Software-Intensive Systems Producibility Research

Mr. Robert Gold
Associate Director, Software and Embedded Systems
DUSD (S&T)
May 2, 2006
Presentation Overview

• Agenda
 – DoD’s needs for producing Software-Intensive Systems
 • F-22, SBIRS High
 • Future Developments
 – Current efforts to address Software-Intensive Systems (SIS) Producibility
 – Envisioned program
DoD’s SIS Challenge

“DoD estimates that it spends about 40% of its RDT&E budget on software - $21B for FY2003” – GAO

“[Software] continues to grow in importance in our weapons systems - and remains a significant contributor to program cost, schedule and performance shortfalls.” -- Pete Aldridge
Opportunities for Improvement

• Development tools do not adequately provide system-level awareness
 – Start-up, shut-down, reconfiguration
 – Establish, track, assess system-level properties
 • Reliability, Resource utilization, Deadlines etc.
 – Enforcement of design principles during development

• Development details still dominated by expert involvement and peer reviews
Capability Provided by Software in DoD Systems is Increasing but so are the Challenges...

Ref: Defense Systems Management College
DoD Software is Growing in Size and Complexity

Total Onboard Computer Capacity (OFP)

Opportunities for Improvement

• Software and System development tool suites must:
 – Automate tasks not done consistently well by humans
 • Code generation
 • Enforcement of architectural policies
 – Provide consolidated system-awareness
 • Service, resource and application prioritization
 • Design trade-offs
 – Simplify testing and verification
“The software task alone is five times larger than that required for Joint Strike Fighter and ten times larger than the F-22, which after two decades is finally meeting its software requirements.”

- Congressman Curt Weldon, House Armed Services Committee tactical air and land forces subcommittee hearing April 1, 2004 as quoted in Defense News April 12, 2004

• Emphasis on network dependence
• V&V will be difficult
Opportunities for Improvement

• Development environments for net-reliant embedded systems must:
 – Readily embrace emerging data and knowledge management strategies
 – Automatically facilitate and assess interoperability protocol implementation compatibility
 – Address system-of-systems design
 • Properties-in-the-large, composeability, security
 – Accommodate data and functional uncertainties associated with ad-hoc networks and transient application relationships

• System-of-Systems Verification
Emerging Interests

• Software Assurance
 – Ensuring applications and infrastructure are free from vulnerabilities and malware

• Open Technology Development
 – Open Source
 – Open Standards
Overview – Existing Program

<table>
<thead>
<tr>
<th></th>
<th>FY05</th>
<th>FY06</th>
<th>FY07</th>
<th>FY08</th>
<th>FY09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workshops</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAS Study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systems and Software</td>
<td></td>
<td></td>
<td>Phase I</td>
<td>Phase II</td>
<td></td>
</tr>
<tr>
<td>Test Track</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional Research</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topic(s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Effort Ramp-up
Workshops

• #1 Establish Overall Research Agenda
 – Held May 17/18 2005 - ZAI, Rosslyn VA

• #2 Establish Research Goals, Infrastructure Requirements
 – Held July 2005 – UC Berkeley

• #3 Industry – Transition & Motivation
 – Scheduled for May 17-19 2006
 • ZAI Rosslyn VA
 – Include Gov/Industry Exec Session May 19
National Academies Study

• FY05-07 (2 year effort),
 – Independent expert committee (15), Workshops, Interim & Final reports

• Assess
 – Progress in tech base
 – R&D organization
 – Tech transition
 – Long-term SIS maintenance and evolution

• Recommend National-scale SIS S&T investments
 – Collaborate with other Federal investments
Systems and Software Test Track

• Purpose
 – Bring researchers together with developers and development artifacts to ‘test drive’ emerging technologies and techniques

• Activities
 – FY06 – Phase 1 Planning and Definition (6 mos)
 • Scope, funding estimate, programmatic
 – FY07 – Implementation
 • Establish facility
 • Begin populating with developer products,
 – FY08 –
 • Full operations
 • Allow researchers to apply innovative tools, technologies and techniques
Other On-going Activities

