Generally Speaking, How’s the Software? (Tracking Program Wide Software Progress)

Ed Evers, Lockheed Martin Aeronautics
Glenn Willis, JSF Program Office
Background

Challenge:

Ability to clearly and concisely capture the status of the software being developed for the F-35 Lightning II Joint Strike Fighter (JSF) for Program Management and external-to-the-Program consumption.

• There are numerous teams responsible for developing and integrating software
• There are differences in the software development processes being executed across the teams
• There is a wide variety of software metrics being collected, analyzed, and reported
• The ability to successfully capture this status lies with the melding of the data from the numerous teams, processes, and metrics, along with the different domains of software (airborne and ground systems)
The General’s Four Questions

• **Getting It Done?**
 - AS Software Progress Summary and Block X Software Summaries
 - Software Effort by Block/Product Domain
 - Accomplishments (last 3 months) and Current Challenges
 - Block/Product Percent Complete (plan vs. actual)
 - AS Software and Block X Progress to Plan Charts
 - Track Percent Complete by CY Quarter (plan vs. actual)

• **Getting It Done Efficiently?**
 - Productivity metric for selected high risk products based on Effective Source Lines of Code (ESLOC)/hour

• **Getting It Done Right?**
 - Defect prediction metrics based on product-level defect profiles

• **Getting It Working (Fixing It)?**
 - Utilizing existing SPAR burn down/status metric charts
Technical Issues for Metrics

• Significant Diversity in Development
 – 80+ Teams – Prime Team and Suppliers
 – No common source of data for all developers
 – Different methodologies, tools, base data

• Disparate schedules
 – Air Vehicle schedules, blocks different than ground-based systems

• Expense of low level collection
 – Discrete data collection required

• Different target audience
 – Generals, Admirals, Vice Presidents
 – Need to focus on “Big Picture”
 – Existing metrics focused on detail at the Product Team levels
Metrics Approach

• Normalize around ESLOC
 – *Effective Source Lines of Code proportional to development effort*
 – *Used with “% Complete”, produces mathematically valid results*
 – *Valid weighting factor for producing composite results*

• Collect data from Product Domain Points of Contact
 – *Common data collection form with Product Domain summaries*
 – *Life Cycle includes Requirements through Air System Integration*
 – *Map everything to Air Vehicle Blocks for reporting*

• Exploit existing summary reports

• Publish Quarterly Reports
 – *Driven by Executive briefings (Quarterly, Semi-Annual)*
 – *Focus on big picture - hyperlink to details (optional usage)*
 – *Provide significant detail in Notes pages*

• *Examples of key charts with notional data follow*
Accomplishments (last three months)
- *Flight Test Update 1 (FTU 1)* delivered to AA-1 to support second phase of flight test
 - Helmet-Mounted Display (HMD) software flight certified
 - Beginning work on software for AF-1, CF-1

Current Challenges
- Continuing to balance resources between Block A and B efforts

Software Effort by Block
- Block E: 9%
- Block D: 13%
- Block C: 17%
- Block B: 39%
- Block A: 22%

Progress Chart - Summary

- **AS Composite Percent Complete (Planned)**: 42.0%
- **AS Composite Percent Complete (Actual)**: 41.5%

Air System Summary

- Total Task Size
- Planned Complete
- Actual Complete

Actual SLOC produced as of 12/31/06: 6.89M
Progress Chart – Product Domain

Accomplishments
- MS variance further reduced to 1%
- OMS released increment 3 for integration and test

Current Challenges
- Resource contention between blocks is continuing challenge

Block Composite Percent Complete (Planned) 37%
Block Composite Percent Complete (Actual) 37%

Actual SLOC produced as of 12/31/06 - 3.07M
Sample Productivity Chart

Development Productivity
(Requirements, Development, CSCI Test, Rework)
Sample Defect Prediction

Cumulative Software Defects
Data as of End of Feb-07

Number of Severity 1&2 Defects

FF Model Lower Limit Upper Limit Actual
Sample Defect Resolution Charts

Three levels of Defect Resolution metrics are used, depending on time-to-release.

Release-Level SPAR Charts to track burndown plans.

Block Level SPAR Charts to assess open/close rates.

Release-Level SPAR Charts assess capacity to close.

