deterioration and eventual failure of structures being built with block and brick in Nigeria. One of these problems is the use of poor quality blocks and bricks for construction purposes. Thus, it is important to ensure that the production of this major masonry unit is not only standardized but also regulated and adequately monitored to ensure quality (Sholanke 2015).
9 Construction Material Database

9.1 Purpose

A database of construction materials is a collection of information that identifies a site, the geographic location, and the characteristics of that site. The information on materials in the production of aggregate, cement, concrete, brick, steel, and lumber for Nigeria were implemented into a geodatabase to more easily picture, analyze, and comprehend patterns and relationships (Tables A7–A14 in this report’s appendix).

9.2 Categories

Each entry within the database is given 19 fields, which may be of a variable type string or number. Contents of the fields are described below.

9.2.1 Site identification

- *Company*: additional information about the name of the company that is most currently operating at the particular location will be included in case there are operations occurring at the site.
- *Site Name*: identifies the site by a title, which represents the name of the operation or deposit at the location. For instance, specific titles or descriptions of production facilities and corporate offices will be included.

9.2.2 Geographic location

- *Country*: name of the country in which the site is located.
- *City*: more in-depth political state, province, or territory within the country that the construction resource is located in.
- *Latitude*: geographic latitude of the site represented in decimal degrees and WGS84 Web Mercator projection.
- *Longitude*: geographic longitude of the site represented in decimal degrees and WGS84 Web Mercator projection.
- *Precision*: preciseness of the latitude-longitude location. This is defined by the following characters:
 - S: latitude-longitude coordinate pair that represents the exact site location.
 - A: approximate location of an individual site provided as a latitude-longitude coordinate pair, which may be represented by a region or city if limited information is available.
o C: cluster of sites to represent the characteristics of a region or city, represented as latitude-longitude coordinate pair.

9.2.3 Site characteristics

- **Construction resource**: commodity produced at the site, such as a deposit or resource, regardless of operation.
- **Product**: specific type of commodity produced at the site.
- **Industry type**: the type of operations occurring at the site including the following three categories:
 o *Seasonal*: variations exist in the production and/or consumption of the material based on the season.
 o *Cyclical*: variations exist in the production and/or consumption of the material based on business cycles.
 o *Regular*: no variations occur due to effects from either seasons of the year or the cyclical industry behavior effects, as outlined above.
- **Site type**: type of operation most currently existing at the site; these operational types include four different categories:
 o *Office*: corporate offices locations, which are an important part in the control and operations of processing. This category omits offices specifically for sales.
 o *Plant*: plants, factories, and other manufacturing sites where raw materials are transformed into the final product.
 o *Terminal*: terminals and shipping ports where the product is stored for future distribution as well as where the product is imported or exported.
 o *Deposit*: mines, natural resource, and other raw material deposits where raw materials are extracted or available for excavation.
- **Capacity**: amount of a commodity that is possible to produce at the plant for a given construction resource. This amount does not reflect the actual capacity, but rather is based on what is installed on site.
- **Units**: unit of measurement for facility’s capacity, if that is provided.
- **Employees**: exact or approximate number of workers at the site.
- **Quality**: grade of the product prepared at the plant.
- **Electric requirements**: electrical power used by the plant, represented in megawatts. Power may originate on-site or from the national grid.
- **Electric requirement source**: provides location where electricity originates from
- **Import**: source of imported materials to produce commodities, if imported.
- **Notes**: any additional and pertinent information about the site.
10 Conclusions and Recommendations

Construction of military facilities is one of the most important aspects of military missions, and this effort is designed to develop a GIS-based decision support tool to assist in siting FOBs in theater. In all, the availability of locally sourced materials and their suitability for supporting the military mission were analyzed for the Maiduguri, Nigeria, region. The methodology for that analysis took into account 19 different variables. Key factors included in the analysis and determination of materials and location included local materials accessibility, quality, and quantity; local transportation infrastructure; and population densities. This case study is unique due to Maiduguri’s relatively isolated high level of population and hostility in the region, and special care was taken to account for these factors. The effective proximity factor also allowed for the central locations of each construction resource within the respective regions to be determined and tied into each other. It was determined that brick is the most widely used and trusted construction material in the region.

Overall, this case study serves as an example of creating a materials database and methodology for a potentially hostile region. Every region will have a unique methodology; however, other regions can be adapted from this case study’s methodology.
(This page intentionally blank.)
References

http://jasper-wood-industry.wood-me.com/.

Appendix: Population Data and Construction Materials Database

The material provided in this appendix adds data of how the methodology was created in regard to the population of various cities. Table A1–Table A6 provide each of the Nigerian states in each region with corresponding population and area, which were used to calculate each region’s density.

Along with this information, the construction materials database is provided as a reference to the reader (Table A7–A12).

<table>
<thead>
<tr>
<th>State</th>
<th>Population</th>
<th>Area (sq. km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abuja</td>
<td>1,406,239</td>
<td>7,315</td>
</tr>
<tr>
<td>Kaduna</td>
<td>6,113,503</td>
<td>46,053</td>
</tr>
<tr>
<td>Kebbi</td>
<td>3,256,541</td>
<td>36,800</td>
</tr>
<tr>
<td>Niger</td>
<td>3,954,772</td>
<td>76,363</td>
</tr>
<tr>
<td>Sokoto</td>
<td>3,702,676</td>
<td>25,973</td>
</tr>
<tr>
<td>Zamfara</td>
<td>3,278,873</td>
<td>39,762</td>
</tr>
<tr>
<td>Region Total</td>
<td>21,712,604</td>
<td>232,266</td>
</tr>
</tbody>
</table>

Region 1 density (people/sq. km) = 93.5

Table A2. Region 2 – Southwest density (Nigeria Population Commission 2016).

<table>
<thead>
<tr>
<th>State</th>
<th>Population</th>
<th>Area (sq. km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bayelsa</td>
<td>1,704,515</td>
<td>10,773</td>
</tr>
<tr>
<td>Delta</td>
<td>4,112,445</td>
<td>17,698</td>
</tr>
<tr>
<td>Edo</td>
<td>3,233,366</td>
<td>17,802</td>
</tr>
<tr>
<td>Ekiti</td>
<td>2,398,957</td>
<td>6,353</td>
</tr>
<tr>
<td>Kogi</td>
<td>3,314,043</td>
<td>29,833</td>
</tr>
<tr>
<td>Kwara</td>
<td>2,365,353</td>
<td>36,825</td>
</tr>
<tr>
<td>Lagos</td>
<td>9,113,605</td>
<td>3,345</td>
</tr>
<tr>
<td>Ogun</td>
<td>3,751,140</td>
<td>16,792</td>
</tr>
<tr>
<td>Ondo</td>
<td>3,460,877</td>
<td>14,606</td>
</tr>
<tr>
<td>Osun</td>
<td>3,416,959</td>
<td>9,251</td>
</tr>
<tr>
<td>Oyo</td>
<td>5,580,894</td>
<td>28,454</td>
</tr>
<tr>
<td>Region Total</td>
<td>42,452,154</td>
<td>191,732</td>
</tr>
<tr>
<td>State</td>
<td>Population</td>
<td>Area (sq. km)</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Region 2 density (people/sq. km) = 221.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State</th>
<th>Population</th>
<th>Area (sq. km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bauchi</td>
<td>4,653,066</td>
<td>45,837</td>
</tr>
<tr>
<td>Gombe</td>
<td>2,365,040</td>
<td>18,768</td>
</tr>
<tr>
<td>Jigawa</td>
<td>4,361,002</td>
<td>23,154</td>
</tr>
<tr>
<td>Kano</td>
<td>9,401,288</td>
<td>20,131</td>
</tr>
<tr>
<td>Katsina</td>
<td>5,801,584</td>
<td>24,192</td>
</tr>
<tr>
<td>Plateau</td>
<td>3,206,531</td>
<td>30,913</td>
</tr>
<tr>
<td>Region Total</td>
<td>29,788,511</td>
<td>162,995</td>
</tr>
</tbody>
</table>

Region 3 density (people/sq. km) = 182.8

Table A4. Region 4 - Southcentral density (Nigeria Population Commission 2016).

