Smart Push, Smart Pull, Sensor to Shooter in a Multi-Level Secure/Safe (MLS) Infrastructure

Gordon M. Uchenick
Senior Mentor / Principal Engineer
Objective Interface Systems, Inc.

W. Mark Vanfleet
Senior Mathematician
Senior INFOSEC Security Analyst
National Security Agency
The Vision: Seamless Data Flow
 - Sensor to Shooter
 - Sensor to Weapon

Information Assurance Requirements of the Vision

Design Guidance

Reference Monitors

Candidate Technologies

Multiple Independent Levels of Security
Each sensor type reveals different information, nominally (source: wikipedia.org):

- Radar
- Sonar and other acoustic
- Infra-red / Thermal imagery
- HDTV imagery
- Seismic sensors
- Magnetic sensors
- Electronic Support Measures (ESM)
- Phased Array

Direct fusion from disparate sources results in better electronic information:

- More accurate
- More complete
- More dependable

Indirect fusion merges electronic information with human input, merging:

- ELINT: Electronic Intelligence
- HUMINT: Human Intelligence
- COMINT: Communications Intelligence
- SIGINT: Signals Intelligence
- IMINT: Imagery Intelligence
Sensor Fusion

- Data derived from Direct Fusion \((contrived)\)
 - What is it?
 - \(T-72\) Tank
 - What is its condition?
 - \(Lightly\ Damaged\)
 - Where is it now?
 - \(Longitude / Latitude\)
 - Where has it been?
 - \(Track\)

- Characteristics of the Data
 - Multiple sensor devices on a surveillance platform
 - Sensor devices produce giga-gobs of raw data
 - Real-time transmission of all raw sensor data is impractical
 - Direct Fusion likely to be performed on the platform
 - Raw sensor data likely to be TOP SECRET
 - Derived data likely to be SECRET NOFORN
 - Data derived from Direct Fusion shared via \textit{Smart Push}\n
\textbf{Smart Push, Smart Pull, Sensor to Shooter in a Multi-Level Secure/Safe (MLS) Infrastructure}\n
MLS Threat Database

- Surveillance platforms use SOA to populate MLS Web Server database
 - MLS Web Server database likely to be SECRET NOFORN
- Merged with data about each threat derived from Indirect Fusion:
 - Who controls it?
 - What is its threat potential?
 - What are its intentions?
- Many different types of users need the data:
 - Cleared US Military
 - At various levels
 - Multiple Communities of Interest
 - Services, Job Titles, etc.
 - Uncleared US Military in vicinity of the threat
 - Cleared coalition partners
 - At various levels
 - Multiple Communities of Interest for each partner
 - Canadian Army vs. UK Army Vs. UK Special Air Service
 - Uncleared coalition partners in vicinity of the threat
Theoretical Application: Command and Control

- SOA applications query the database searching for threats that meet certain characteristics **Smart Pull**
 - Threat type
 - Threat nationality
 - Proximity to Coalition assets

- When an applicable threat is found, Command and Control personnel are notified **Smart Push**

- The database is “Googled” by a human who makes the decision to prosecute the threat **Smart Pull**
 - Humans make decisions that we would not defer to automation
Agile ForcesProsecute Threat

- Command and Control creates an ad-hoc group of available assets to prosecute the threat
- Ad-hoc task force requires ad-hoc networking for command and control
- Task force comprised of assets from various US services and coalition partners
- Multiple security levels and communities of interest
- Data shared according to security policy
 - Downgraded
 - Guarded
 - Filtered
- After threat prosecution, the task force is dissolved
Ad-hoc Networking Plumbing

- Fixed Black IP addresses for Web Servers
 - Communications via Type-1 HAIPE and/or JTRS
- Type-1 Crypto identifies and authenticates registrant
 - Also identifies and authenticates registrant’s Domain
- Registrant provides its own Black IP address
 - Also can provide credentials, geo-location, and capabilities
- Red side provides
 - Available services list
 - Red IP addresses for SOA / Web portals
 - Security Policy for information release to other members of the ad-hoc network or other ad-hoc networks
The Vision: Seamless Data Flow
 - Sensor to Shooter
 - Sensor to Weapon

Information Assurance Requirements of the Vision

Design Guidance

Reference Monitors

Candidate Technologies

Multiple Independent Levels of Security
Information Assurance Requirements

- Controlled Information Flow to users in multiple Security Domains
- Controlled Information Flow requires trustworthy enforcement of appropriate Security Policies.
- Security Policy enforcement must be trustworthy so that the mission is not compromised
 - Even more important, Information Sharing can’t be allowed to endanger the Warfighters
 - Information Assurance is all about making sure that the Warfighters’ systems can’t be used against them.
- Trust is earned, never assumed
 - Certification and Accreditation are the ways to earn Trust.
What identifies a Security Domain?

