Blast Mitigation Seat Analysis – Evaluation of Lumbar Compression Data Trends in 5th Percentile Female Anthropomorphic Test Device Performance Compared to 50th Percentile Male Anthropomorphic Test Device in Drop Tower Testing

Kelly Bosch, PE

IDETC 2016
August 21-24, 2016, Charlotte, North Carolina, USA

Disclaimer: Reference herein to any specific commercial company, product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the Department of the Army (DoA). The opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or the DoA, and shall not be used for advertising or product endorsement purposes.
• Baseline drop tower data collected from Anthropomorphic Test Devices (ATDs) seated in 12 models of Commercial Off-The-Shelf (COTS) and prototype blast energy-attenuating (EA) seats in various phases of engineering design development

• Testing completed with:
 – 5th Percentile Female ATDs and 50th Percentile Male Hybrid III ATDs
 – 200 g or 350 g pulse

• ATD data quality-checked and preliminary comparisons conducted

• ATD injury assessment values compared to Occupant Centric Protection (OCP) Injury Assessment Reference Values (IARVs)

• ATD data channels recorded include:
 – Accelerations
 • Head (Resultant, HIC15, HIC36)
 • Chest (Resultant)
 • Pelvis (DRI)
 – Forces/Moments
 • Upper Neck
 • Lumbar
 • Femur
 • Upper Tibia
 • Lower Tibia
Testing Background

- Drop tower located at TARDEC Occupant Protection (OP) Laboratory
- Testing simulated the initial vertical loading event during an underbody blast
- Pulse profile variables include:
 - Maximum acceleration
 - Time to peak
 - Delta velocity
- Pulse profile tuning is achieved by changing:
 - Drop height
 - Platform payload
 - Energy absorbing medium
- Test matrix designed to maximize information gained
 - Focus of this study is to evaluate the overall accelerative loading trends of the 5th percentile female ATD when compared to the 50th percentile male ATD

<table>
<thead>
<tr>
<th>Seat ID</th>
<th>5th PPE</th>
<th>5th No PPE</th>
<th>50th PPE</th>
<th>50th No PPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>G</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>H</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>J</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>K</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>L</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>16</td>
<td>19</td>
<td>3</td>
</tr>
</tbody>
</table>

The graph shows the acceleration over time for different pulse profiles, with 200g and 350g profiles.
Testing Background

- Most EA seats are designed for the average-sized male:
 - ATD dimensions:
 - 5’9”
 - 171 lbs
- US Army is expanding occupant protection focus to include small females:
 - ATD dimensions:
 - 4’11”
 - 108 lbs
- Matched pair testing conducted in multiple EA seats to assess differences in energy absorption due to occupant size
- Focus on pelvis acceleration (Az) and lumbar compressive force (Fz)
- Results
 - Some seats able to maintain same loading profiles and protection regardless of occupant size
 - Some seats show marked differences
 - Continued research and engineering development is needed to improve seat energy absorption properties and EA mechanisms to ensure all Soldiers, regardless of size and weight, are provided with equivalent protection
Occupant Size Difference

5th Percentile Female (4’11”)

50th Percentile Male (5’9”)
Accelerative Loading Profiles

Platform acceleration

Stroking seat acceleration

Pelvis acceleration

Lumbar compression
Lumbar Compression

- Lumbar compression is considered the “go/no-go” gage for seat performance.
- Clearest and most consistent data signal in lower body – measured with load cell.
- Compression data normalized
 - $> 1.0 \rightarrow$ exceeds IARV for 50th percentile male (blue dotted line)
 - $> 0.58 \rightarrow$ exceeds IARV for 5th percentile female (red dotted line).
- Large variation in ATD lumbar response when subjected to the same floor impulse but with different seat types, including a non-stroking trace from Seat F (purple dashed line).
- Properties of seat design and EA mechanism dictate the amplitude and duration of the force imparted on the occupant.
- Ideal EA device would reduce peak load and duration to reduce injury probability.

5th Percentile Female – 200 g Pulse

![Graph showing lumbar compression data](image-url)
• No distinct trend at 200 g for peak lumbar compression based on occupant size
• Several tests at 200 g had lumbar compression below the IARV threshold

* = exceeded relative IARV limit (1.0 for 50th male and 0.58 for 5th female)

Solid bars = 5th female
Dotted bars = 50th male

Red = 5th female lumbar compression higher than 50th male
Yellow = 5th female compression within 10% of 50th male
Green = 5th female lumbar compression lower than 50th male
Lumbar Compression – 350 g

- No distinct trend at 350 g for peak lumbar compression based on occupant size
- All tests at 350 g had lumbar compression below the IARV threshold
- Lumbar traces show large variations in seat response (similar to 200 g)