• STTR topics
 – Error Handling paths and policies analysis
 – Security Escorts for Not-Yet-Trusted software
 – Software System Reliability Analysis
 – Assessing Interoperability Through Cross-Domain Protocol Compatibility Analysis

• HPEC-SI
 – Signal processing library

• SBIR Topics
 – Design Visualization
 – Malicious Code Diffuser
 – Robust Complex Systems
 – Software Test Engineering: Analysis of Trace Semantics
 – A Software Hub for High Assurance Model-Driven Development and Analysis
 – Software Verification

• Open Technology Development
 – Blend of open source and open systems approaches
What We Need . . .

• A 7 year, $20-32M per year investment in software-intensive systems development technologies
 – Research
 – Testing
 – Transition
Return on Investment (ROI)

Assumptions

- New effort, 7 year investment
- Calculated for 10 future acquisition programs
- Based on estimated industry productivity¹ and rework for DoD systems²

Combined Improvement ROI

<table>
<thead>
<tr>
<th>Reduction in Rework</th>
<th>10% Improvement in Productivity</th>
<th>20% Improvement in Productivity</th>
<th>50% Improvement in Productivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% Reduction</td>
<td>7:1</td>
<td>11:1</td>
<td>21:1</td>
</tr>
<tr>
<td>20% Reduction</td>
<td>9:1</td>
<td>14:1</td>
<td>24:1</td>
</tr>
<tr>
<td>50% Reduction</td>
<td>16:1</td>
<td>20:1</td>
<td>30:1</td>
</tr>
</tbody>
</table>

¹ – DACS Software Tech News Volume 7, Number 2 Article “Industry Software Cost, Quality and Productivity Benchmarks” by Donald Reifer, June 2004
DoD Software S&T

• Current State of Play:
 • Research investments tailing off
 • Government expertise-base has atrophied
 • Software tools and techniques sometimes developed by acquisition programs themselves
 • CMU Software Engineering Institute focused on SWE process and transition, not advancing technology base

• Missed Opportunities: No DoD-wide approach to
 • Working with acquisition programs to address common SW technology issues
 • Developing standards (e.g., CORBA, UML)
 • Engaging 3rd-party software vendors (e.g., Rational (IBM), Mathworks, Green Hills Software)
What about Industry?

• Industry investments are usually inappropriate for DoD problems
 – Research is targeted for specific products, not general long-term improvements
 – Focused on selling software products – quality and reliability are lower priorities
 – Global resourcing for research and development limits applicability to DoD

• For Defense contractors -
 – Software may not be a direct profit driver
 – Software technologies difficult to retain as company IP
Envisioned Program Overview

• **Description:**
 – Reinvigorate SIS development research and provide dedicated efforts to demonstrate and transition improvements to acquisition programs
 – Enable DoD engineers and industry partners to develop and acquire SIS with reasonable and repeatable cost, schedule and performance

• **Benefit:** What is the benefit to the Department?
 – Increase efficiency, reduce cost and schedule overruns, and reduce critical failures associated with software for warfighting and management
 – Successful development of software that meets our growing expectations in software program size and complexity

• **Major Elements:**
 – Research - Technologies, Tools and Techniques
 – Systems and Software Test Track
 – Transition
Previous DoD S&T Investments Have Had a Major Impact

Examples:

- **Real-Time Computing**: an Efficient Principled Approach to Process Task Coordination and Schedulability
- **MoBIES**: Model-Based Integration of Embedded Software for Design and Testing
- **Quorum**: Quality-of-Service Middleware for Robust, Portable Mission-Critical Applications capable of Adapting to the Dynamic, Uncertain Conditions of Network-Centric Warfare
Call for Action

• DoD needs to reinvigorate its investments in software and systems development technologies
 – Increased dependence on software
 – Common problem for acquisition programs

• This Cross-Component issue necessitates a jointly coordinated effort
 – We welcome cooperation with Industry, Academia and other Federal agencies