- Nationality
 - US, Canada, UK, etc
- Classification/Clearance
 - SCI, TS, SECRET, UNCLASSIFIED, etc.
- Community of Interest
 - Functional Organization
- Geo-Location
 - Iraq, Afghanistan, CONUS, the Pentagon, etc.
- Safety
 - Critical, Non-critical, etc.
Information Flow Control Functions

- Cross Domain Server components that enforce the Security Policy

- Downgraders
 - Input: Data at a given classification level
 - Output: Data at a lower classification level
 - Rule Sets
 - Configured for each data stream
 - Field deletion and obfuscation

- Access Control Guards
 - IBAC: Identity Based Access Control
 - RBAC: Role Based Access Control
 - Protocol Specific Access Control
 - CORBA/GIOP
 - DDS
 - HTTP
 - etc.
Content Guards
- Document Type Specific Guarding (notional)
 - .doc .ppt .xls
 - .pdf .jpg .mpeg
 - .xml .avi .mov
 - .html .mp3 .ps/eps
 - .tex .dvi .rtf
- Verify no Deleted Data in Document
- Verify no Hidden Data under Overlay
- No Non-displayed Annotation or Comments
- Verify Release Markings
- “Dirty” Word Search
UNCLASSIFIED

TABLE OF CONTENTS

1. (U) BACKGROUND ... 1
 A. (U) Administrative Matters 1
 1. (U) Appointing Authority 1
 2. (U) Brief Description of the Incident 1
 B. (U) Constraints and Limitations 2
 C. (U) Format of the Report 2
2. (U) ATMOSPHERICS ... 4
 A. (U) Introduction ... 4
 B. (U) Local Security Situation 4
 1. (U) Iraq .. 4
 2. (U) Baghdad .. 4
 3. (U) Route Irish .. 4
 C. (U) Known Insurgent Tactics, Techniques, and Procedures 5
 1. (U) Methods of Attack 5
 2. (U) Insurgent TTPs for IEDs 5
 3. (U) Insurgent TTPs for VBIEDs 6
 4. (U) Effectiveness of Attacks 7
 D. (U) Recent Incidents in the Vicinity of Checkpoint 541 8
 E. (U) Unit Experience in the Baghdad Area of Responsibility 8
 1. (U) Brigade ... 8
 2. (U) Battalion .. 9
 3. (U) 9
 4. (U) 10
 F. (U) Findings .. 10
3. (U) TRAFFIC CONTROL POINTS, BLOCKING POSITIONS, AND TRAINING 12

“Googler” Characteristics
- Nationality
- Clearance
- Job Title
- Location

Threat Characteristics
- Classification of the Threat(s)
- Location of the Threat

Security Policies
- Releasability of Threat Data
- Down Grade Policy
Security Policy Definition

- Requires anticipation of the unauthorized events that the system must prevent
 - e.g., No SECRET cleared users allowed to read TOP SECRET information

- System Security Policy usually consists of a collection of sub-policies which define the security services offered by the system.

- Example sub-policy: User Access Control
 - “A correct user name, password, and fingerprint must be entered into the system prior to user access”
Communications Security Policy

- Notional Security Policy for Information Flows
 - P1A: There shall be no infiltration of data among flows
 - P1B: There shall be no infiltration of data within flows
 - P2A: There shall be no exfiltration among flows
 - P2B: There shall be no exfiltration within flows
 - P3: There shall be no unauthorized use of authorized flows
 - Example: No third party is allowed to cause information belonging to “A” to flow to “B” even if the security policy allows “A” to communicate with “B”

- Applicable to Security Enforcing components
 - HAIBE
 - JTRS
 - PCS
 - Etc.
Required Levels of Assurance

- High Robustness is, in general, equivalent to Common Criteria EAL6+
 - There is no official definition of High Robustness yet.
 - Working definition in SKPP V0.71 (draft)

- DCID 6/3 applies to all entities that process, store, or communicate intelligence information
 - An information system operates at Protection Level 5 when at least one user lacks any clearance for access to some of the information in that system

- DO-178B applies to software for airborne systems and equipment.
 - Software that can cause a catastrophic failure is certified at Level A

- There is significant overlap and synergy among these standards
The Real Hard Problems

- Interdomain Security Policy Management
 - How do we define it?
 - How do we update it?
 - How do we distribute it

- Domain Policy Management
 - How do we include a new actor into a domain?
 - How do we revoke privileges of an actor?
 - How do we detect and exclude a compromised actor?

