AWARD NUMBER: W81XWH-08-1-0484

TITLE: “NEW HEART FAILURE TREATMENT CAPABILITY FOR REMOTE ENVIRONMENTS”

PRINCIPAL INVESTIGATOR:
DR. MARK P. ANSTADT, M.D.

CONTRACTING ORGANIZATION:
LIFEBRIDGE TECHNOLOGIES, LLC
DAYTON, OHIO 45409

REPORT DATE: June 2013

TYPE OF REPORT: FINAL

PREPARED FOR:
U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Final Annual Report

New Heart Failure Treatment Capability for Remote Environments

1. Project Description

The purpose of this project was to develop a device for rapid, effective, circulatory support for remote areas. Direct mechanical ventricular actuation (DMVA) is a non-blood contacting method that can re-establish normal hemodynamics in the fibrillating (non-beating) and severely failing heart within minutes. The project’s objective was to develop a portable, compact, user-friendly DMVA drive system for simplified operation.

2. Methodology

- **Preclinical Development:**
 - Developed a manual powered hand pump (HP) that can be operated by a single user to support the prototype pump.
 - Defined optimal HP operation parameters.

- **Prototype Development:**
 - Designed a motorized drive to power the prototype pump.
 - Developed a fully automated DMVA drive system (AD).

3. Results

- **In-vitro Bench Testing:**
 - Tested the new system in a custom mock circulatory loop (MCL) to verify its functionality and related physiologic effects.

- **In-vivo Animal Testing:**
 - Successfully tested the new system in vivo using a dedicated data acquisition system to verify system functionality and related physiologic effects.

4. Conclusion

The final prototype DMVA drive system was successfully constructed and tested. It incorporates a removable HP and is designed for use in remote areas where power failure is a concern. The new system achieves functionality equivalent to pre-existing drive systems while providing a portable, AD useful for remote areas.

Subject Terms:
- Direct Mechanical Ventricular Actuation
- Circulatory Support
- Heart Failure
- Drive System

Security Classification:
- U
- U
- U

Limitation of Abstract:
- UU

Number of Pages:
- 63

Name of Responsible Person:
- USAMRMC

Telephone Number (include area code):
- (include area code)
Table of Contents

1. Introduction ...4

2. Keywords ..4

3. Overall Project Summary ...4-15

4. Key Research Accomplishments ..15
 - DMVA Background, Salient Aspects, Future Goals16-35

5. Conclusion ..35

7. Inventions, Patents and Licenses36

8. Reportable Outcomes ..37-45

9. Other Achievements ..46

10. References ...46-47

11. Appendices ..47-63
1. INTRODUCTION
This final annual report summarized all key project goals completed to date and includes pertinent background information that justified the project. The purpose of this project was to develop a device for rapid, effective, circulatory support in remote areas. DMVA has already demonstrated its potential for providing resuscitative circulatory support with particularly relevant attributes including technically simply installation, rapid return and maintenance of perfusion to vital organs and the absence of any blood contact. This unique method of non-blood contacting biventricular support that was first described by George L. Anstadt, DVM. The method utilizes a pneumatically powered heart cup to deliver systolic and diastolic forces to the surface of the ventricular myocardium. DMVA has proven to be effective in providing total circulatory support to the fibrillating, or severely failing heart. This report summarizes background information pertinent to the development of DMVA and other related non-blood contacting circulatory support technologies. The background explains DMVA’s unique life-saving attributes, enabling a better appreciation for the significance of the project. The report will then cover salient aspects pertaining to the project and its completion. Finally, future goals will be outlined for clinical use of the developed technology.

2. KEYWORDS
1. DMVA – DIRECT MECHANICAL VENTRICULAR ACTUATION
2. HP – HAND PUMP
3. AD – AUTOMATED DRIVE
4. MCL – MOCK CIRCULATORY LOOP
5. ECHO - ECHOCARDIOGRAPHIC
6. DCC – DIRECT CARDIAC COMPRESSION
7. RV – RIGHT VENTRICLE
8. LV – LEFT VENTRICLE
9. CPB – CARDIOPULMONARY BYPASS
10. TEE – TRANSESOPHAGEAL
11. ST – SWITCHED TANK

3. OVERALL PROJECT SUMMARY
This report represents the FOURTH AND LAST annual report for Contract # W81XWH-08-1-0484T. The original start date for this contract was 7/14/2008. However, no activity occurred until the grant was transferred to LifeBridge Technologies, LLC, with an approved start date of 5/20/2009 from USAMRAA. Our FIRST THREE annual reports reviewed activities from 5/20/2009 through 5/20/2012. This FOURTH and FINAL report summarizes subsequent project activities beginning in 5/20/2012 until 5/19/2013.

This final annual report summarized all key project goals completed to date and includes pertinent background information that justified the project. The project is further developing DMVA for use in remote areas. DMVA is a non-blood contacting method of resuscitation for support of the arrested, or severely failing heart. The project’s principle goal is to develop a portable, compact, user-friendly drive system that does not require significant expertise for operation of the unit.

All proposed milestones have now been completed. Those milestones completed prior to this final report include:
(1) In-vivo studies to derive drive dynamics and pneumatic piston modifications.
(2) Design and fabrication of the HP.
(3) Design for integrating the HP into the automated system.
(4) Assembly of the prototype MCL for bench testing.
(5) Design and fabrication of the initial AD prototype.
(6) Modifications of the AD prototype system based on in-vivo testing.
(7) Final design of the AD prototype system.
(8) Fabrication/initial assembly of the automated volume regulated drive system prototype.

Milestones completed since the last quarterly report include:
(9) Analysis of interface/control and manual HP features.
(10) Final modifications of automated VRD prototype.
(11) Final testing of automated VRD prototype.

Report of Financials:
The table below summarizes the utilization of financials during the first year of the funded project period.