<table>
<thead>
<tr>
<th>State</th>
<th>Population</th>
<th>Area (sq. km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abia</td>
<td>2,845,380</td>
<td>6,320</td>
</tr>
<tr>
<td>Akwa Ibom</td>
<td>3,902,051</td>
<td>7,081</td>
</tr>
<tr>
<td>Anambra</td>
<td>4,177,828</td>
<td>4,844</td>
</tr>
<tr>
<td>Benue</td>
<td>4,253,641</td>
<td>34,059</td>
</tr>
<tr>
<td>Cross River</td>
<td>2,892,988</td>
<td>20,156</td>
</tr>
<tr>
<td>Ebonyi</td>
<td>2,176,947</td>
<td>5,670</td>
</tr>
<tr>
<td>Enugu</td>
<td>3,267,837</td>
<td>7,161</td>
</tr>
<tr>
<td>Imo</td>
<td>3,927,563</td>
<td>5,530</td>
</tr>
<tr>
<td>Nasarawa</td>
<td>1,869,377</td>
<td>27,117</td>
</tr>
<tr>
<td>Rivers</td>
<td>5,198,716</td>
<td>11,077</td>
</tr>
<tr>
<td>Region Total</td>
<td>34,512,328</td>
<td>129,015</td>
</tr>
</tbody>
</table>

Region 4 density (people/sq. km) = 267.5

Table A5. Region 5 – Eastern density (Nigeria Population Commission 2016).

<table>
<thead>
<tr>
<th>State</th>
<th>Population</th>
<th>Area (sq. km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adamawa</td>
<td>3,178,950</td>
<td>36,917</td>
</tr>
<tr>
<td>Borno</td>
<td>4,171,104</td>
<td>70,898</td>
</tr>
<tr>
<td>Taraba</td>
<td>2,294,800</td>
<td>54,473</td>
</tr>
<tr>
<td>Yobe</td>
<td>2,321,339</td>
<td>45,502</td>
</tr>
<tr>
<td>Region Total</td>
<td>11,966,193</td>
<td>207,790</td>
</tr>
</tbody>
</table>

Region 5 density (people/sq. km) = 57.6

<table>
<thead>
<tr>
<th>Region</th>
<th>Population</th>
<th>Area (sq. km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lac</td>
<td>433,790</td>
<td>21,500</td>
</tr>
<tr>
<td>Chari-Baguirmi</td>
<td>578,425</td>
<td>47,000</td>
</tr>
<tr>
<td>Hadjer-Lamis</td>
<td>566,858</td>
<td>30,000</td>
</tr>
<tr>
<td>Mayo-Kebbi Est</td>
<td>774,782</td>
<td>18,350</td>
</tr>
<tr>
<td>N'Djamena</td>
<td>951,418</td>
<td>500</td>
</tr>
<tr>
<td>Region Total:</td>
<td>3,305,273</td>
<td>117,350</td>
</tr>
</tbody>
</table>

Region 6 density (people/sq. km) = 28.2
Table A7–Table A12 provide the Construction Materials Database, by material, for the region of Maiduguri, Nigeria. Refer to Section 9.2 for details about the information in each column. Some cells in some of the following tables have no information (blank) due to lack of availability of information and/or validation of information. Along with this, not all columns are the same for every table due to variability of existing information regarding each material. Each material’s construction material database was limited to contain only those columns that had information provided and thereby reducing the redundancy of several blank columns.

Table A7. Construction materials database — aggregate (ERDC-CERL).