- Threat-based Domain construction and destruction
 - Multilevel
 - Multinational
 - Multiple COIs
The Real Hard Problems (cont’d)

- Transparency
 - Warfighters are supposed to expend their resources on fighting wars, not enforcing security policies
 - If it is too hard to follow, nobody will follow it
 - “Get the job done” attitude
 - If it is too hard to administer, nobody will administer it
 - Security can be compromised
Agenda

- The Vision: Seamless Data Flow
 - Sensor to Shooter
 - Sensor to Weapon
- Information Assurance Requirements of the Vision
- Design Guidance
- Reference Monitors
- Candidate Technologies
- Multiple Independent Levels of Security
Overall System Security Policy

- Bell-LaPadula to focus on Confidentiality
 - Read Down, Write Up
 - Protects against unauthorized disclosure

- Biba to focus on Integrity
 - Read Up, Write Down
 - Protects against unauthorized modification

- Other security policies:
 - Brewer-Nash (access control)
 - Information flow model provides controls to mitigate conflict of interest
 - Clark-Wilson (integrity)
 - Well formed transactions transition system from one secure state to another
 - Graham-Denning (rights)
 - Define rights on how subjects execute security functions on objects
Unauthorized Events

- Identify the unauthorized events that the system must prevent
- Typically, systems must protect against:
 - Unauthorized Disclosure
 - Confidentiality
 - Unauthorized Modification
 - Integrity
 - Unauthorized Access
 - Access Control
 - Masquerade or Replay
 - Authentication
 - Denial of Transmission or Reception
 - Non-repudiation
 - Denial of Service
 - Availability
Input: System Security Policy
Input: Unauthorized Events
Use these inputs to derive a list of requirements which the system must meet
Result: A written System Requirements Document (SRD)
When dealing with classified data, seek NSA IAD guidance
- Engage them *EARLY*
- Engage them *OFTEN*
Step 1: Assess Information Value

- Consult the *Information Assurance Technical Framework*
 - Best practices document, available on http://iatf.net

- Value assessed by evaluation the consequences of security policy violation with respect to:
 - Security
 - Safety
 - Financial Posture
 - Infrastructure

- The IATF identifies five levels:
 - **V1**: Negligible effect
 - **V2**: Minimal Damage
 - **V3**: Some Damage
 - **V4**: Serious Damage
 - **V5**: Exceptionally Grave Damage
Step 2: Determine Threat Levels

- Best practices also in the IATF
- Threats are ranked by assessing:
 - Capability
 - Resources
 - Motivation
 - Risk Willingness
- The IATF identifies seven levels:
 - **T1:** Inadvertent or accidental events
 - Tripping over a power cord
 - **T2:** Minimal resources – willing to take little risk
 - Passive, casual eavesdropper
 - **T3:** Minimal resources – willing to take significant risk
 - Unsophisticated hacker
 - **T4:** Moderate resources – willing to take little risk
 - Organized crime, sophisticated hacker, international corporations
 - **T5:** Moderate resources – willing to take significant risk
 - International terrorists
 - **T6:** Abundant resources – willing to take little risk
 - Well funded national laboratory, nation-state, international corporation
 - **T7:** Abundant resources – willing to take significant risk
 - Nation-states in time of crisis
Step 3: Protection Mechanisms

- Confidentiality
 - Encryption algorithms

- Integrity
 - Hashing algorithms

- Access Control
 - Identification and Authentication

- Authentication
 - Certificates

- Non-repudiation
 - Digital Signatures

- Availability
 - Redundancy
Step 4: Strength and Assurance Level

- From the IATF, Strength of Mechanism and Assurance Level mapped to Information Value and Threat Level