<table>
<thead>
<tr>
<th>Seat ID</th>
<th>Test Number</th>
<th>ATD</th>
<th>Lumbar Fz Peak Compression (Normalized)</th>
<th>Difference in Average Peak Lumbar Compression*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>13</td>
<td>5th</td>
<td>1.76</td>
<td>+35%</td>
</tr>
<tr>
<td>A</td>
<td>9</td>
<td>5th</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td>5th</td>
<td>0.84</td>
<td>-32%</td>
</tr>
<tr>
<td>C</td>
<td>8</td>
<td>5th</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>50th</td>
<td>1.39</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>6</td>
<td>50th</td>
<td>1.39</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>10</td>
<td>5th</td>
<td>0.65</td>
<td>-34%</td>
</tr>
<tr>
<td>D</td>
<td>11</td>
<td>5th</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>50th</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>16</td>
<td>50th</td>
<td>1.04</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>3</td>
<td>5th</td>
<td>1.50</td>
<td>+31%</td>
</tr>
<tr>
<td>L</td>
<td>8</td>
<td>5th</td>
<td>1.99</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>9</td>
<td>5th</td>
<td>1.73</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>24</td>
<td>5th</td>
<td>1.31</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>25</td>
<td>5th</td>
<td>2.02</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>13</td>
<td>50th</td>
<td>1.31</td>
<td></td>
</tr>
</tbody>
</table>

* *+ denotes 5th percentile female lumbar load is greater than 50th percentile male
Lumbar Compression

- Slope of initial onset compression loading was also compared for the two occupants
- Majority of tests showed that initial compression rate was very similar between the 5th female and 50th male ATD across almost all seat models
- Seat C features initial loading rates for both occupant sizes that are almost identical during the initial ramping period
- Seats L and K, which are variations of the same seat model, featured the most varied loading rates with a less distinct trend between the two occupant sizes
Pelvis Acceleration – 200 g

- Pelvis data was noisy or unusable in several series
- 5th female is more likely to have a higher pelvis acceleration for each seat configuration

* = exceeded relative IARV limit for lumbar compression
Pelvis Acceleration – 350 g

- 5th female is more likely to have a higher pelvis acceleration at 350 g
- Seat design greatly affects peak pelvis acceleration
 - Seat performance is not equal
- Seat D tested at both drop severities
 - Pelvis acceleration reaction differences varied (+46% vs +7%)
 - Seat D is sensitive to occupant size with varying drop heights

<table>
<thead>
<tr>
<th>Seat ID</th>
<th>Test Number</th>
<th>ATD</th>
<th>Average Peak Accel (g)</th>
<th>Difference in Average Peak Accel*</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>7</td>
<td>5th</td>
<td>-34.9</td>
<td>-9%</td>
</tr>
<tr>
<td>C</td>
<td>8</td>
<td>5th</td>
<td>-38.3</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>50th</td>
<td>-74.5</td>
<td>+7%</td>
</tr>
<tr>
<td>C</td>
<td>6</td>
<td>50th</td>
<td>-69.2</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>10</td>
<td>5th</td>
<td>-67.3</td>
<td>+44%</td>
</tr>
<tr>
<td>D</td>
<td>11</td>
<td>5th</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>50th</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>16</td>
<td>50th</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>3</td>
<td>5th</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>8</td>
<td>5th</td>
<td>-42.8</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>9</td>
<td>5th</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>24</td>
<td>5th</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>25</td>
<td>5th</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>13</td>
<td>50th</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pelvis Velocity – 200 g

- Pelvis velocity calculated from integral of pelvis accelerometer
- Peak velocity is higher for 5th female for every seat
- Length of accelerative loading period affects peak velocity
- In general, 5th female usually has a higher peak velocity, but 50th male has a higher lumbar compressive force
Pelvis Velocity – 350 g

- 5th female consistently has higher pelvis velocity at 350 g
- Velocities tend to equal out across seat models at higher drop height
- In general, 5th female usually has a higher peak velocity, but 50th male has a higher lumbar compressive force
Seat Performance Variance

- 350 g runs plotted for pelvis acceleration, velocity, and lumbar compression
- Data shows wide variance in pelvis and lumbar response due to occupant size and seat performance
- Overall effect of seat performance less pronounced for pelvis velocity
- Seat velocity and dynamic displacement not recorded for this test series
 - Would provide key information for effectiveness of seat
 - Displacement/time history data should be recorded for all future test series
• Data analysis confirmed assumption that seat design plays a significant role in pelvis and lumbar outputs
• Some of the current seats tested are able to adequately protect both the 50th male and 5th female
• Energy attenuation performance varies as a factor of occupant size
• Effectiveness of EA mechanism determined by lumbar compression
• Future seat designs must account for a wide range of occupant weights
• Further understanding of dynamic stroke properties of EA mechanisms and their effect on lumbar compression are key to improving seat designs
• Future work:
 – Continued interfacing with seat manufacturers to broaden occupant protection range
 – Record dynamic stroke on all drop tower tests to evaluate correlation between displacement rate and lumbar compression
QUESTIONS?