<table>
<thead>
<tr>
<th>Country</th>
<th>City</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Precision*</th>
<th>Company</th>
<th>Product</th>
<th>Industry Type</th>
<th>Site Name</th>
<th>Site Type</th>
<th>Capacity (MTPA)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cameroon</td>
<td>Figuil</td>
<td>8.86</td>
<td>13.11</td>
<td>S</td>
<td>Cinencam</td>
<td>Limestone aggregate</td>
<td>Regular</td>
<td>Unconsolidated material</td>
<td>Mine</td>
<td>0.272</td>
<td></td>
</tr>
<tr>
<td>Chad</td>
<td>Chari</td>
<td>12.967</td>
<td>14.517</td>
<td>S</td>
<td>None</td>
<td>Coarse aggregate</td>
<td>Regular</td>
<td>Unconsolidated material</td>
<td>Mine</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Chad</td>
<td>Logone Rivers</td>
<td>12.967</td>
<td>14.517</td>
<td>S</td>
<td>None</td>
<td>Coarse aggregate</td>
<td>Regular</td>
<td>Unconsolidated material</td>
<td>Mine</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Chad</td>
<td>Louga</td>
<td>12.533</td>
<td>19.25</td>
<td>S</td>
<td>Société d’Exploitation Minière de Pala</td>
<td>Limestone aggregate</td>
<td>Regular</td>
<td>Unconsolidated material</td>
<td>Quarry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chad</td>
<td>Mani</td>
<td>12.733</td>
<td>14.683</td>
<td>S</td>
<td>Société Tchadienne d’Exploitation des Carrières</td>
<td>Crushed Stone</td>
<td>Regular</td>
<td>Dandi Quarry</td>
<td>Quarry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Adazi Nnukwu</td>
<td>6.10198</td>
<td>7.012367</td>
<td>A</td>
<td>Adazi Nnukwu Town Development Union</td>
<td>Sand</td>
<td>Regular</td>
<td>Unconsolidated material</td>
<td>Mine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Akampka</td>
<td>5.310394</td>
<td>8.36934</td>
<td>S</td>
<td>Julius Berger</td>
<td>Coarse aggregate</td>
<td>Regular</td>
<td>Akampka Quarry</td>
<td>Quarry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Akingbile Village</td>
<td>7.512747</td>
<td>3.912589</td>
<td>S</td>
<td>Reynolds Construction Company</td>
<td>Crushed aggregate</td>
<td>Regular</td>
<td>Ibadan Office</td>
<td>Office</td>
<td>Akingbile Village, Ibadan, Nigeria</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Aniocha</td>
<td>6.182404</td>
<td>6.525235</td>
<td>A</td>
<td>Anthony Chizea Holding</td>
<td>Sand</td>
<td>Regular</td>
<td>Unconsolidated material</td>
<td>Mine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Arochukwu</td>
<td>5.39411</td>
<td>7.903566</td>
<td>A</td>
<td>Reagan Renaissance Limited</td>
<td>Limestone aggregate</td>
<td>Regular</td>
<td>Arochukwu Quarry</td>
<td>Mine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td>City</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Precision</td>
<td>Company</td>
<td>Product</td>
<td>Industry Type</td>
<td>Site Name</td>
<td>Site Type</td>
<td>Capacity (MTPA)</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>------------</td>
<td>------------</td>
<td>-----------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>----------------</td>
<td>-----------------------</td>
<td>-----------</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Calabar</td>
<td>4.981725</td>
<td>8.324597</td>
<td>S</td>
<td>Macmahon</td>
<td>Limestone aggregate</td>
<td>Regular</td>
<td>Ekam Quarry</td>
<td>Quarry</td>
<td></td>
<td>No 1 Barracks Road, Nigon House, Calabar, Cross river</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Chanchanga</td>
<td>9.573678</td>
<td>6.661366</td>
<td>S</td>
<td>None</td>
<td>Fine aggregate</td>
<td>Regular</td>
<td>Unconsolidated material</td>
<td>Mine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Dogo</td>
<td>8.083583</td>
<td>11.217104</td>
<td>S</td>
<td>None</td>
<td>Fine aggregate</td>
<td>Regular</td>
<td>Unconsolidated material</td>
<td>Mine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Ebonyi</td>
<td>6.238736</td>
<td>8.027062</td>
<td>A</td>
<td>Ebonyi Cement Company</td>
<td>Limestone aggregate</td>
<td>Regular</td>
<td>Unconsolidated material</td>
<td>Mine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Ewekoro</td>
<td>6.93602</td>
<td>3.22247</td>
<td>S</td>
<td>Macmahon</td>
<td>Limestone aggregate</td>
<td>Regular</td>
<td>Ewekoro Quarry</td>
<td>Quarry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Ewekoro</td>
<td>6.935639</td>
<td>3.223329</td>
<td>A</td>
<td>Gateway Mining Company Limited</td>
<td>Limestone aggregate</td>
<td>Regular</td>
<td>Ewekoro Quarry</td>
<td>Mine</td>
<td></td>
<td>1 Toyibat Yusuf Adeniji St Medina Estate, Lagos</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Gusau</td>
<td>12.16239</td>
<td>6.674451</td>
<td>A</td>
<td>S. Pawa Quarry</td>
<td>Sand</td>
<td>Regular</td>
<td>Unconsolidated material</td>
<td>Mine</td>
<td></td>
<td>Zaria Rd, Zaria, Kaduna, Nigeria</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Gwada</td>
<td>9.766418</td>
<td>6.841847</td>
<td>S</td>
<td>None</td>
<td>Fine aggregate</td>
<td>Regular</td>
<td>Unconsolidated material</td>
<td>Mine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Ifo</td>
<td>6.818554</td>
<td>3.193005</td>
<td>A</td>
<td>Gateway Holdings Limited</td>
<td>River Sand</td>
<td>Regular</td>
<td>Unconsolidated material</td>
<td>Mine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Ijumu</td>
<td>7.566667</td>
<td>6.0833</td>
<td>S</td>
<td>Total Mining Limited</td>
<td>Limestone aggregate</td>
<td>Regular</td>
<td>Unconsolidated material</td>
<td>Mine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Jabi District</td>
<td>9.064319</td>
<td>7.426993</td>
<td>S</td>
<td>Reynolds Construction Company</td>
<td>Crushed Coarse aggregate</td>
<td>Regular</td>
<td>Head Office</td>
<td>Office</td>
<td></td>
<td>P.M. Box 5059, 28 Ebitu Ukiwe Street, Jabi District, Abuja FCT, Nigeria</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Kaduna</td>
<td>10.513122</td>
<td>7.414869</td>
<td>A</td>
<td>Total Mining Limited</td>
<td>Sand</td>
<td>Regular</td>
<td>Unconsolidated material</td>
<td>Mine</td>
<td></td>
<td>Multiple locations of sand deposits available in Kaduna</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Kodo</td>
<td>4.952367</td>
<td>8.34789</td>
<td>A</td>
<td>None</td>
<td>Fine aggregate</td>
<td>Regular</td>
<td>Unconsolidated material</td>
<td>Mine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td>City</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Precision</td>
<td>Company</td>
<td>Product</td>
<td>Industry Type</td>
<td>Site Name</td>
<td>Site Type</td>
<td>Capacity (MTPA)</td>
<td>Notes</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td>--</td>
<td>--------------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Maikunkele</td>
<td>9.68756</td>
<td>6.474902</td>
<td>S</td>
<td>None</td>
<td>Fine aggregate</td>
<td>Regular</td>
<td>Unconsolidated Material Mine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Maitama Abuja</td>
<td>9.059446</td>
<td>7.420269</td>
<td>S</td>
<td>PW Group</td>
<td>Coarse aggregate</td>
<td>Regular</td>
<td>PW Nigeria Limited Office</td>
<td></td>
<td></td>
<td>Plot 9, Outer Northern Expressway, Maitama Abuja, FCT</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Mpape</td>
<td>9.142213</td>
<td>7.48693</td>
<td>S</td>
<td>Julius Berger</td>
<td>Coarse aggregate</td>
<td>Regular</td>
<td>Mpape Quarry Quarry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Nkalagu</td>
<td>6.5167</td>
<td>7.8167</td>
<td>S</td>
<td>None</td>
<td>Limestone aggregate</td>
<td>Regular</td>
<td>Sedimentary Material Quarry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Ogbere</td>
<td>6.798683</td>
<td>3.896812</td>
<td>S</td>
<td>Julius Berger</td>
<td>Coarse aggregate</td>
<td>Regular</td>
<td>Ogbere Quarry Quarry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Okene</td>
<td>7.561608</td>
<td>6.243024</td>
<td>A</td>
<td>Total Mining Limited</td>
<td>Limestone aggregate</td>
<td>Regular</td>
<td>Unconsolidated Material Mine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Oko-Eko</td>
<td>6.534777</td>
<td>3.392708</td>
<td>A</td>
<td>Ratcon Construction Company Limited</td>
<td>aggregate</td>
<td>Regular</td>
<td>Unconsolidated Material Quarry</td>
<td></td>
<td></td>
<td>Oko-eko Village, Off Benin-Shagamu</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Orile</td>
<td>6.478429</td>
<td>3.34392</td>
<td>A</td>
<td>Ratcon Construction Company Limited</td>
<td>aggregate</td>
<td>Regular</td>
<td>Unconsolidated Material Quarry</td>
<td></td>
<td></td>
<td>Orile Quarry, Off Ibadan-Ijebu Ode Road, Orile Village, Ibadan, Oyo State.</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Paiko</td>
<td>9.435218</td>
<td>6.633854</td>
<td>S</td>
<td>None</td>
<td>Fine aggregate</td>
<td>Regular</td>
<td>Unconsolidated Material Mine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Port Harcourt</td>
<td>4.823385</td>
<td>6.955577</td>
<td>S</td>
<td>PW Group</td>
<td>Coarse aggregate</td>
<td>Regular</td>
<td>PW Marine Limited Office</td>
<td></td>
<td></td>
<td>Rumuolumeni, Port Harcourt, Rivers State, Nigeria</td>
</tr>
<tr>
<td>Country</td>
<td>City</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Precision*</td>
<td>Company</td>
<td>Industry Type</td>
<td>Site Name</td>
<td>Site Type</td>
<td>Capacity (MTPA)</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>----------------------------------</td>
<td>---------------</td>
<td>----------------------------------</td>
<td>-----------</td>
<td>----------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Pyata</td>
<td>6.554553</td>
<td>3.371022</td>
<td>A</td>
<td>None</td>
<td>Fine aggregate</td>
<td>Unconsolidated material</td>
<td>Mine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Shata</td>
<td>8.000567</td>
<td>7.843389</td>
<td>S</td>
<td>None</td>
<td>Fine aggregate</td>
<td>Unconsolidated material</td>
<td>Mine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Sokuro</td>
<td>7.353337</td>
<td>3.920161</td>
<td>A</td>
<td>Ratcon Construction Company Limited</td>
<td>Aggregate</td>
<td>Unconsolidated material</td>
<td>Quarry</td>
<td></td>
<td>Sokuro Village, KM. 7 Ibadan-Lagos Expressway, Near Toll-gate, Oyo State.</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Takuti</td>
<td>9.178251</td>
<td>6.541804</td>
<td>S</td>
<td>None</td>
<td>Fine aggregate</td>
<td>Unconsolidated material</td>
<td>Mine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Zaria</td>
<td>11.101</td>
<td>7.7023</td>
<td>S</td>
<td>None</td>
<td>Fine aggregate</td>
<td>Unconsolidated material</td>
<td>Quarry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Zaria</td>
<td>11.101</td>
<td>7.7023</td>
<td>S</td>
<td>None</td>
<td>Coarse aggregate</td>
<td>Unconsolidated material</td>
<td>Quarry</td>
<td></td>
<td>Granite Rock - Crushed Coarse Aggregate</td>
<td></td>
</tr>
</tbody>
</table>

S = exact site location; A = approximate site location; C = cluster of sites.