<table>
<thead>
<tr>
<th>Information Value</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T7</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>SML1</td>
<td>SML1</td>
<td>SML1</td>
<td>SML1</td>
<td>SML1</td>
<td>SML1</td>
<td>SML1</td>
</tr>
<tr>
<td></td>
<td>EAL1</td>
<td>EAL1</td>
<td>EAL1</td>
<td>EAL2</td>
<td>EAL2</td>
<td>EAL2</td>
<td>EAL2</td>
</tr>
<tr>
<td>V2</td>
<td>SML1</td>
<td>SML1</td>
<td>SML1</td>
<td>SML2</td>
<td>SML2</td>
<td>SML2</td>
<td>SML2</td>
</tr>
<tr>
<td></td>
<td>EAL1</td>
<td>EAL1</td>
<td>EAL1</td>
<td>EAL2</td>
<td>EAL2</td>
<td>EAL2</td>
<td>EAL3</td>
</tr>
<tr>
<td>V3</td>
<td>SML1</td>
<td>SML1</td>
<td>SML1</td>
<td>SML2</td>
<td>SML2</td>
<td>SML2</td>
<td>SML2</td>
</tr>
<tr>
<td></td>
<td>EAL1</td>
<td>EAL2</td>
<td>EAL2</td>
<td>EAL3</td>
<td>EAL3</td>
<td>EAL3</td>
<td>EAL4</td>
</tr>
<tr>
<td>V4</td>
<td>SML2</td>
<td>SML2</td>
<td>SML2</td>
<td>SML3</td>
<td>SML3</td>
<td>SML3</td>
<td>SML3</td>
</tr>
<tr>
<td></td>
<td>EAL1</td>
<td>EAL2</td>
<td>EAL3</td>
<td>EAL4</td>
<td>EAL5</td>
<td>EAL5</td>
<td>EAL6</td>
</tr>
<tr>
<td>V5</td>
<td>SML2</td>
<td>SML2</td>
<td>SML3</td>
<td>SML3</td>
<td>SML3</td>
<td>SML3</td>
<td>SML3</td>
</tr>
<tr>
<td></td>
<td>EAL2</td>
<td>EAL3</td>
<td>EAL4</td>
<td>EAL5</td>
<td>EAL6</td>
<td>EAL6</td>
<td>EAL7</td>
</tr>
</tbody>
</table>
Step 5: Principle of Least Privilege

- Architecture Policy: INFOSEC boundaries shall be designed using the Principle of Least Privilege

- Principle of Least Privilege: Each subject is granted only the most restrictive set of privileges (or clearance) needed to perform its authorized tasks
 - Minimum memory footprint
 - Only what is needed and *nothing more*
 - Minimum hardware features
 - Smallest capability set and *nothing more*
 - Minimum invocation of rights
 - Only necessary privileges *only when needed*
 - Maximum separation
 - Necessary data disclosed and *nothing more*
Step 6: Utilize the Common Criteria

- Utilize the Functional Requirements in Part 2 to help define the system and meet the System Requirements Document

- Utilize the Assurance Requirements in Part 3
 - Configuration Management
 - Delivery and Operation
 - Development
 - Guidance Documents
 - Testing
 - Life Cycle Support
 - Vulnerability Assessment
 - Maintenance of Assurance
Software Development

- Use a defined/structured process (e.g., SEI/CMMI)
 - Produce software that does only its intended task and is evaluable
 - NSA requires at least CMMI Level 3
- For software that is not security enforcing or security relevant
 - Develop the code with good quality control techniques, in small, well-structured units, and thoroughly test it
Trusted Software Development

- Code that is Security Enforcing or Security Relevant
- Develop the code from an abstract finite state machine (when it makes sense)
- Use formal tools (e.g. model checkers) to evaluate the state machine and other critical code
- Develop a mapping between the state machine and the code
- Boot process, with digitally signed copies of ALL software running on the system, should be stored in the system on ROM and protected accordingly
- Meet ALL Non- Trusted development requirements
The Vision: Seamless Data Flow
 - Sensor to Shooter
 - Sensor to Weapon

Information Assurance Requirements of the Vision

Design Guidance

Reference Monitors

Candidate Technologies

Multiple Independent Levels of Security
Reference Monitor Characteristics

- Common Criteria Definition (Version 2.2, Part 1, page 14)
 - The concept of an abstract machine that enforces TOE access control Policies
- The enforcement point for the Security Policy
- The Reference Monitor is *not* always a software module
- The Reference Monitor is an abstraction
- The best Reference Monitor is no Reference Monitor
 - Because the design of the system itself makes violation of the Security Policy impossible
 - (e.g., separation by air gap)
 - It isn’t always practical, affordable, or achievable to design systems that way
 - Potentially user unfriendly
 - Cost
 - Size, Weight, and Power
To be effective, Security Policy Enforcement must be:

- **Non-bypassable**
 - Security functions cannot be circumvented

- **Evaluatable**
 - Security functions are small enough and simple enough for mathematical verification

- **Always Invoked**
 - Security policy is enforced each and every time

- **Tamperproof**
 - Subversive or errant code cannot alter the security data or functions
Reference Monitor Protection