YEAR END FINANCIALS: 5/20/2012 – 5/19/2013

<table>
<thead>
<tr>
<th>STAFF MEMBER</th>
<th>ROLE</th>
<th>% EFFORT-MONTHS 36-48</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARK P ANSTADT</td>
<td>PI</td>
<td>37.6</td>
</tr>
<tr>
<td>REBECCA DARNER</td>
<td>RESEARCH COORDINATOR</td>
<td>38.8</td>
</tr>
<tr>
<td>ANTHONY PEREZ-TAMAYO</td>
<td>CONSULTANT</td>
<td><1</td>
</tr>
<tr>
<td>JENNIE GALLIMORE</td>
<td>STATISTICIAN</td>
<td><1</td>
</tr>
<tr>
<td>PETER SCHIFF</td>
<td>LEAD ENGINEER</td>
<td>3</td>
</tr>
<tr>
<td>RICHARD LESLEY</td>
<td>ENGINEERING TECHNICIAN</td>
<td>23.9</td>
</tr>
<tr>
<td>KELLY SWARTZMILLER</td>
<td>TECHNICAL ASSISTANT</td>
<td><1</td>
</tr>
<tr>
<td>NICK GARVIN</td>
<td>TECHNICAL ASSISTANT</td>
<td>8.4</td>
</tr>
<tr>
<td>MEGAN MARKL</td>
<td>TECHNICAL ASSISTANT</td>
<td>3.9</td>
</tr>
<tr>
<td>SABRINA METZGER</td>
<td>TECHNICAL ASSISTANT</td>
<td>34.6</td>
</tr>
<tr>
<td>KEVIN CARNAHAN</td>
<td>TECHNICAL ASSISTANT</td>
<td>34.6</td>
</tr>
</tbody>
</table>

Contract expenditures to date:

<table>
<thead>
<tr>
<th>COST ELEMENTS</th>
<th>THIS QUARTER</th>
<th>CUMULATIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel</td>
<td>$15,762</td>
<td>$160,512</td>
</tr>
<tr>
<td>Fringe Benefits</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Supplies</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Equipment</td>
<td>79,197.62</td>
<td>203,125.25</td>
</tr>
<tr>
<td>Travel</td>
<td>0.00</td>
<td>9,774.09</td>
</tr>
<tr>
<td>Other Direct Costs</td>
<td>28,001.23</td>
<td>269,631.83</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$122,960.85</td>
<td>$645,206.02</td>
</tr>
<tr>
<td>Indirect Costs</td>
<td>$23,703.35</td>
<td>$151,919.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Fee</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>$146,664.22</td>
<td>$849,717.63</td>
</tr>
</tbody>
</table>

A novel, custom MCL was used to verify functionality of the drive before completing animal testing:

Echocardiographic (ECHO) interrogation of the mock ventricles was included in the analysis to verify functionality:

Below are ECHO images of Mock Ventricles actuated by the AD system:
Data was compared between the switched tank (ST) and the prototype drives to verify equivalence.

Comparisons were then made between the AD and the ST system in animals using a similar experimental algorithm. Below is an example ECHO image during DMVA support using the automated, piston drive system (left, in systolic actuation/compression) and ST system (right, during diastolic actuation) during support of the fibrillating heart:
Below are strain analysis examples of DMVA support using the automated, piston drive system (left) and the ST system (right) during support of the severely failing heart.
Data from these in-vivo experimental comparisons were averaged and mean values are provided in the below tables and graphs (piston= AD):

Drive System Mock Comparisons

<table>
<thead>
<tr>
<th>Drive System</th>
<th>Max Cup Pressure (mm Hg)</th>
<th>Min Cup Pressure (mm Hg)</th>
<th>Integral Cup Pos Pressure (mm Hg* s)</th>
<th>Integral Cup Neg Pressure (mm Hg* s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piston</td>
<td>143.3</td>
<td>-104.0</td>
<td>49.3</td>
<td>-15.9</td>
</tr>
<tr>
<td>Switch Tank</td>
<td>118.4</td>
<td>-103.4</td>
<td>44.8</td>
<td>-27.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drive System</th>
<th>Max LV Pressure (mm Hg)</th>
<th>Max RV Pressure (mm Hg)</th>
<th>Mean LA Pressure (mm Hg)</th>
<th>Mean RA Pressure (mm Hg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piston</td>
<td>98.6</td>
<td>103.6</td>
<td>18.1</td>
<td>9.1</td>
</tr>
<tr>
<td>Switch Tank</td>
<td>93.5</td>
<td>95.5</td>
<td>18.1</td>
<td>9.0</td>
</tr>
</tbody>
</table>

Drive System Mock Comparisons

<table>
<thead>
<tr>
<th>Drive System</th>
<th>MAP (mm Hg)</th>
<th>Max Arterial Pressure (mm Hg)</th>
<th>Min Arterial Pressure (mm Hg)</th>
<th>Mean Pulmonary Pressure (mm Hg)</th>
<th>Max Pulmonary Pressure (mm Hg)</th>
<th>Min Pulmonary Pressure (mm Hg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piston</td>
<td>793</td>
<td>96.8</td>
<td>67.4</td>
<td>39.2</td>
<td>56.3</td>
<td>23.3</td>
</tr>
<tr>
<td>Switch Tank</td>
<td>75.1</td>
<td>86.8</td>
<td>65.4</td>
<td>39.1</td>
<td>53.6</td>
<td>26.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drive System</th>
<th>Max Aortic Flow (L/min)</th>
<th>Average Aortic Flow (L/min)</th>
<th>Average Pulmonary Flow (L/min)</th>
<th>LV Stroke Volume (ml)</th>
<th>RV Stroke Volume (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piston</td>
<td>7.38</td>
<td>1.36</td>
<td>3.98</td>
<td>31.3</td>
<td>94.7</td>
</tr>
<tr>
<td>Switch Tank</td>
<td>4.45</td>
<td>1.31</td>
<td>4.15</td>
<td>33.3</td>
<td>99.4</td>
</tr>
</tbody>
</table>
In-Vivo Cup Pressure Comparisons

Cup Pressure Range Comparison

In-Vivo Cardiac Output Comparisons

Aortic Flow Comparisons
In-Vivo MAP Comparisons

Mean Arterial Pressure Comparison

<table>
<thead>
<tr>
<th></th>
<th>MAP (mm Hg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swine</td>
<td>40 ± 2</td>
</tr>
<tr>
<td>Canine</td>
<td>40 ± 2</td>
</tr>
</tbody>
</table>

- **Switch Tank System**
- **Piston System**

In-Vivo Strain Rate Comparisons

Echocardiographic Comparisons

<table>
<thead>
<tr>
<th></th>
<th>Strain Rate (1/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systolic</td>
<td>3 ± 0.5</td>
</tr>
<tr>
<td>Diastolic</td>
<td>3 ± 0.5</td>
</tr>
</tbody>
</table>

- **Switch Tank System**
- **Piston System**
Below are pictures of the final automated, piston drive showing its housing and portable dolly features:

Below is an illustration showing DMVA cup attachment to the DMVA AD:
Below is a view of the internal integration of the piston and automated components:

Below is an illustration of the HP being actuated during manual operation of the AD:
The AD system was then bench tested using the MCL support system to verify functionality for cup sizes 80 thru 130. The results demonstrated the system could perform at the pre-selected drive rates with adequate actuation of DMVA cups for resuscitation in this wide range of clinically relevant heart sizes.