Table A8. Construction materials database — cement (ERDC-CERL).
<table>
<thead>
<tr>
<th>Country</th>
<th>City</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Precision</th>
<th>Company</th>
<th>Industry Type</th>
<th>Site Name</th>
<th>Site Type</th>
<th>Capacity (MTPA)</th>
<th>Electrical Requirement (mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cameroon</td>
<td>Douala</td>
<td>4.050969</td>
<td>9.761714</td>
<td>A</td>
<td>Ciments de L’Afrique Cameroun SA</td>
<td>Regular</td>
<td>Douala Cement Plant</td>
<td>Plant</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Cameroon</td>
<td>Figuil</td>
<td>9.76508</td>
<td>13.965506</td>
<td>S</td>
<td>Les Cimenteries du Cameroun (CIMENCAM)</td>
<td>Regular</td>
<td>Figuil Cement Plant</td>
<td>Plant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cameroon</td>
<td>Port of Douala</td>
<td>4.035733</td>
<td>9.677533</td>
<td>A</td>
<td>Dangote Cement</td>
<td>Regular</td>
<td>Cameroon Cement Plant</td>
<td>Plant</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Chad</td>
<td>Bissi Keda</td>
<td>10.842212</td>
<td>15.318028</td>
<td>A</td>
<td>Sonacine Usine</td>
<td>Regular</td>
<td>Sonacine Usine Plant</td>
<td>Plant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chad</td>
<td>Baoare</td>
<td>9.244954</td>
<td>14.419394</td>
<td>A</td>
<td>Chad Baoare Cement</td>
<td>Regular</td>
<td>Baoare Cement Plant</td>
<td>Plant</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Chad</td>
<td>N’Djamena</td>
<td>12.136657</td>
<td>15.050933</td>
<td>A</td>
<td>Ciment de l’Afrique</td>
<td>Regular</td>
<td>Chad Cement Plant</td>
<td>Plant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chad</td>
<td>N’Djamena</td>
<td>12.136657</td>
<td>15.050933</td>
<td>A</td>
<td>CIMENTCHAD</td>
<td>Regular</td>
<td>N’Djamena Cement Plant</td>
<td>Plant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chad</td>
<td>N’Djamena</td>
<td>12.136657</td>
<td>15.050933</td>
<td>A</td>
<td>Société Nationale de Cimenterie</td>
<td>Regular</td>
<td>Société Nationale de Cimenterie Plant</td>
<td>Plant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niger</td>
<td>Keita</td>
<td>14.839692</td>
<td>5.934818</td>
<td>A</td>
<td>Dangote Cement</td>
<td>Regular</td>
<td>Niger Cement Plant</td>
<td>Plant</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Niger</td>
<td>Malbaza</td>
<td>13.945</td>
<td>5.522</td>
<td>S</td>
<td>Société Nigérienne de Cimenterie S.A. (SNC)</td>
<td>Regular</td>
<td>Malbaza Cement Plant</td>
<td>Plant</td>
<td>0.037</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Aliko Inland</td>
<td>6.520251</td>
<td>3.370035</td>
<td>A</td>
<td>Dangote Cement</td>
<td>Regular</td>
<td>Aliko Inland Cement Terminal</td>
<td>Terminal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Arochukwu</td>
<td>5.39411</td>
<td>7.903566</td>
<td>A</td>
<td>Reagan Renaissance Ltd</td>
<td>Regular</td>
<td>Arochukwu Plant</td>
<td>Plant</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Ashaka</td>
<td>10.899</td>
<td>11.516</td>
<td>S</td>
<td>Lafarge Group</td>
<td>Regular</td>
<td>Ashanka Cement Co. Plc.</td>
<td>Plant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Benue</td>
<td>7.3323</td>
<td>8.7519</td>
<td>S</td>
<td>Dangote Cement</td>
<td>Regular</td>
<td>Benue Cement Company Plc Factory Estate</td>
<td>Office</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Benue</td>
<td>7.369361</td>
<td>9.036357</td>
<td>S</td>
<td>Dangote Cement</td>
<td>Regular</td>
<td>Benue Cement Company Limited</td>
<td>Plant</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Calabar</td>
<td>5.08321</td>
<td>8.51721</td>
<td>S</td>
<td>Lafarge Group</td>
<td>Regular</td>
<td>United Cement Company of Nigeria</td>
<td>Plant</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td>City</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Precision*</td>
<td>Company</td>
<td>Industry Type</td>
<td>Site Name</td>
<td>Site Type</td>
<td>Capacity (MTPA)</td>
<td>Electrical Requirement (mW)</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>---------------------------</td>
<td>---------------</td>
<td>-------------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Damaturu</td>
<td>11.747376</td>
<td>11.965355</td>
<td>A</td>
<td>Lafarge Group</td>
<td>Regular</td>
<td>AshakaCem Plc Branch</td>
<td>Plant</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Ewekoro</td>
<td>6.9</td>
<td>3.217</td>
<td>S</td>
<td>Lafarge Group</td>
<td>Regular</td>
<td>WAPCO Operations - Ewekoro Cement Plant</td>
<td>Plant</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Ibese</td>
<td>7.010005</td>
<td>3.049932</td>
<td>S</td>
<td>Dangote Cement</td>
<td>Regular</td>
<td>Dangote Cement PLC</td>
<td>Plant</td>
<td>12</td>
<td>111</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Ikeja</td>
<td>6.602178</td>
<td>3.350776</td>
<td>A</td>
<td>Lafarge Group</td>
<td>Regular</td>
<td>Lafarge Readymix</td>
<td>Nigeria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Itori</td>
<td>6.902786</td>
<td>3.207497</td>
<td>S</td>
<td>Lafarge Group</td>
<td>Regular</td>
<td>WAPCO Operations</td>
<td>Plant</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Kano</td>
<td>12.002467</td>
<td>8.542583</td>
<td>S</td>
<td>cement Company of Northern Nigeria Plc</td>
<td>Regular</td>
<td>Sokoto Cement</td>
<td>Plant</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Lagos</td>
<td>6.444831</td>
<td>3.42714</td>
<td>S</td>
<td>Dangote Cement</td>
<td>Regular</td>
<td>Dangote and Benue Cement Plant</td>
<td>Office</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Lagos</td>
<td>6.520251</td>
<td>3.370035</td>
<td>A</td>
<td>Dangote Cement</td>
<td>Regular</td>
<td>Lagos Cement Terminal</td>
<td>Terminal</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Lagos</td>
<td>6.520251</td>
<td>3.370035</td>
<td>A</td>
<td>Dangote Cement</td>
<td>Regular</td>
<td>Continental Cement Terminal</td>
<td>Terminal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Nkalagu</td>
<td>6.483</td>
<td>7.767</td>
<td>S</td>
<td>Nigeria Cement Co.</td>
<td>Regular</td>
<td>Nkalagu Cement</td>
<td>Plant</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Okpella</td>
<td>7.308956</td>
<td>6.371523</td>
<td>S</td>
<td>Bua Cement</td>
<td>Regular</td>
<td>BUA Cement OBU Plant</td>
<td>Plant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Onne</td>
<td>4.723528</td>
<td>7.151133</td>
<td>A</td>
<td>Dangote Cement</td>
<td>Regular</td>
<td>Onne Cement Terminal</td>
<td>Terminal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Port Harcourt</td>
<td>4.796967</td>
<td>6.94348</td>
<td>S</td>
<td>Eastern Bulkcem Company Limited</td>
<td>Regular</td>
<td>Eagle Cement</td>
<td>Plant</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Port Harcourt</td>
<td>4.813556</td>
<td>7.054485</td>
<td>A</td>
<td>Dangote Cement</td>
<td>Regular</td>
<td>Port Harcourt Cement Terminal</td>
<td>Terminal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Rivers</td>
<td>4.698606</td>
<td>7.158803</td>
<td>S</td>
<td>Lafarge Group</td>
<td>Regular</td>
<td>Atlas Cement</td>
<td>Plant</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Shagamu</td>
<td>6.831327</td>
<td>3.630466</td>
<td>A</td>
<td>Lafarge Group</td>
<td>Regular</td>
<td>WAPCO Operations</td>
<td>Office</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Shagamu</td>
<td>6.85</td>
<td>3.65</td>
<td>S</td>
<td>Lafarge Group</td>
<td>Regular</td>
<td>WAPCO Operations - Shagamu Cement Plant</td>
<td>Plant</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Sokoto</td>
<td>8.45</td>
<td>4.433</td>
<td>S</td>
<td>Cement Company of Northern Nigeria Plc</td>
<td>Regular</td>
<td>Kalambaina Plant</td>
<td>Plant</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td>City</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Precision*</td>
<td>Company</td>
<td>Industry Type</td>
<td>Site Name</td>
<td>Site Type</td>
<td>Capacity (MTPA)</td>
<td>Electric Requirement (mW)</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>----------------------------------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Victoria Island</td>
<td>6.430122</td>
<td>3.429885</td>
<td>S</td>
<td>Bua Cement</td>
<td>Regular</td>
<td>BUA Group Headquarters</td>
<td>Office</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S = exact site location; A = approximate site location; C = cluster of sites.