- Reference Monitor is the heart of the TOE Security Function (TSF)
 - TSF: TOE Security Function
 - TOE: Target of Evaluation
- Common Criteria class FPT: Protection of the TSF
- Decomposed into:

<table>
<thead>
<tr>
<th>AMT</th>
<th>Underlying abstract machine test</th>
<th>RPL</th>
<th>Replay detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLS</td>
<td>Fail Secure</td>
<td>RVM</td>
<td>Reference mediation</td>
</tr>
<tr>
<td>ITA</td>
<td>Availability of exported TSF data</td>
<td>SEP</td>
<td>Domain separation</td>
</tr>
<tr>
<td>ITC</td>
<td>Confidentiality of exported TSF data</td>
<td>SSP</td>
<td>State synchrony protocol</td>
</tr>
<tr>
<td>ITI</td>
<td>Integrity of exported TSF data</td>
<td>STM</td>
<td>Time stamps</td>
</tr>
<tr>
<td>ITT</td>
<td>Internal TSF data transfer</td>
<td>TDC</td>
<td>Inter-TSF data consistency</td>
</tr>
<tr>
<td>PHP</td>
<td>TSF physical protection</td>
<td>TRC</td>
<td>Internal TOE TSF data replication consistency</td>
</tr>
<tr>
<td>RCV</td>
<td>Trusted Recovery</td>
<td>TST</td>
<td>TSF self test</td>
</tr>
</tbody>
</table>
Agenda

- The Vision: Seamless Data Flow
 - Sensor to Shooter
 - Sensor to Weapon
- Information Assurance Requirements of the Vision
- Design Guidance
- Reference Monitors
- Candidate Technologies
- Multiple Independent Levels of Security
Monolithic Security Kernel

- All security is policy is performed by the security kernel
 - Originally for performance reasons
 - No other was to ensure enforcement is non-bypassable
- As security policy becomes more complex:
 - Code grows in security kernel
 - Certification efforts become unmanageable
 - Evaluatibility of kernel code decreases
 - Maintainability of kernel code decreases
 - Policy decisions can be based on incomplete or unauthenticated information
Monolithic Security Kernel

Smart Push, Smart Pull, Sensor to Shooter in a Multi-Level Secure/Safe (MLS) Infrastructure

Monolithic Applications

Monolithic Kernel

Fault Isolation
Periods Processing
Kernel

Network I/O
Information Flow
Data isolation
Auditing
DAC
MAC
Device drivers

User Mode
Privilege Mode
Most commercial computer security architectures
 - The result of systems software where security was an afterthought
 - Operating systems
 - Communications architectures
 - **Reactive** response to problem
 - Viruses, Worms, and Trojan Horses
 - Hackers and Attackers
 - Problems are only addressed *after* the damage has been done
 - Inappropriate approach for mission critical systems
 - Does not safeguard information or the warfighter
 - **Proactive** measures are required to *prevent* damage
High Assurance Monolithic Kernel?

Smart Push, Smart Pull, Sensor to Shooter in a Multi-Level Secure/Safe (MLS) Infrastructure

Monolithic Applications

Monolithic Application Extensions

User Mode

Privilege Mode

MLS/CDS Requires Systems Evaluable At High Assurance!

Fault Isolation

Perio Periods Processing

Kernel

Monolithic Kernel

Network I/O

Information Flow

Data isolation

DAC

MAC

Device drivers

Unevaluable At High Assurance
Privileged Mode Protocol Processing

Smart Push, Smart Pull, Sensor to Shooter in a Multi-Level Secure/Safe (MLS) Infrastructure

What happens when network headers are processed in privilege mode?
Breeding Ground for Internet Wildlife

Smart Push, Smart Pull, Sensor to Shooter in a Multi-Level Secure/Safe (MLS) Infrastructure

Privilege Mode Processing

Network Data

Wild Creatures of the Net: Worms, Virus, . . .
NetTop

- Developed by NSA “R” Group for internal use, later licensed for unlimited distribution by HP and TCS
- Assembled from readily available software components
 - Device drivers from SELinux
 - Separation from VMware®
 - Virtual machines run Windows® or Linux®
 - Virtual machines communicate via virtual NICs
- Originally approved by the NSA for internal use to provide separation of TOP SECRET from SECRET without respect to compartments or need to know, only for users with TOP SECRET clearance
 - Intended to connect internal NSANet (TS) to SIPRNET (S) for users with TS clearance
- Accredited by NSA to run in DCID 6/3 PL4 environments
 - Extends original certification to allow users with Secret clearances
NetTop Architecture