Future efforts will focus on reducing the current drive to an even smaller scale for use in remote areas in the field of resuscitative circulatory support and bridging to other devices.

STATEMENT OF WORK

The primary objective of this project pertains to the design and fabrication of a portable VRD for DMVA utilization in remote areas. Performance objectives were outlined with pertinent deliverables and milestones for this project. These outlined deliverables and milestones were arranged in a timeline. Therefore, achieving each consecutive milestone would provide needed conditions to proceed to the subsequent project objectives.

Year 1: A total of ten canine experiments will be performed, with a goal of six successful experiments for data analysis. Mock-loop studies will be conducted after each canine experiment, establishing the prototype drive test parameters. During the next two or three months the initial prototype design will be finalized based on specifications collected from the breadboard. Fabrication of the prototype will occur during the last six months of the year. Mock-loop testing on the prototype will begin near the end of the manufacturing in the last month of the year.

Key deliverables for year 1:
1. Completion of Breadboard In-Vivo Canine Study.
2. Completion of Breadboard In-Vitro Mock-Loop studies to establish.
3. Design of Prototype I.
5. Initiation of Mock-Loop testing of First Prototype.
6. Completion and verification of appropriate documentation.

Year 1 Milestones:
1) Compete Breadboard In-Vivo & Mock-Loop studies.
2) Complete design and fabrication of First Prototype drive.

Year 2: The first four months will be devoted to testing and modifying the prototype drive based on in-vitro and in-vivo testing. Mock-loop testing will finish in the first month of the year, to be followed by two to three in-vivo prototype studies. Based on in-vivo experimental data, the prototype will be modified. In-vitro testing will be conducted with the mock-loop near the end of modification to access the viability of the altered prototype model. The repeated process of in-vivo testing, prototype modifications and in-vitro testing, with 1-3 iterations likely, will lead to the development of the final prototype design and final design specifications by the end of year two.

Key deliverables for year 2:
1) Successful completion of mock-loop and in-vivo testing of First Prototype drive.
2) Modify Prototype as determined by mock and animal testing results (2-3 revisions).
3) Finalization of Prototype drive design.
4) Completion and verification of appropriate documentation.

Year 2 Milestones:
1) Perform in-vitro and in-vivo testing of prototypes.
2) Arrive at Final Design Prototype.

Year 3: In the first four months, six successful in-vivo experiments will be performed on the final design prototype to analyze its effectiveness. Final adjustments in the drive control system will be made in the first two or three animals. Analyses will be performed by an independent clinical investigator to assess user-friendliness and functionality. In the next two months, training algorithms will be developed prior to pre-clinical testing. In the final six months the final design prototype will undergo pre-clinical testing under an independent clinical direction. A total of six successful experiments will provide data for comparison to breadboard results obtained in year one to test the study hypothesis with a focus of developing a protocol for clinical trials.
Key Deliverables for year 3:
1) In-Vivo Final Design Prototype study.
2) Final control interface modifications of Final Design Prototype.
3) Establishment of training protocol.
4) Pre-clinical testing of Final Design Prototype.
5) Data analysis to test study hypothesis.

Year 3 Milestones:
1) Finalize user-interface/control features of final prototype.
2) Complete animal tests using independent clinical investigator.

4. KEY RESEARCH ACCOMPLISHMENTS
Progress during the 16th quarter (the final quarter of this project) focused on three critical tasks:

 1) Analysis of interface/control of the automated VRD prototype and integrated manual HP.
 2) Completion of final modifications of automated VRD prototype.
 3) Final testing of automated VRD prototype.

Two automated VRD prototype drive systems were thereby assembled with all necessary modifications to ensure functionality. The two systems were tested on the custom MCL and with in-vivo experiments following the same protocols developed during the project. Use of ultrasound imaging for novel strain analysis provided more robust validation results in both the MCL & in-vivo animal testing. This significantly enhanced the validity of the final testing to demonstrate effective drive performance. Analysis of the final automated VRD prototype demonstrated that the portable, AD system functioned as well as prior existing drive systems as anticipated.

Objectives completed during the final quarter of the project period
The final prototype AD system underwent both in-vitro (MC) and in-vitro (animal) testing with comparative analyses with the pre-existing ST system. Two prototype drives were assembled and demonstrated functionality and feasibility. The final portable, automated VRD evaluations with in-vivo experiments and in-vitro MCL testing proved the project hypothesis. All final refinements in the drive control features and user-interface were incorporated into the drive for these final evaluations.

A. Key Deliverables completed during the final quarter of the project:
 1) Assembly of the final portable automated VRD with all necessary modifications
 2) In-vivo analysis of user-interface and control, HP assembly and user-interface
 3) In-vivo and in-vitro assessment of final prototype for functionality and ease of use
 4) Data analysis to testing the study hypothesis that the portable, automated VRD drive is equivalent to pre-existing drives

B. Milestones Completed during the final quarter of the project:
 1) Fabrication/assembly of the final automated VRD prototype
 2) Final testing of VRD verifying it functionality and equivalence to pre-existing DMVA drive systems

Scientific Progress and Objectives during the 16th quarter (4/01/2013-5/19/2013) is summarized below:
First components for the final automated VRD prototype were assembled in a custom, portable housing. Notably, this final portable, automated VRD was constructed in duplicate. The completed unit was then tested for functionality using both in-vivo, animal experiments as well as bench testing with the MCL. Animal experiments included both canine and swine models. The >50 lb canine is representative of a small human, while the >180 lb swine an average size human. The MCL platform provided a means for verifying functionality under steady-state physiologic loads pertinent to larger human. Testing of the final prototype assessed functionality, control features and user-friendliness. Final modifications were made regarding user-interface and the manual HP to improve these features. Simple training algorithms from intuitive touch-screen directions were used the final for pre-clinical testing of the final automated VRD prototype. The completed prototype then underwent in-vivo and in-vitro testing comparing it to the prior drive systems.
DMVA BACKGROUND, SALIENT ASPECTS, AND FUTURE GOALS

The study of how mechanical forces can augment cardiac pump performance has led to a large body of scientific data. These works done investigating DMVA as well as other distinctly different devices. Salient aspects of these prior studies illustrate and justify the value of advancing DMVA technology in the manner proposed by this project. It should be recognized that early work pertaining to DMVA employed rather rudimentary devices. Theses devices were desinged to compress the heart for improving systolic pump function. Devices that compress the ventricles are defined as “direct cardiac compression (DCC)” devices. DCC describes compression of the heart for the purpose of augmenting ventricular systolic pump function. Although DCC is pertinent to DMVA, it is important to understand DCC devices do not provide diastolic assist. In fact, DCC devices generally impair diastolic ventricular function. DMVA distinctly aids diastolic function which is a distinguishing feature pertaining to DMVA’s efficacy.