Table A9. Construction materials database — concrete (ERDC-CERL).

<table>
<thead>
<tr>
<th>Country</th>
<th>City</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Precision*</th>
<th>Company</th>
<th>Industry Type</th>
<th>Site Name</th>
<th>Site Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nigeria</td>
<td>Abuja</td>
<td>9.063677</td>
<td>7.338076</td>
<td>S</td>
<td>Lafarge Africa Plc</td>
<td>Regular</td>
<td>Abuja Plant</td>
<td>Plant</td>
<td>15 Ijora Causeway, Lagos, P.O. Box 3643</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Idu</td>
<td>9.06576</td>
<td>7.342269</td>
<td>S</td>
<td>Ogbebor Concrete Industries Ltd</td>
<td>Regular</td>
<td>Ogbebor Concrete Industries Ltd</td>
<td>Plant</td>
<td>27A, Rumens Street, off Bourdillon Road, Ikoyi, Lagos State, Nigeria</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Lagos</td>
<td>6.520251</td>
<td>3.370035</td>
<td>A</td>
<td>Lafarge Africa Plc</td>
<td>Regular</td>
<td>Lafarge ReadyMix Nigeria Corporate Office</td>
<td>Office</td>
<td>10 Western Industrial Avenue, Lagos-Ibadan Expressway Isheri, Lagos Ogun State 2340, Nigeria</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Lagos</td>
<td>6.520251</td>
<td>3.370035</td>
<td>A</td>
<td>Sika Group</td>
<td>Regular</td>
<td>Sika Manufacturing Nigeria Limited</td>
<td>Plant</td>
<td>10 Western Industrial Avenue, Lagos-Ibadan Expressway Isheri, Lagos Ogun State 2340, Nigeria</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Mushin</td>
<td>6.527278</td>
<td>3.354518</td>
<td>S</td>
<td>Nigerian Concrete Industries Ltd</td>
<td>Regular</td>
<td>Nigerian Concrete Industries Ltd</td>
<td>Plant</td>
<td>10 Western Industrial Avenue, Lagos-Ibadan Expressway Isheri, Lagos Ogun State 2340, Nigeria</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Ogun</td>
<td>6.89331</td>
<td>3.205589</td>
<td>S</td>
<td>Lafarge Africa Plc</td>
<td>Regular</td>
<td>Ewekoro Plant</td>
<td>Plant</td>
<td>10 Western Industrial Avenue, Lagos-Ibadan Expressway Isheri, Lagos Ogun State 2340, Nigeria</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Port Harcourt</td>
<td>4.707384</td>
<td>7.155041</td>
<td>S</td>
<td>Lafarge Africa Plc</td>
<td>Regular</td>
<td>Onne Plant</td>
<td>Plant</td>
<td>10 Western Industrial Avenue, Lagos-Ibadan Expressway Isheri, Lagos Ogun State 2340, Nigeria</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Rivers</td>
<td>4.957673</td>
<td>6.775339</td>
<td>A</td>
<td>Lafarge Africa Plc</td>
<td>Regular</td>
<td>Daewoo Plant</td>
<td>Plant</td>
<td>10 Western Industrial Avenue, Lagos-Ibadan Expressway Isheri, Lagos Ogun State 2340, Nigeria</td>
</tr>
<tr>
<td>Country</td>
<td>City</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Precision*</td>
<td>Company</td>
<td>Industry Type</td>
<td>Site Name</td>
<td>Site Type</td>
<td>Notes</td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>------------</td>
<td>---</td>
<td>------------------</td>
<td>--------------------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Utako</td>
<td>9.064781</td>
<td>7.447464</td>
<td>S</td>
<td>Julius Berger</td>
<td>Regular</td>
<td>Head Office</td>
<td>Plant</td>
<td>10 Shettima A. Munguno Crescent, Utako 900 108, FCT Abuja</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Victoria Island</td>
<td>6.43231</td>
<td>3.440494</td>
<td>S</td>
<td>Quick Mix Nigeria Ltd</td>
<td>Regular</td>
<td>QuickMix Nigeria</td>
<td>Plant</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Victoria Island</td>
<td>6.431306</td>
<td>3.426876</td>
<td>A</td>
<td>SPG Nigeria Limited</td>
<td>Regular</td>
<td>SPG Ready Mixed Concrete</td>
<td>Office</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Victoria Island</td>
<td>6.431306</td>
<td>3.426876</td>
<td>A</td>
<td>SPG Nigeria Limited</td>
<td>Regular</td>
<td>SPG Ready Mixed Concrete</td>
<td>Plant</td>
<td></td>
</tr>
</tbody>
</table>

* S = exact site location; A = approximate site location; C = cluster of sites.

Table A10. Construction materials database — masonry (ERDC-CERL).