VM 1
Top Secret
Virtual Hardware

VM 2
Secret
Virtual Hardware

VM 10
UNCL
Virtual Hardware

VMWare
Virtual Machine (VM)
Monitor (VMM)

Host OS
SELinux

Other DD's
NIC Device Driver

Linux Kernel

BIOS-Runtime

NIC

BIOS-Flash (Boot Loader / BIT)

Host Computer Hardware

Blue = Ring 0

Smart Push, Smart Pull, Sensor to Shooter in a Multi-Level Secure/Safe (MLS) Infrastructure
NetTop Characteristics

- Readily available on generic PC hardware
 - A desktop solution, no plans for embedded support
 - Not applicable to weapon systems or platforms
- Meets NSTISSP-11 validation requirements
 - Not certified via CCEVS (NIAP)
 - CCRA not applicable
- Applicable to low threat environments
 - Trusted people in secure facilities
- Provides a moderately robust level of separation
 - COTS components do not meet least privilege high robustness design requirements
Agenda

- The Vision: Seamless Data Flow
 - Sensor to Shooter
 - Sensor to Weapon
- Information Assurance Requirements of the Vision
- Design Guidance
- Reference Monitors
- Candidate Technologies
- Multiple Independent Levels of Security
Multiple Independent Levels of Security (MILS)

- Three distinct layers (John Rushby, PhD)

- **Separation Kernel**
 - Separate process spaces (partitions)
 - Secure transfer of control between partitions
 - Really small: 4K lines of code

- **Middleware**
 - Application component creation
 - Provides secure end-to-end inter-object message flow
 - Device Drivers, File Systems, Network Stacks, CORBA, DDS, Attestation, …

- **Applications**
 - Implement application-specific security functions
 - Firewalls, Cryptomod, Guards, Mapplet Engine, CDS, Multi-Nation Web Server, etc.
The MILS Layered Architecture

Separation Kernel

- The only code that runs in privileged mode
- **Microprocessor Based**
 - Multi-Core Time and Space
 - Multi-Threaded Partitioning
- Data Isolation
- Inter-partition Communication
- Periods Processing
 - Resource Sanitization
- Minimum Interrupt Servicing
- Semaphores
 - Multi-Core Synchronization Primitives
- Timers

And nothing else!

MILS Middleware

- **Traditional RTOS Services**
 - Device Drivers
 - File Systems
 - Token and Trusted Path
- **Traditional Middleware**
 - CORBA (Distributed Objects)
 - Data Distribution (Pub-Sub)
 - Web Services
- **Partitioning Communication System (PCS)**
 - Global Enclave Partition Comm
 - TCP, UDP, Rapid-IO, Firewire, …
Really very simple:

- Dramatically reduce the amount of security critical code

So that we can

- Dramatically increase the scrutiny of security critical code

To make

- Development, certification, and accreditation more practical, achievable, and affordable.
Breeding Ground for Internet Wildlife

Privilege Mode Processing

Network Data

Wild Creatures of the Net: Worms, Virus, . . .
Under MILS, network header and privilege mode processing are separated.
MILS Architecture Evolution

Smart Push, Smart Pull, Sensor to Shooter in a Multi-Level Secure/Safe (MLS) Infrastructure

Application Modules
- CSCI (Main Program)
- SL (S) Application
- SL (M) Application
- SL (H) Application
- MLS Downgrader

Rushby’s Middleware

Fault Isolation Periods Processing

Kernel

Network I/O
Auditing
DAC
MAC
Information Flow
Device drivers
File systems

Privilege Mode

Evaluateable Applications On an Evaluateable Infrastructure

User Mode

Appropriate Mathematical Verification
The MILS Architecture

Smart Push, Smart Pull, Sensor to Shooter in a Multi-Level Secure/Safe (MLS) Infrastructure

- U (SL) Application
- C (SL) Application
- S (SL) Application
- TS (SL) Application
- TS/S (MLS) Application

Middleware

MILS SEPARATION KERNEL

Processor
Guest OS Architecture

Smart Push, Smart Pull, Sensor to Shooter in a Multi-Level Secure/Safe (MLS) Infrastructure

U (SL) C (SL) S (SL) TS (SL) TS/S (MLS)

Application Middleware
Application Middleware
Application Middleware
Application Middleware
Minimal Middleware

Minimal Runtime

A MILS Workstation?