When considering the efficacy of DMVA, one needs to also recognize the implications on the right venticle (RV). RV function is very vulnerable to the contrictive aspects of any compressive device resulting in comprised filling. This again is where DMVA’s diastolic assist plays a critical role. Therefore, it is also important to appreciate that many DCC investigations focused on the the left ventricle (LV). Many times with isolated hearts preparations that excluded any considerations for RV function. Therefore, the very nature of such experiments did not account for the importance of either diastolic function or RV function both of which have implications on the efficacy of DCC.

Early isolated heart preparations utilized for evaluating DDC’s effect on LV function would typically exclude the RV. Chambers were positioned around the outer surface of the heart served as the DCC plateform. These cardiac compression chambers could provide variable degrees of DCC. These in-vitro plateforms provided estimates of DCC’s potential impact on important physiologic variables such as LV pressure, aortic flow and pressure. Although, such experiments provided fundamental understanding of DCC’s potential effect on LV performance, these in-vitro experiments employed bulky compression devices that could not be directly translated to practical, implantable devices. Furthermore, assessment of the RV function and/or diastolic function were typically excluded which further makes translation of the results to any practical, in-vivo method of cardiac compression limited at best.

In general, the degree of DCC applied to the left ventricle results in an equal, additive degree of LV pressure generated by the native heart. This principle is pertinent to LV and DCC pressures within the physiologic range. The diagram below illustrates LV pressure in a normal beating, isolated heart before (control) and during (DCC) application of dynamic
compression pressures timed to ventricular systole. Note the DCC pressures were additive to underlying LV pressure during the control state.

Given the potential advantages of non-blood contacting circulatory support, a variety of device designs were tested to develop an effective, feasible means for applying DCC in humans. The obvious challenge was creating a device that feasibly fit the heart and effectively aided pump function. A number of devices were designed with these intentions (examples shown below).

As evident from these illustrations, most of devices were relatively impractical, difficult to install and had little efficacy for providing meaningful cardiac support. Results from laboratory studies using such devices were not particularly convincing and questioned the feasibility of DCC for clinical applications. Importantly, these early devices only provided cardiac compression which only aids systolic function.
George L. Anstadt began work on a unique method of DCC circulatory support which not only compressed the heart, but also aided in ventricular filling or diastolic function. He likened this novel idea to the iron lung which altered atmospheric pressures around the chest to aid in lung ventilation.

The first device he built utilized a latex diaphragm molded from casts made of the native heart. The diaphragm was bonded within a rigid Pyrex housing to allow positive and negative pneumatic forces to act on the inner latex diaphragm. The design included an opening in the apex of the housing that allowed vacuum forces to serve as a means for attaching the device non-traumatically to the heart. A picture of the first device is shown below which was successfully used to support the circulation for five hours during ventricular fibrillation.

The device utilized a pneumatic drive system to provide alternating positive and negative forces the heart cup. An illustration of the drive system and heart cup is shown below:

Work with this construct was advanced over the next 15 years with improvements in the design of the outer housing and inner flexible liner.

Using these devices, a pneumatic drive system was developed for controlling the manner in which DMVA actuated the heart. The systems were based on compressors that accumulated positive and negative pressures in tanks which could be switched through a solenoid valve in a cycle manner. Control of the absolute pressure, rate of actuation and resistance in the
drive lines were the manner in which the operative could modulate the action of DMVA on the heart. A picture of one of these drive systems is shown above:

By regulating the “dampening” or resistance in the drive line, the operator could achieve physiologic hemodynamics that mimicked the normal physiologic state as shown below:

Most experiments were done in canine and successful support with long-term survival was achieved in animals receiving DMVA support for days in ventricular fibrillation followed by defibrillation and recovery with normal heart function. The picture below shows an animal awake during DMVA support of the fibrillating heart:

Notable, important differences existed in the characteristics of materials used in DMVA heart cups. Below is a figure illustrating the manner in which silicones versus polyurethanes behave when stretched:

These physical characteristics were fundamentally different. I was discovered that the relatively “isotropic” behavior of silicone rubbers were the most favorable for atraumatic support of the fibrillation heart. When silicone rubber constructed DMVA cups were compared to polyurethane constructed cups, the results were dramatic. Specifically, Silicone rubber
Cups resulted in hearts being preserved while the polyurethane constructed devices damaged the myocardium resulting in reduction in ATP stores that mimicked a severely injured heart, probably due to damage of the mitochondria. During support with Polyurethane devices heart became hyperemic as autoregulation led to increased blood flow to the seemingly ischemic myocardium (see graphic below):

The focus with DMVA support centered around resuscitation as the device could be applied rapidly to return the circulation following cardiac arrest or sudden death. Comparisons between DMVA support and conventional methods of cardiac resuscitation such as closed-chest or open chest massage were dramatic (see below):
Additional work was done comparing DMVA to support of the heart following surgical revascularization of occluded coronaries using saphenous vein bypass grafts (see preparation below);

Results demonstrated that DMVA had a favorable effect on perfusion to the revascularized coronary beds with better preservation of myocardial high energy phosphates and improved post-support function (see below):
However, the most obvious role for DMVA support remained that of resuscitative circulatory support following cardiac arrest. The only other method that could generate total circulatory support in a relatively reasonable time-frame remains that of modified cardiopulmonary bypass (CPB) units. Therefore, experiments were performed comparing the best possible CPB support to DMVA following cardiac arrest. Below is an illustration of the CPB circuit used in such experiments:
DMVA was compared to CPB following cardiac arrest to determine what differences might exist when both methods were applied after similar periods of arrest. Remember, in the clinical setting DMVA could be applied emergently in 2-3 minutes while it would normally take close 15-30 minutes to employ even partial CPB support. Therefore, these experiments biased results for more favorable CPB. Initial results demonstrated a dramatic difference regarding improved distribution of cerebral flow and resulting cerebral oxygen consumption with DMVA (pulsatile flow) versus CPB (non-pulsatile flow) shown below:

These favorable impacts on cerebral perfusion were the most likely explanation for improved cerebral ATP stores following resuscitation using DMVA (pulsatile flow-PF) versus CPB (nonpulsatile flow). It was felt that the pulsatile nature of resuscitative flow during DMVA support compared to the nonpulsatile flow of CPB might be the most important physiologic difference that could explain these dramatic discrepancies in the experimental results:
Additional work was then performed in a survival model where canine were resuscitated with DMVA (pulsatile) versus CPB (nonpulsatile) support. The surviving animals had marked improvement with respect to preservation on neurons in the Hippocampus of the brain following DMVA versus CPB as exhibited in the more pronounced purple staining in representative sections from animals following DMVA vs. CPB (see below):
The neurologic recovery and overall hippocampal scores were significantly better in animals following DMVA versus CPB in these survival studies (see below).
Clinical results were also notable using DMVA support. The first patient to receive the device at Duke University Medical Center was successfully bridged to transplantation and remains alive to date more than 10 years later (see abstract below):

First Successful Bridge to Cardiac Transplantation Using Direct Mechanical Ventricular Actuation

James E. Lowe, MD, Mark P. Anstadt, MD, Peter Van Trigt, MD, Peter K. Smith, MD, Paul J. Hendry, MD, Mark D. Plunkett, MD, and George L. Anstadt, VMD

Department of Surgery, Duke University Medical Center, Durham, North Carolina

Currently available ventricular assist devices are technically difficult to implant, require continuous anticoagulation, and are associated with hemorrhagic and thromboembolic complications. Direct mechanical ventricular actuation is a biventricular assist device that can be applied in 3 to 5 minutes through a left anterior thoracotomy and has no direct blood contact or need for anticoagulation. The present study was designed to determine the effects of direct mechanical ventricular actuation in total biventricular circulatory support. Cardiogenic shock refractory to standard therapy developed in 2 patients awaiting cardiac transplantation. Direct mechanical ventricular actuation was applied and provided immediate hemodynamic stabilization in both. All inotropic agents and intraaortic balloon support were then discontinued. Fifty-six hours of circulatory support bridged the first patient to successful cardiac transplantation without complication. The patient is alive and well more than 1 year later without incident of infection or rejection. The second patient suffered cardiac arrest and required closed chest cardiopulmonary resuscitation before device application. After 45 hours of support, it was determined that irreversible neurologic injury had occurred and direct mechanical ventricular actuation was discontinued. Neither patient's native heart exhibited any histologic evidence of device-related trauma. Direct mechanical ventricular actuation has undergone limited clinical investigation since its original description 25 years ago, but in these initial trials, the device has proved effective. The concept of mechanically actuating the ventricles appears to be a valuable, yet under-utilized method of total circulatory support.

The device can be applied rapidly (2-3 minutes) thru an anterior thoracotomy (see below):
Once applied the chest can be closed for transport of the patient (see below):

Other methods of long-term circulatory support can then be instituted by transitioning to CPB as a needed step in such considerations (see below):

This can be summarized as shown below:
Pathologic evaluation in patients supported by DMVA has shown no evidence of myocardial damage even after up to 3 months of support (see below):

Research following these clinical findings began focusing on support of the failing heart using smaller animal models. The DMVA cup technology was reduced to smaller sizes using the same designs as proven in animal studies (see below):
The rabbit model was the smallest animal model used for experimental DMVA support and was comparable to the human neonate with respect to heart size (see below):

Using the rabbit model it was demonstrated that DMVA could support the failing heart with favorable effects on the myocardium with respect to cell signaling indicating a favorable impact on myocardial recovery (see results below):
With the addition of echocardiographic, the functional aspects of how DMVA can effect myocardial contraction were enabled. Transesophageal (TEE) and trans-venous ECHO imaging provided the windows for such interrogation (see below):

![Diagram of heart with TEE probe and diastolic vs systolic actuation labels]

With ECHO analysis the complex manner in which myocardial contraction occurs can be characterized both graphically and with objective numeric analysis. The rabbit model was the first utilized to interrogate DMVA support of the failing heart (see below):

![Diagram of cardiac system with pneumatic drive system, aortic flowmeter, and echocardiography system]
Speckle tracking using proprietary ECHO software enabled myocardial strain to be assessed in the heart before, during and after DMV support. Figure below illustrates how ultrasound imaging can visualize the myocardium to obtain strain imaging.

Once ECHO imaging is acquired, the technique of speckle tracking is utilized to calculate regional and global myocardial strain as depicted in the below diagram:

For studies carried out by our laboratory, the long axis of the left ventricle was interrogated using speckle tracking proprietary software. The left ventricle was divided into 6 regions to do analysis on both regional and global myocardial function as depicted below:
A snapshot of a representative ECHO strain image is shown below:

The data below compares global functions expressed as myocardial stain in rabbits during baseline, failure and subsequent DMVA support. Note DMVA returned both systolic and diastolic function to values greater than control.

The augmentation of diastolic function, as depicted in the outward arrows of the snapshot below represent the unique capability of DMVA support compared to other DCC devices as explained earlier, see figure below:
The ability of DMVA to provide diastolic augmentation to the failing and arrested heart has now been demonstrated and published as shown below:

The use of ECHO to interrogate the heart during support with DMVA has been a primary means of analysis of DMVA drive functionality in the present project, (see below):
ECHO stain analysis has also demonstrated how DMVA not only improves myocardial function of the failing heart but also returns mechanical synchrony to a more normal state:

![Global Myocardial Strain Rates](image1.png)

Values Expressed as: Mean ± SEM; * = p < 0.05 vs. Failure; † = p < 0.05 vs. Recovery

The snapshots below demonstrate graphically how DMVA returning synchrony during failure:

![Example Strain Rate Waveforms for Experimental States](image2.png)
The return of synchrony can be numerically depicted as shown below:

![LV Myocardial Dyssynchrony Graph](image)

These methods of analysis along with proven cup design (shown below) were utilized in this project:

![Prototype Design](image)

5. CONCLUSION
This project successfully accomplished its intended goal of developing a device for rapid, effective, circulatory support for remote areas. The importance of this accomplishment is that DMVA can be made available to re-establish normal hemodynamics in patients suffering circulatory arrest in the field. The portable, compact, user-friendly DMVA drive system can be operated with minimal expertise. The AD can be utilized as a life-saving device by Military Medical Personnel in the field. A circulatory support for such application is otherwise not available to save soldiers or civilians outside the hospital environment. Reducing DMVA’s operation to a user friendly, AD makes it more feasible for use in the hospital setting as well. Future goals will be to utilize the new prototype design in clinical trials to demonstrate efficacy for resuscitative circulatory support.
6. PUBLICATIONS, ABSTRACTS, and PRESENTATIONS

SCIENTIFIC PUBLICATIONS:

ABSTRACTS/PRESENTATIONS:

7. INVENTIONS, PATENTS, and LICENSES

Nothing to report
8. REPORTABLE OUTCOMES
Given the understanding that a HP could achieve similar functionality as the ST drives, the project followed the below approach:

Initial Approach

- Compare volume-regulated hand pump to existing pressure-regulated switch-tank system for equivalency of pump and myocardial function

Data was acquired using the manually driven hand pump in comparison to ST system to identify optimal support dynamics.
Optimal dynamics during hand pump support were verified as similar to the optimal hemodynamics during ST support. Combined drive support analysis was used to set-up in-vivo testing.