<table>
<thead>
<tr>
<th>Country</th>
<th>City</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Precision*</th>
<th>Company</th>
<th>Product</th>
<th>Industry Type</th>
<th>Site Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nigeria</td>
<td>Maiduguri</td>
<td>11.831739</td>
<td>13.145364</td>
<td>C</td>
<td>Nigerian Mining Corporation and Private Entrepreneurs</td>
<td>Clay Brick</td>
<td>Regular</td>
<td>Plant</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Jos</td>
<td>9.895393</td>
<td>8.858572</td>
<td>C</td>
<td>Nigerian Mining Corporation</td>
<td>Clay Brick</td>
<td>Regular</td>
<td>Plant</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Kano</td>
<td>12.003923</td>
<td>8.588961</td>
<td>C</td>
<td>Nigerian Mining Corporation</td>
<td>Clay Brick</td>
<td>Regular</td>
<td>Plant</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Kaduna</td>
<td>10.513122</td>
<td>7.425168</td>
<td>C</td>
<td>Nigerian Mining Corporation</td>
<td>Clay Brick</td>
<td>Regular</td>
<td>Plant</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Ibadan</td>
<td>7.375171</td>
<td>3.949487</td>
<td>C</td>
<td>Nigerian Mining Corporation</td>
<td>Clay Brick</td>
<td>Regular</td>
<td>Plant</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Abeokuta</td>
<td>7.144702</td>
<td>3.363702</td>
<td>C</td>
<td>Private Entrepreneurs</td>
<td>Clay Brick</td>
<td>Regular</td>
<td>Plant</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Ogun State</td>
<td>6.929933</td>
<td>3.305998</td>
<td>C</td>
<td>Private Entrepreneurs</td>
<td>Clay Brick</td>
<td>Regular</td>
<td>Plant</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Lagos</td>
<td>6.527677</td>
<td>3.365864</td>
<td>C</td>
<td>Nigerian Mining Corporation and Private Entrepreneurs</td>
<td>Clay Brick</td>
<td>Regular</td>
<td>Plant</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Enugu</td>
<td>6.458674</td>
<td>7.543957</td>
<td>C</td>
<td>Nigerian Mining Corporation and Private Entrepreneurs</td>
<td>Clay Brick</td>
<td>Regular</td>
<td>Plant</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Okgwe</td>
<td>5.81987</td>
<td>7.340674</td>
<td>C</td>
<td>Private Entrepreneurs</td>
<td>Clay Brick</td>
<td>Regular</td>
<td>Plant</td>
<td></td>
</tr>
</tbody>
</table>

* S = exact site location; A = approximate site location; C = cluster of sites.
<table>
<thead>
<tr>
<th>Country</th>
<th>City</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Precision</th>
<th>Company</th>
<th>Product</th>
<th>Industry Type</th>
<th>Site Name</th>
<th>Site Type</th>
<th>Capacity (TPA)</th>
<th>Electric Requirement (mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nigeria</td>
<td>Abuja</td>
<td>9.075327</td>
<td>7.398464</td>
<td>A</td>
<td>Baoyao Futurelex</td>
<td>Rebar</td>
<td>Regular</td>
<td>Baoyao Futurelex Rolling Mill</td>
<td>Rolling Mill</td>
<td>20,000</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Ajaokuta</td>
<td>7.538286</td>
<td>6.647023</td>
<td>A</td>
<td>Ajakuta Steel Co. Ltd.</td>
<td>Structural Steel, Rebar</td>
<td>Regular</td>
<td>Ajakuta Steel Co. Ltd. Integrated Mill</td>
<td>Integrated Mill</td>
<td>1,300,000</td>
<td>110</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Aladja-Ovwian</td>
<td>5.486671</td>
<td>5.810772</td>
<td>A</td>
<td>Delta Steel Co.</td>
<td>Structural Steel, Rebar</td>
<td>Regular</td>
<td>Delta Steel Co. Integrated Mill</td>
<td>Integrated Mill</td>
<td>320,000</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Lagos</td>
<td>6.609158</td>
<td>3.363963</td>
<td>A</td>
<td>Nigeria Gas and Steel Ltd.</td>
<td>Rebar</td>
<td>Regular</td>
<td>Nigeria Gas and Steel Ltd. Steel Mill</td>
<td>Steel Mill</td>
<td>72,000</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Asaba</td>
<td>6.206002</td>
<td>6.692592</td>
<td>A</td>
<td>General Steel Mill</td>
<td>Rebar</td>
<td>Regular</td>
<td>General Steel Mill Mini Mill</td>
<td>Mini Mill</td>
<td>50,000</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Eket</td>
<td>4.646663</td>
<td>7.942016</td>
<td>A</td>
<td>Qua Steel Products</td>
<td>Structural Steel</td>
<td>Regular</td>
<td>Qua Steel Products Rolling Mill</td>
<td>Rolling Mill</td>
<td>600,000</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Enugu</td>
<td>4.638379</td>
<td>7.546016</td>
<td>A</td>
<td>Nigensteel Co.</td>
<td>Structural Steel</td>
<td>Regular</td>
<td>Nigensteel Co. Mini Mill</td>
<td>Mini Mill</td>
<td>40,000</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Ibadan</td>
<td>7.379256</td>
<td>3.948113</td>
<td>A</td>
<td>Alliance Steel Co.</td>
<td>Rebar</td>
<td>Regular</td>
<td>Alliance Steel Co. Rolling Mill</td>
<td>Rolling Mill</td>
<td>20,000</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Ikeja</td>
<td>6.602178</td>
<td>3.350776</td>
<td>A</td>
<td>Asiastic Mandarin Ind.</td>
<td>Structural Steel, Rebar</td>
<td>Regular</td>
<td>Asiastic Mandarin Ind. Rolling Mill</td>
<td>Rolling Mill</td>
<td>60,000</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Ikeja</td>
<td>6.602178</td>
<td>3.350776</td>
<td>A</td>
<td>Universal Steel Co.</td>
<td>Structural Steel</td>
<td>Regular</td>
<td>Universal Steel Co. Mini Mill</td>
<td>Mini Mill</td>
<td>80,000</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Ikorodu</td>
<td>6.620119</td>
<td>3.519355</td>
<td>A</td>
<td>Kew Metal Industries</td>
<td>Structural Steel, Rebar</td>
<td>Regular</td>
<td>Kew Metal Industries Mini Mill</td>
<td>Mini Mill</td>
<td>20,000</td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td>City</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Precision*</td>
<td>Company</td>
<td>Product</td>
<td>Industry Type</td>
<td>Site Name</td>
<td>Site Type</td>
<td>Capacity (TPA)</td>
<td>Electric Requirement (mW)</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>------------</td>
<td>--</td>
<td>-----------</td>
<td>---------------</td>
<td>--</td>
<td>---------------------</td>
<td>----------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Ilorin</td>
<td>8.478351</td>
<td>4.541221</td>
<td>A</td>
<td>Kwara Commercial, Metal and Chemical Industries</td>
<td>Rebar</td>
<td>Regular</td>
<td>Kwara Commercial, Metal and Chemical Industries Rolling Mill</td>
<td>Rolling Mill</td>
<td>40,000</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Ilorin</td>
<td>8.478351</td>
<td>4.541221</td>
<td>A</td>
<td>Union Steel Co.</td>
<td>Structural Steel</td>
<td>Regular</td>
<td>Union Steel Co. Rolling Mill</td>
<td>Rolling Mill</td>
<td>20,000</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Jos</td>
<td>9.897422</td>
<td>8.857198</td>
<td>A</td>
<td>Jos Steel Rolling Company</td>
<td>Rebar</td>
<td>Regular</td>
<td>Jos Steel Rolling Company Rolling Mill</td>
<td>Rolling Mill</td>
<td>210,000</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Katsina</td>
<td>12.982056</td>
<td>7.622589</td>
<td>A</td>
<td>Kastina Steel Rolling Co.</td>
<td>Rebar</td>
<td>Regular</td>
<td>Kastina Steel Rolling Co. Rolling Mill</td>
<td>Rolling Mill</td>
<td>210,000</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Onitsha</td>
<td>6.141404</td>
<td>6.806368</td>
<td>A</td>
<td>Alliance Steel Co.</td>
<td>Rebar</td>
<td>Regular</td>
<td>Alliance Steel Co. Rolling Mill</td>
<td>Rolling Mill</td>
<td>20,000</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Oshogbo</td>
<td>7.781932</td>
<td>4.539818</td>
<td>A</td>
<td>Dangote Steel</td>
<td>Structural Steel, Rebar</td>
<td>Regular</td>
<td>Dangote Steel Rolling Mill</td>
<td>Rolling Mill</td>
<td>400,000</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Otta</td>
<td>7.945253</td>
<td>4.788756</td>
<td>A</td>
<td>Selsametal</td>
<td>Rebar</td>
<td>Regular</td>
<td>Selsametal Rolling Mill</td>
<td>Rolling Mill</td>
<td>100,000</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Otta</td>
<td>7.945253</td>
<td>4.788756</td>
<td>A</td>
<td>Federated Steel Industry</td>
<td>Structural Steel, Rebar</td>
<td>Regular</td>
<td>Federated Steel Industry Mini Mill</td>
<td>Mini Mill</td>
<td>140,000</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Owerri</td>
<td>5.48781</td>
<td>7.020692</td>
<td>A</td>
<td>Metcombe Steel Co.</td>
<td>Rebar</td>
<td>Regular</td>
<td>Metcombe Steel Co. Rolling Mill</td>
<td>Rolling Mill</td>
<td>10,000</td>
<td></td>
</tr>
</tbody>
</table>