Processor

Windows
Linux
Mac OS X
Solaris

LynxWorks LynxSK
LynuxWorks LynxSK
Green Hills INTEGRITY
VxWorks
Wind River VxSecure

POSIX Runtime
POSIX Runtime
POSIX Runtime
POSIX Runtime
POSIX Runtime

Linux
Linux
Mac OS X
Solaris

2005
Distributed Security Requirements

- Extend single node security policy enforcement to multiple nodes
- Do not add new threats to data Confidentiality or Integrity
- Enable distributed Reference Monitors to be NEAT
- Optimal inter-node communication
 - Minimizing added latency (first byte)
 - Minimizing bandwidth reduction (per byte)
- Fault tolerance
 - Security infrastructure must have no single point of failure
 - Security infrastructure must support fault tolerant applications
Part of MILS Middleware

Responsible for all communication between MILS nodes

Specific Requirements:
- Strong Identity
 - Nodes, applications, and application instances
 - Separation of Levels/Communities of Interest
- Secure Configuration of all Nodes in Enclave
- Bandwidth provisioning & partitioning
- Secure Clock Synchronization
- Suppression of Covert Channels
 - Network resources: bandwidth, hardware resources, buffers
- Secure Loading: signed partition images
Inter-node Communication

Smart Push, Smart Pull, Sensor to Shooter in a Multi-Level Secure/Safe (MLS) Infrastructure

Diagram showing inter-node communication with nodes A, B, C, and D connected through PCS.
Notional Security Policy for Information Flows

- P1A: There shall be no infiltration of data among flows
- P1B: There shall be no infiltration of data within flows
- P2A: There shall be no exfiltration among flows
- P2B: There shall be no exfiltration within flows
- P3: There shall be no unauthorized use of authorized flows

Example: No third party is allowed to cause information belonging to “A” to flow to “B” even if the security policy allows “A” to communicate with “B”
Partitioning Security Policy

Smart Push, Smart Pull, Sensor to Shooter in a Multi-Level Secure/Safe (MLS) Infrastructure

P1A: There shall be no infiltration among flows.

P2A: There shall be no exfiltration among flows.

P1B: There shall be no infiltration within flows.

P2B: There shall be no exfiltration within flows.

P3: There shall be no unauthorized use of authorized flows.
PCS is Trusted Plumbing

- PCS assumes the network can’t be trusted
 - Leverage COTS stacks, NICs, media, switches, and routers
- PCS provides trusted data flow among distributed applications and guards
 - Code that was typically duplicated from partition to partition
- Access guards and data guards can be tightly focused on the data owner’s specific requirements
- Trusted data flow enables higher assurance
 - Smaller code body
 - Simpler logic
 - Formal methods more practical
Air Gap Works But....
Costly, Inflexible, & Awkward

Smart Push, Smart Pull, Sensor to Shooter in a Multi-Level Secure/Safe (MLS) Infrastructure

TCP/IP
APPLICATION
APPLICATION
APPLICATION
APPLICATION
ETHERNET
ETHERNET
ETHERNET
ETHERNET
Combining Levels On Medium Assurance Platforms Is Unsafe

Smart Push, Smart Pull, Sensor to Shooter in a Multi-Level Secure/Safe (MLS) Infrastructure
MILS Separation Kernels
Counter Most Internal Threats

Smart Push, Smart Pull, Sensor to Shooter in a Multi-Level Secure/Safe (MLS) Infrastructure

TCP/IP

Vulnerabilities

Reduced Vulnerabilities
PCSexpress Completes MILS Separation Kernel

Smart Push, Smart Pull, Sensor to Shooter in a Multi-Level Secure/Safe (MLS) Infrastructure

LEGEND

- **Vulnerabilities**
- **Reduced Vulnerabilities**

Vulnerabilities
Guards Still Needed for Intra-level Threats

Smart Push, Smart Pull, Sensor to Shooter in a Multi-Level Secure/Safe (MLS) Infrastructure

LEGEND

- Multiple Vulnerabilities
- Data Vulnerabilities
Use Cases: Definition of Terms

- Trusted Transport
 - Communications system can be trusted to maintain separation by level and Community of Interest

- Untrusted Transport
 - Communications system cannot be trusted to maintain separation by level and Community of Interest

- Gray Sky
 - Threats to communications confidentiality are acceptably low
 - Example: Front to back of an airplane or submarine; within an FCS tank

- Blue Sky
 - Threats to communications confidentiality are unacceptably high
 - Example: Radio transmission; the Internet
Trusted Transport, Gray Sky

Smart Push, Smart Pull, Sensor to Shooter in a Multi-Level Secure/Safe (MLS) Infrastructure