In-vivo testing used both large ovine and canine to represent clinically relevant heart sizes with the pig representative of an average adult heart:

The below support algorithm was utilized to obtain support data during periods of cardiac arrest as well as varied degrees of cardiac failure during the animal experiments.

Data was collected on the custom data acquisition system to compare hemodynamics between different states of support and identify optimal drive characteristics of the HP.
Comparisons between hemodynamic states were compared during ideal settings with the ST system versus the HP indicating the HP resulted in equivalent, if not better hemodynamic results during support of either the fibrillating or failing heart.
Stroke Work Calculations

Stroke Work Comparisons

Mean SW (mm Hg l)

- HF Support > HF Unsupported (p < 0.05)
- HF = Heart Failure
- VF = Ventricular Fibrillation
- SW = Stroke Work

ECHO Heart Failure

ECHO Heart Failure Comparison

* Support > Unsupported (p < 0.05)

- Peak Systolic SR (1/s)
- Peak Diastolic SR (1/s)

- Unsupported HF
- HF Switch Tank
- HF Hand Pump
Requirements for powering the hand pump were thereby developed.
Proprietary interrogation of waveforms was also utilized for these exercises.

A linear actuator was selected for the first prototype drive:
The initial system was housed along with all control components
Dr. George L. Anstadt provided insight regarding quality control of all fabricated cups as well as additional verification pertaining to idealized support dynamics during the experiments.

This included Dr. George L. Anstadt’s oversight of device installation and optimal drive dynamics during animal experiments.
Data and performance assessments obtained from the initial prototype drive were analyzed to determine specifications for building the automated prototype drive:

Construction of Final Prototype

Future: Further Clinical Experience

Successful Resuscitation:
Cardiac arrest & cardiogenic shock

Successful Extended Support:
Bridge to Tx & other VADs

Rapid Insertion Extended Support Bridging to CPB & VADS Removal via Stentotomy
9. OTHER ACHIEVEMENTS
Nothing to report.

10. REFERENCES

11. APPENDICES

CURRICULUM VITAE:

MARK P. ANSTADT, MD

Professor, Department of Surgery
Boonshoft School of Medicine, Wright State University
mark.anstadt@wright.edu

President, Miami Valley Heart & Lung Surgeons, LLC
30 E. Apple St., Suite 6252, Dayton, OH 45409
937.208.6060 o
937.208.6061 f
mpanstadt@aol.com

EDUCATION

The Pennsylvania State University
State College, Pennsylvania
Animal Biosciences
B.S., 1982

Wright State University School of Medicine
Dayton, Ohio
Medicine
M.D., 1986

POSTGRADUATE TRAINING

The Ohio State University Hospitals, Columbus, Ohio
Intern General Surgery
1986-1987

Resident General Surgery
1987-1988

Duke University Medical Center, Durham, NC
Research Fellow Cardiothoracic Surgery
1988-1993

Resident General Surgery
1993-1995

Chief Resident General Surgery
1995-1996

Clinical Fellow Cardiothoracic Surgery
1996-1997

Teaching Scholar Cardiothoracic Surgery
1997-1998

Wright State University
School of Graduate Studies Healthcare Management Certificate
Jan -Dec 2013

CLINICAL APPOINTMENTS
Miami Valley Hospital
Vice-Chairman
Department of Surgery
Chairman, Section of
Cardiothoracic Surgery
Vice Chairman
Section of Cardiothoracic Surgery
Chairman
Department of Surgery
Vice Chairman
Department of Surgery
Medical Director
Cardiothoracic Surgery
Chief of Staff - Nominee
Jun 2014-Present
May 2007-June 2014
Jun 2008-Jun 2010
Jun 2006-Jun 2008
Dec 2004-April 2012
Jul 2011

Upper Valley Medical Center
Chief Cardiovascular &
Thoracic Section
Troy, OH
Jun 2008-Present

VA Medical Center
Consultant - Thoracic Surgeon
Dayton, OH
Apr 2004-Present

The Medical College of Georgia, Augusta, GA
Section of Cardiothoracic Surgery
Thoracic Surgery Training Program
Chief
Director
Associate Director
Jun 2002-Jul 2003
May 2002-Aug 2003
Jul 2000-May 2002

ACADEMIC APPOINTMENTS

Wright State University, Dayton, OH
Department of Surgery
Professor
Associate Professor
Department of Pharmacology & Toxicology
Adjunct, Associate Professor
Department of Graduate Studies
Associate Graduate Faculty
Jul 2011-Present
Apr 2004-Jun 2011
Apr 2006-Present
Nov 2005-Present

The Medical College of Georgia, Augusta, GA
Department of Surgery
Assistant Professor
Department of Pharmacology & Toxicology
Assistant Professor
Vascular Biology Center
Associate Member
Jul 2000-Jun 2004
Dec 2001-Jun 2004
Jan 2001-Jun 2004

Baylor College of Medicine, Houston, TX
The Michael E. DeBakey Dept of Surgery
Assistant Professor
Jul 1998-Jul 2000

CERTIFICATIONS

Diplomat, The American Board of Surgery
Recertification
Dec 1997
Dec 2007

Diplomat, The American Board of Thoracic Surgery
Recertification
Jun 1999
Dec 2007

ACLS
ATLS
ATLS

MEDICAL LICENSURE

State of Ohio
State of NC
State of Georgia
State of Illinois
MILITARY SERVICE

U.S. Army Reserves Medical Corps
Colonel, 4005th U.S. Army Hospital, Houston, TX
Mar 1987-Present

PROFESSIONAL MEMBERSHIP

American Medical Association 1984-Present
American Society for Artificial Internal Organs 1986-Present
FACS, American College of Surgeons 1997-Present
David C. Sabiston, Surgical Society 1998-Present
Michael E. DeBakey International Surgical Society 1999-Present
Society of Thoracic Surgeons 1999-Present
American College of Surgeons Oncology Group 2000-Present
Southern Thoracic Surgical Association 2002-Present
FACCP, American College of CHEST Physicians 2002-Present
American Thoracic Society 2003-Present
American Heart Association 2005-Present