* S = exact site location; A = approximate site location; C = cluster of sites.
Table A12. Construction materials database — wood (ERDC-CERL).

<table>
<thead>
<tr>
<th>Country</th>
<th>City</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Precision*</th>
<th>Company</th>
<th>Product</th>
<th>Industry Type</th>
<th>Site Name</th>
<th>Site Type</th>
<th>Number of Employees Estimate</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nigeria</td>
<td>Akure</td>
<td>7.2577</td>
<td>5.204641</td>
<td>A</td>
<td>Nigerian-Romanian Wood Industries Limited (NIROWI)</td>
<td>Structural</td>
<td>Regular</td>
<td>Olukayode Sawmill (Nig) Limited</td>
<td>Mill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Akure</td>
<td>7.2577</td>
<td>5.204641</td>
<td>A</td>
<td>Nigerian-Romanian Wood Industries Limited (NIROWI)</td>
<td>Plywood</td>
<td>Regular</td>
<td>Soarse Wood & Timber</td>
<td>Mill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Akure</td>
<td>7.2577</td>
<td>5.204641</td>
<td>A</td>
<td>Nigerian-Romanian Wood Industries Limited (NIROWI)</td>
<td>Plywood</td>
<td>Regular</td>
<td>Premier Timber Industries (Nig) Ltd</td>
<td>Mill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Akure</td>
<td>7.2577</td>
<td>5.204641</td>
<td>A</td>
<td>Nigerian-Romanian Wood Industries Limited (NIROWI)</td>
<td>Structural</td>
<td>Regular</td>
<td>Omoniyi Sawmill</td>
<td>Mill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Akure</td>
<td>7.2577</td>
<td>5.204641</td>
<td>A</td>
<td>Piedmont Plywood</td>
<td>Structural</td>
<td>Regular</td>
<td>Akure Mill</td>
<td>Mill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Apapa</td>
<td>6.438677</td>
<td>3.37693</td>
<td>S</td>
<td>Cotoaz Shipping & Logistics Limited</td>
<td>Plywood</td>
<td>Regular</td>
<td>Cotoaz Shipping & Logistics Limited Office</td>
<td>Office</td>
<td>21:50</td>
<td>13/15 Sapele Road, Wharf Bus-Stop, 101010 Apapa, Nigeria</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Benin City</td>
<td>6.332543</td>
<td>5.598509</td>
<td>A</td>
<td>Nigerian-Romanian Wood Industries Limited (NIROWI)</td>
<td>Plywood</td>
<td>Regular</td>
<td>Iyayi Group of Companies</td>
<td>Mill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Benin City</td>
<td>6.33459</td>
<td>5.617048</td>
<td>S</td>
<td>Jasper Wood Industry</td>
<td>Structural</td>
<td>Regular</td>
<td>Jasper Wood Industry</td>
<td>Office</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Burutu</td>
<td>5.35088</td>
<td>5.506339</td>
<td>A</td>
<td>Akewa Global Services Ltd</td>
<td>Structural</td>
<td>Regular</td>
<td>Akewa Global Services Ltd Mill</td>
<td>Mill</td>
<td>201-500</td>
<td>12 Akewa Complex Delta State, Ig1234 Burutu, Nigeria</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Calabar</td>
<td>4.974273</td>
<td>8.342442</td>
<td>A</td>
<td>Nigerian-Romanian Wood Industries Limited (NIROWI)</td>
<td>Plywood</td>
<td>Regular</td>
<td>Calabar Veneer and Plywood</td>
<td>Office</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Calabar</td>
<td>4.974273</td>
<td>8.342442</td>
<td>A</td>
<td>Nigerian-Romanian Wood Industries Limited (NIROWI)</td>
<td>Plywood</td>
<td>Regular</td>
<td>Calvenwood Veneer and Plywood</td>
<td>Mill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td>City</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Precision*</td>
<td>Company</td>
<td>Product</td>
<td>Industry Type</td>
<td>Site Name</td>
<td>Site Type</td>
<td>Number of Employees Estimate</td>
<td>Notes</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------</td>
<td>------------</td>
<td>---</td>
<td>-------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Calabar</td>
<td>4.974273</td>
<td>8.342442</td>
<td>A</td>
<td>Nigerian-Romanian Wood Industries Limited (NIROWI)</td>
<td>Plywood</td>
<td>Regular</td>
<td>Wood Complex Ltd</td>
<td>Mill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Delta</td>
<td>5.874992</td>
<td>5.690873</td>
<td>S</td>
<td>Delta Forestry</td>
<td>Plywood</td>
<td>Regular</td>
<td>Delta Forestry Office</td>
<td>Office</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Edo</td>
<td>6.287749</td>
<td>5.611747</td>
<td>S</td>
<td>Cosource Ventures</td>
<td>Plywood</td>
<td>Regular</td>
<td>Cosource Ventures Office</td>
<td>Office</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Edo</td>
<td>6.332543</td>
<td>5.592329</td>
<td>S</td>
<td>Stanimose</td>
<td>Plywood</td>
<td>Regular</td>
<td>Stanimose Office</td>
<td>Office</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Enugu</td>
<td>6.457751</td>
<td>7.533104</td>
<td>S</td>
<td>Hilicin Limited</td>
<td>Structural</td>
<td>Regular</td>
<td>Hilicin Limited Mill</td>
<td>Mill</td>
<td>51-100</td>
<td>157 Chime, P. O. Box 1762, 400001 Enugu, Nigeria</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Ibadan</td>
<td>7.379256</td>
<td>3.948113</td>
<td>A</td>
<td>Nigerian-Romanian Wood Industries Limited (NIROWI)</td>
<td>Structural</td>
<td>Regular</td>
<td>Arno Sawmills</td>
<td>Mill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Ibadan</td>
<td>9.029854</td>
<td>7.482004</td>
<td>S</td>
<td>Famolin Enterprises</td>
<td>Structural</td>
<td>Regular</td>
<td>Famolin Enterprises Mill</td>
<td>Mill</td>
<td></td>
<td>P.O 9314, Ibadan, Nigeria</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Ikorodu</td>
<td>6.620119</td>
<td>3.519355</td>
<td>A</td>
<td>Yemi Productions Ltd</td>
<td>Plywood</td>
<td>Regular</td>
<td>Yemi Productions Ltd Office</td>
<td>Office</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Jos</td>
<td>9.910135</td>
<td>8.880124</td>
<td>S</td>
<td>Awa Holdings Limited</td>
<td>Plywood</td>
<td>Regular</td>
<td>Awa Holdings Limited</td>
<td>Mill</td>
<td>21.50</td>
<td>Suite 11 Hillstation c.c Jos, nil Jos, Nigeria</td>
</tr>
<tr>
<td>Country</td>
<td>City</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Precision</td>
<td>Company</td>
<td>Product</td>
<td>Industry Type</td>
<td>Site Name</td>
<td>Site Type</td>
<td>Number of Employees Estimate</td>
<td>Notes</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>-------------------------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Lagos</td>
<td>6.541562</td>