<table>
<thead>
<tr>
<th>Top Secret Application</th>
<th>Secret Application</th>
<th>Separation Kernel</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCS</td>
<td>NIU</td>
<td>Fiber Optic Backbone</td>
</tr>
<tr>
<td>NIU</td>
<td>PCS</td>
<td>Secret Application</td>
</tr>
<tr>
<td></td>
<td>Top Secret Application</td>
<td>Separation Kernel</td>
</tr>
</tbody>
</table>

- Node Authentication
- Application Authentication
- Flow Authorization
- Rate Management
Untrusted Transport, Gray Sky

Smart Push, Smart Pull, Sensor to Shooter in a Multi-Level Secure/Safe (MLS) Infrastructure

- Node Authentication
- Application Authentication
- Flow Authorization
- Rate Management
- Encryption for Separation
Untrusted Transport, Blue Sky

Smart Push, Smart Pull, Sensor to Shooter in a Multi-Level Secure/Safe (MLS) Infrastructure

- Node Authentication
- Application Authentication
- Flow Authorization
- Rate Management
- Encryption for Separation
- Covert Channel Suppression

• Type I Cryptography for Confidentiality
Trusted Transport, Blue Sky

Smart Push, Smart Pull, Sensor to Shooter in a Multi-Level Secure/Safe (MLS) Infrastructure

- Top Secret Application
- Secret Application
- Separation Kernel
- JTRS & PCS
- Multiple Waveforms
- JTRS & PCS
- PCS
- Top Secret Application
- Secret Application
- Separation Kernel

- Node Authentication
- Application Authentication
- Flow Authorization
- Rate Management
- Encryption for Separation
- Covert Channel Suppression
- Waveform Separation
- Type I Cryptography for Confidentiality
Real-time MILS CORBA can take advantage of PCS capabilities
- Real-time CORBA + PCS = Real-time MILS CORBA
- Additional application-level security policies are enforceable because of MILS SK and PCS foundation

- Real-time MILS CORBA represents a single enabling application infrastructure
Real-time MILS CORBA (cont.)

- Can address key cross-cutting system requirements
- MILS-based distributed security
 - High-assurance
 - High-integrity (safety critical systems)
- Real-time
 - Fixed priority
 - Dynamic scheduling
- Distributed object communications
 - Predictable
 - Low latency
 - High bandwidth
- Synthesis yields an unexpected benefit
 - Flexibility of Real-time CORBA allows realization of MILS protection
 - MILS is all about location awareness
 - Well designed MILS system separates functions into separate partitions
 - Takes advantage of the MILS partitioning protection
 - Real-time CORBA is all about location transparency
 - The application code of a properly designed distributed system built with Real-time CORBA will not be aware of the location of the different parts of the system.
 - CORBA flexibility allows performance optimizations by rearranging what partitions each system object executes in.
 - System layout can be corrected late in the development cycle
 - Combination of MILS and Real-time CORBA allows system designer to
 - Rearrange system functions to take advantage of protection without introducing new threats to data confidentiality and integrity
System Architecture with PCS

Application

CORBA, DDS,
Web, etc.

MILS Socket Lib

PCS

Network
Protocols &
Drivers

Smart Push, Smart Pull, Sensor
to Shooter in a Multi-Level
Secure/Safe (MLS)
Infrastructure

75
Acronyms

- CCEVS: Common Criteria Evaluation Scheme
- CCRA: Common Criteria Recognition Arrangement
- CMMI: Capability Maturity Model Integration
- COI: Community of Interest
- COMINT: Communications Intelligence
- CONUS: Continental United States
- CORBA: Common Object Resource Broker Architecture
- DCID: Director of Central Intelligence Directive
- DDS: Data Distribution Service
- EAL: Evaluation Assurance Level
- ELINT: Electronic Intelligence
- GIOP: General Inter-Orb Protocol
- HAIP: High Assurance Internet Protocol Equipment
- HTTP: Hypertext Transfer Protocol
- HUMINT: Human Intelligence
- IAD: Information Assurance Directorate
- IATF: Information Assurance Technical Framework
- IBAC: Identity Based Access Control
- IMINT: Imagery Intelligence
- JTRS: Joint Tactical Radio System
- MILS: Multiple Independent Levels of Security
- MLS: Multi-Level Security/Safety
- NSA: National Security Agency
- PCS: Partitioned Communications System
- RBAC: Role Based Access Control
- SEI: Software Engineering Institute (Carnegie Mellon)
- SIGINT: Signals Intelligence
- SKPP: Separation Kénel Protection Profile
- SOA: Services Oriented Architecture
- SRD: System Requirements Document
- TOE: Target of Evaluation
- TSF: TOE Security Functions