PATENTS

Sensor-Equipped and Algorithm-Controlled Direct Mechanical Ventricular Assist Device
Issued: Oct 2008

Method and Apparatus for Minimally Invasive Direct Mechanical Ventricular Actuation
Issued: Jun 2010

GRANTS & AWARDS

American Heart Association, Miami Valley Chapter May 1985-May 1986
Research Grant Investigating DMVA during Ischemic Reperfusion

Wright State University School of Medicine Research Grant Apr 1985
An Evaluation of DMVA on Myocardial Infarct Size in an Occlusion-Reperfusion Model

Wright State University School of Medicine Sep 1985
Golden Speculum Award for Excellence in Obstetrics & Gynecology

Wright State University School of Medicine Jun 1986
Upjohn Achievement Award

The Ohio State University School of Medicine Jun 1988
House Staff Teaching Award

NIH, National Research Service Award Aug 1988-Aug 1990
Investigating Mechanical Actuation of the Heart

The American Society for Artificial Internal Organs May 1989
Travel Fellowship Award

McGill University Oct 1990
Heward Visiting Scientist Fellowship

Nippon Zeon Research Grant Jan 1991
Investigating DMVA: Perfusion during Regional Myocardial Ischemia and Reperfusion

Upjohn Research Grant Apr 1991
Investigation Lazaroids for Resuscitation

NIH, Cardiovascular Research Grant Jul 1991-Jul 1993
Investigating Mechanical Actuation of the Heart: Laboratory and Clinical Studies,

Collaborating Investigator, NIH Project Grant Jul 1992-Jul 1995
Role of Endothelin-1 Activation in Vascular Complications of Diabetes
PI, Medical College of Georgia Research Award

Endothelin Activation in Coronary Artery Grafting Surgery,

Oct 2001-Jun 2003

Co-PI, ONS Foundation Grant Research Award

Symptoms of Post Surgical Patients with Lung Cancer,

Oct 2002-Sep 2003

Co-PI, American Diabetes Association Research Award

Endothelin-1 and Vascular Mediated Remodeling in Diabetes,

Jan 2003-Dec 2005

PI, Research & Development Funding, Myotech, LLC

Developing Small Animal Models,

Outstanding Alumni Award

Boonshoft School of Medicine, Wright State University, Dayton, OH

Feb 7, 2009

PI, DOD Contract No. W81XWH-08-1-0484

New Heart Failure Treatment Capability for Remote Environments,

May 2009-Jun 2013

RECENT COMMITTEE ACTIVITY

<table>
<thead>
<tr>
<th>Committee Name</th>
<th>Start Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miami Valley Hospital Cancer Committee</td>
<td>2011-Present</td>
</tr>
<tr>
<td>WSU Dept Surgery, Research Committee</td>
<td>2009-Present</td>
</tr>
<tr>
<td>Medical Staff Executive Committee</td>
<td>2008-2010</td>
</tr>
<tr>
<td>Endoscopy Committee</td>
<td>2008-Present</td>
</tr>
<tr>
<td>Operating Room Committee</td>
<td>2007-Present</td>
</tr>
<tr>
<td>Endovascular Stent Committee</td>
<td>2006-Present</td>
</tr>
<tr>
<td>Trauma Committee</td>
<td>2006-Present</td>
</tr>
</tbody>
</table>

INDUSTRY RELATED ACTIVITIES

Consultant - SMEC, Inc., Cookeville, TN

Intra-aortic Balloon Pump & Internal Defibrillator R&D and Fabrication

1976-1982

Consultant - Applied Sciences Inc, Dayton, OH

Medical Devices; R&D

1982-1988

Vice President - Advanced Resuscitation Innovations, Inc, Dayton, OH

Medical Devices/R&D

1992-1996

Chair, Industry Speaks Session

Cups, Sacs, Spinners, and Rollers--Simpler Methods of Circulatory Support, 39th Annual Meeting of ASAIO

1992-1993

Consultant - Williamson Advisors Inc, Atlanta, GA

Medical Products Ventures

1994-2003

Consultant & Member Board of Directors - Cardio Technologies Inc, New York, NY

DMVA R&D

1996-2000

Medical Director, Consultant & Member Board of Directors - Myotech, Pittsford, NY

DMVA R&D

2003-2008

President - LifeBridge Technologies, LLC, Pittsford, NY

DMVA R&D

2008-Present

CHAPTERS

SCIENTIFIC PUBLICATIONS

Amato MT, Hendry PJ, Anstadt MP, Plunkett MD, Taber JE, Lowe JE. Effects of Amiodarone Versus Dobutamine on Subsequent Tolerance to Global Myocardial Ischemia. Surgical Forum XLII, peripheral pulses are equal and adequate throughout, no significant JVD or edema 1991;253-254.

Duhaylongsod FG, Anstadt MP, Tedder M, Crawford FA, Jr., Wolfe WG, Lowe JE: Depletion of the Ventricular Mitochondrial Oxygen Store: The Etiology of Tachycardia-Induced Cardiomyopathy. Surgical Forum XLIII, peripheral pulses are equal and adequate throughout, no significant JVD or edema. 1992;257-260.

ABSTRACTS

Presented at the 13th World Congress of the International Society for Artificial Organs, November 2001.

Anstadt MP, Franga D, Caldwell W, Ergul A: *Mechanical Cardiac Actuation of the Failing Heart Reduces Matrix Metalloproteinases Activity.* ASAIO, 2006;52(2), 61A.

Wozniak CJ, Campbell AM, Gargac SM, Darner RJ, **Anstadt MP:** *Non-blood Contacting Biventricular Mechanical Actuation of the Failing Heart.* Presented at the AATS/Cleveland Clinic Kaufman Symposium of 21st Century Treatment of Heart Failure, October 2006.

Wozniak CJ, Pothoulakis AJ, Gargac SM, Darner RJ, **Anstadt MP:** *Velocity Vector Imaging Characterizes Systolic and Diastolic Augmentation of the Failing Heart During Non-Blood Contacting Ventricular Actuation.* JACC, 2007;49(9), supp 1, 70A.

Wozniak CJ, Pothoulakis AJ, Gargac SM, Darner RJ, **Anstadt MP:** *Echocardiographic Assessment of Direct Mechanical Ventricular Actuation.* ASAIO, 2007;53(2), 40A.

Augmentation During Direct Mechanical Cardiac Actuation. ASAIO, 2008;54(2),32A.