<td>3.366961</td>
<td>S</td>
<td>Bellet Construction Plc</td>
<td>Plywood</td>
<td>Regular</td>
<td>Bellet Construction Plc</td>
<td>Office</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Lagos</td>
<td>6.568051</td>
<td>3.383875</td>
<td>S</td>
<td>Hephizbah Resc and Inv Ltd</td>
<td>Plywood</td>
<td>Regular</td>
<td>Hephizbah Resc and Inv Ltd</td>
<td>Office</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Lagos</td>
<td>6.444054</td>
<td>3.320488</td>
<td>S</td>
<td>Malagas Ventures Nig</td>
<td>Plywood</td>
<td>Regular</td>
<td>Malagas Ventures Nig Office</td>
<td>Office</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Lagos</td>
<td>6.645257</td>
<td>3.390293</td>
<td>S</td>
<td>Obijwiwealth Nig Ltd</td>
<td>Plywood</td>
<td>Regular</td>
<td>Obijwiwealth Nig Ltd Office</td>
<td>Office</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Lagos</td>
<td>6.599422</td>
<td>3.373682</td>
<td>S</td>
<td>Orlean Farms Ltd</td>
<td>Plywood</td>
<td>Regular</td>
<td>Orlean Farms Ltd Office</td>
<td>Office</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Lagos</td>
<td>6.570755</td>
<td>3.372327</td>
<td>S</td>
<td>Tradecorp Investments Nigeria Ltd</td>
<td>Plywood</td>
<td>Regular</td>
<td>Tradecorp Investments Nigeria Ltd</td>
<td>Office</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Lagos</td>
<td>6.620146</td>
<td>3.301529</td>
<td>S</td>
<td>Ulman Investment Nig Ltd</td>
<td>Plywood</td>
<td>Regular</td>
<td>Ulman Investment Nig Ltd Office</td>
<td>Office</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Lagos</td>
<td>6.496259</td>
<td>3.337114</td>
<td>S</td>
<td>Woodvantage Ltd</td>
<td>Plywood</td>
<td>Regular</td>
<td>Woodvantage Ltd Office</td>
<td>Office</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Lagos</td>
<td>6.5361</td>
<td>3.340668</td>
<td>S</td>
<td>OBM Merchandise Ltd.</td>
<td>Plywood</td>
<td>Regular</td>
<td>OBM Merchandise Ltd. Office</td>
<td>Office</td>
<td>21.50</td>
<td>54 Bello Street, Papa Ajao, Lagos, Nigeria</td>
</tr>
<tr>
<td>Country</td>
<td>City</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Precision*</td>
<td>Company</td>
<td>Product</td>
<td>Industry Type</td>
<td>Site Name</td>
<td>Site Type</td>
<td>Number of Employees Estimate</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------------------------</td>
<td>-----------</td>
<td>---------------</td>
<td>---------------------------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Odo-Ona</td>
<td>7.387122</td>
<td>3.837835</td>
<td>S</td>
<td>Forthnur Company Ltd</td>
<td>Plywood</td>
<td>Regular</td>
<td>Forthnur Company Ltd Office</td>
<td>Office</td>
<td>11-20</td>
<td>Flat3, FPC Building, Opp., Apata Our Lady Of Apostle, Odo-Ona, Ibadan, Nigeria</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Ogbese</td>
<td>7.250074</td>
<td>5.195138</td>
<td>S</td>
<td>Thameswood Products</td>
<td>Structural</td>
<td>Regular</td>
<td>Thameswood Products Mill</td>
<td>Mill</td>
<td></td>
<td>Sawmill Akure-Owo Road, AKR2 Ogbese, Nigeria</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Ologbo</td>
<td>6.052737</td>
<td>5.664185</td>
<td>S</td>
<td>Piedmont Plywood</td>
<td>Structural</td>
<td>Regular</td>
<td>Ologbo Mill</td>
<td>Mill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Ondo</td>
<td>7.16741</td>
<td>4.810712</td>
<td>A</td>
<td>Nigerian-Romanian Wood Industries Limited (NIROWI)</td>
<td>Structural</td>
<td>Regular</td>
<td>NIROWI Mill</td>
<td>Mill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Port Harcourt</td>
<td>4.838312</td>
<td>6.995101</td>
<td>S</td>
<td>Shnahan Trading Investment</td>
<td>Plywood</td>
<td>Regular</td>
<td>Shnahan Trading Investment Office</td>
<td>Office</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Sapele</td>
<td>5.894138</td>
<td>5.69345</td>
<td>S</td>
<td>African Timber and Plywood</td>
<td>Structural</td>
<td>Regular</td>
<td>Sapele Mill</td>
<td>Mill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Victoria Island</td>
<td>6.431311</td>
<td>3.427141</td>
<td>S</td>
<td>Haran Resources Ltd</td>
<td>Plywood</td>
<td>Regular</td>
<td>Haran Resources Ltd Office</td>
<td>Office</td>
<td>51-100</td>
<td>Plot 1439 Sanusi Fafunwa Street, 11111 Victoria Island, Lagos, Nigeria</td>
</tr>
<tr>
<td>Nigeria</td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td>Nigerian-Romanian Wood Industries Limited (NIROWI)</td>
<td>Plywood</td>
<td>Regular</td>
<td>Eastern Match Industries</td>
<td>Mill</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S = exact site location; A = approximate site location; C = cluster of sites.
Construction Material-Based Methodology for Military Contingency Base Construction: Case Study of Maiduguri, Nigeria

ABSTRACT

To sustain itself as the world's premier land power, the U.S. Army needs the capability to support expeditionary forces by projecting a minimal basing footprint with reduced logistical burdens. Strategically sited Contingency Bases (CBs) allow the Army’s expeditionary forces to rapidly respond and attack the enemy throughout the joint area of operations (JOA). Strategic conditions will be analyzed through the lens of eight OE variables—political, military, economic, social, information, infrastructure, physical environment, and time (PMESII-PT). The Army has neither a well-grounded methodology nor the tools to enable this type of strategic decision-making capability. Decision makers require reliable information about the situational dynamics of the operational environment to anticipate the impacts that siting and operating CBs will have on the local context, and to consider the effects of the site on the operation of CBs. The capability to anticipate CB impacts and resources draws upon the local population, which will becomes particularly important for engagement operations when CBs will have a longer duration of use and interaction with the local populace. This report considers access of building materials required for the construction of CBs and develops a methodology to acquire reliable information that can be replicated in other locations throughout the world. This work then validates the developed methodology with a case study of Maiduguri, Nigeria.