PRESENTATIONS

Thirty-third Annual Meeting, American Association for Artificial Internal Organs, May 1987: *Direct Mechanical Ventricular Assistance Promotes Salvage of Ischemic Myocardium.*

Twenty-fifth Annual Spring Cardiovascular Symposium, Duke University Medical Center, April 1989: *Comparison of Direct Mechanical Ventricular Actuation (DMVA) and Cardiopulmonary Bypass (CPB).*

Thirty-fifth Annual Meeting, American Association for Artificial Internal Organs, May 1989: *Comparisons of Direct Mechanical Ventricular Actuation (DMVA) and Cardiopulmonary Bypass (CPB).*

Annual Meeting, University Association of Emergency Medicine, May 1989: *Mechanical Ventricular Assistance Following Fifteen Minutes of Ventricular Fibrillation in a Swine Model.*

31st Annual Meeting of the Society of University Surgeons, Feb. 1990: *Mechanical Cardiac Actuation Achieves Hemodynamics Similar to CPB.*

111th Annual Meeting of the American Surgical Association, April 13, 1991: *Pulsatile Reperfusion Following Cerebral Ischemia Improves Neurologic Outcome.*

41st Annual Scientific Session of the American College of Cardiology, Dallas, Texas, and April 12-16, 1992: Thermodilution Techniques Eroneously Predict Flow Alterations during Cardiac Failure.

38th Annual Meeting of the American Society for Artificial Internal Organs, Nashville, Tennessee, May 7-9, 1992: Ischemic Preconditioning Results from Severe Global Myocardial Ischemia.

40th Annual Meeting of the American Society for Artificial Internal Organs, San Francisco, CA, April 13-14, 1994: Cardiac Tolerance to Mechanical Actuation is Affected by Biomaterial Characteristics.

Cardiovascular Science and Technology Conference, December 9-11, 1994: Recent Progress Using the Anstadt Cup for Non-Blood Contacting Circulatory Support.

41st Annual Meeting of the American Society for Artificial Internal Organs, Chicago, Ill, May 4-6, 1995: Aorta-coronary Saphenous Vein Graft Function After Mechanical Cardiac Massage.
42nd Annual Meeting of the American Society for Artificial Internal Organs, Washington, DC, May 2-5, 1996: Panel:
Artificial Organ Use in Emergency Cardiopulmonary Resuscitation - Use of a New Device for Direct Cardiac Compression during Open-Chest Cardiac Resuscitation.

The 52nd Annual Meeting of the Southwestern Surgical Conference, April 2000: Can the Risk for Recurrent Thrombotic Thrombocytopenic Purpura be Predicted Preoperatively?

66th Annual Meeting of the American College of Chest Physicians, October 22, 1999: Is Basaloid Lung Carcinoma a Rare and Highly Aggressive Variant of Non-Small Cell Lung Cancer?

Grand Rounds at Middlesex Hospital, University College London, Sept 13, 2002: Direct Mechanical Ventricular Actuation for Resuscitative Circulatory Support.

52nd Annual Conference ASAIO, Chicago, IL, June 7-10, 2006: Mechanical Cardiac Actuation of the Failing Heart Reduces Matrix Metalloproteinases Activity.

53rd Annual Conference ASAIO, Chicago, IL, June 7-10, 2007: Echocardiographic Assessment of Direct Mechanical Ventricular Actuation.

Anstadt, MP Esophageal Disease in the Geriatric Patient – Presented at the 24th Annual Statewide Geriatric Medicine Conference, October 11-13, 2013.

PROFESSIONAL CONTINUING EDUCATION COURSES

The Society of Thoracic Surgeons Thoracic Endografting Symposium Aug 26-28, 2005
Intuitive Surgical daVinci Surgical System & EndoWrist Instruments April 4, 2006
for a Console Surgeon
Boston Scientific Endoscopic Radial Artery Harvest Course July 31, 2007
St. Jude Presentation & Discussion on Atrial Fibrillation August 15, 2007 Cleveland Clinic
Transcatheter Therapy for Structural Cardiovascular Disease October 4, 2007
Advanced Trauma Life Support Instructor Course, #31263-I January 17-18, 2008
Advanced Trauma Life Support Course Instructor, #30873-P June 16-17, 2008
Cook Medical Advanced Endovascular AAA Physician Workshop June 11-13, 2008
Baylor College of Medicine Sternal Wound Management: New Surgical Strategies June 14, 2008
Edwards Lifesciences Heart Valve Therapy, Global Mitral Summit June 12-13, 2009
Advanced Trauma Life Support Course Instructor, #30873-P June 17-18, 2009
Premier Health Partners Physician Leadership Series, Levels I-III, Annual Courses 2007- 2011
Minimally Invasive Thoracic VATS Course, Los Angeles, CA Apr 6-10, 2010
Society of Thoracic Surgeons, Minimally Invasive Valve Symposium, Chicago, IL Dec. 2-4, 2010
Endovascular Mini-Fellowship, Arizona Heart Institute, Phoenix, AZ Apr 16-20, 2011
Synthes Rib Trauma Workshop, Grant Medical Center, Columbus, OH Sept. 17, 2011
Covidien Minimally Invasive VATS Lobectomy Course, National Harbor, MD Oct. 12-13, 2011
Medtronic Endovascular Therapies Peer to Peer Training EVAR, Houston, TX Oct. 29-30, 2012
Medtronic Endovascular Therapies Peer to Peer Training TEVAR/TEVAR Training, Durham, NC April 34-25, 2013
Mini-fellowship in Thoracic VATS, Los Angeles, CA August 19-21, 2014
Advanced Thoracic Round-Table Discussion, New Orleans, Lo August 15, 2014
Midwest Valve Symposium, Chicago, Ill June 16-17, 2014
Covidien VATS Lobectomy Mini-Fellowship, Los Angeles, CA August 19-21, 2014
Summit for Perfusion Imaging and Excellence in Surgery, Las Vegas, NV September 13, 2014

REFERENCES

George R. Brown, MD
Cardiothoracic Surgery
937-371-4111

Mukul S. Chandra, MD
Miami Valley Cardiologists
Cardiology
937-681-0133

Marion F. Brown, MD
Miami Valley Hospital, Director Surgical Services
Cardiothoracic Surgery
937-689-1654

Steven L. Chambers, MD
Pulmonary & Critical Care Consultants
Pulmonary/Critical Care
937-271-5699

Syed Najeed, MD
Dayton Cardiology & Vascular Consultants
Cardiology
513-702-5799

Jeffrey Pence, MD
Dayton Children’s Hospital
Pediatric Surgery
252-412-2697

Anthony Perez-Tamayo, MD
Cardiothoracic Surgery
708-822-3064

Paul F. Heyse, MD
Miami Valley Heart & Lung Surgeons
Vascular/General Surgery
937-475-4255