Air Systems SPARs identified in Block 0.5

SPAR Count by Severity

Severity 1
Severity 2
Severity 3
Severity 4
Severity 5
Unknown
Total

SPAR Count
Pending Verify Concur
Verification
Pending Release
Implementation
Pending Analysis Concur
Analysis
Identification

Actual # of New Critical SPARs
Baseline Closure Plan (3/18/07)
Actual # Open
Running Closure Plan (Updated Weekly)

Report Date: 03/26/07
All Severities: Opened: 11 Closed: 27 16 week Open Rate: 6.56 16 week Closure Rate: 14.31 Total Open: 208 Severity 1, 2, & 50% 3's: Opened: 9.5 Closed: 8 16 week Open Rate: 3.00 16 week Closure Rate: 5.19

Release-Level SPAR Charts to assess capacity to close.

Block Level SPAR Charts to assess open/close rates.

Air Systems SPARs identified in Block 0.5

SPAR Count by Severity

Severity 1
Severity 2
Severity 3
Severity 4
Severity 5
Unknown
Total

SPAR Count
Pending Verify Concur
Verification
Pending Release
Implementation
Pending Analysis Concur
Analysis
Identification

Actual # of New Critical SPARs
Baseline Closure Plan (3/18/07)
Actual # Open
Running Closure Plan (Updated Weekly)

Report Date: 03/26/07
All Severities: Opened: 11 Closed: 27 16 week Open Rate: 6.56 16 week Closure Rate: 14.31 Total Open: 208 Severity 1, 2, & 50% 3's: Opened: 9.5 Closed: 8 16 week Open Rate: 3.00 16 week Closure Rate: 5.19
Satisfied Customers

- The Air System Software Roll-Up Metrics Package is being developed per Program Management (Government and Prime Contractor) direction.
- The Package successfully produced for last five quarters.
- The Package has matured over time and the metrics contents will continue to evolve as the Program evolves.
- Each Package has been successfully briefed to Program Management (Government and Prime Contractor).
- Contents of each Package has been used as input to executive briefs:
 - Chief Executive Officer (CEO) Conferences
 - Configuration Steering Board/Software Acquisition Executive meetings
 - Joint Executive Steering Board meetings
Lessons Learned

• Generals, Admirals, and Vice Presidents have different information needs
 – *Shape a metrics package that will addresses their needs*
 – *Be flexible - make changes in response to Executives desires*

• Use a mechanized and consistent method to generate metrics to eliminate man-in-the-loop effects on the data.

• Identify data providers from each development area and train them on the data collection/metrics generation process.
 – *Data providers must take ownership of the data that they provide and provide backup data, when requested.*

• Plans Change, Estimates Change – be prepared to explain

• Avoid mixing data with different frequencies.

• Summing up productivity masks information.

• Extrapolation has risks.
Next Topic

Monday, June 18, 2007, track 2

• 2:40-3:25 – JSF Software Program
 – Overview and Status (Branyan/Willis)
 – Tracking Program Wide Software Progress (Evers/Willis)

• 3:35-4:20 – System/Software Design
 – Implementing F-35 System Architecture using UML (Clauss)
 – Deploying C++ For Use In International Safety-Critical Applications (Carroll)

• 4:20 – 4:35 – Break

• 4:35 – 5:20 – JSF Software Safety Process
 – Deploying Safety Critical Standards Internationally (Eccles)
 – Providing Developmental Assurance (Bridges)

• 5:30 – 6:15 – Software Quality Improvements /JSF Software Sustainment
 – Focused Software Quality Improvements (Robb)
 – F-35 Software Life-cycle Planning: Performance-Based Software Sustainment (Novak)
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA-1</td>
<td>First Flight Test aircraft nomenclature</td>
</tr>
<tr>
<td>AF-1</td>
<td>First Air Force variant aircraft nomenclature</td>
</tr>
<tr>
<td>ALIS</td>
<td>Autonomic Logistics Information System</td>
</tr>
<tr>
<td>AVI</td>
<td>Air Vehicle Integration</td>
</tr>
<tr>
<td>CEO</td>
<td>Chief Executive Officer</td>
</tr>
<tr>
<td>CF-1</td>
<td>First Carrier (Navy) variant aircraft nomenclature</td>
</tr>
<tr>
<td>CSCI</td>
<td>Computer Software Configuration item</td>
</tr>
<tr>
<td>CY</td>
<td>Contract Year</td>
</tr>
<tr>
<td>ESLOC</td>
<td>Effective Source Lines of Code</td>
</tr>
<tr>
<td>FF</td>
<td>First Flight</td>
</tr>
<tr>
<td>FTU</td>
<td>Flight Test Update</td>
</tr>
<tr>
<td>HMD</td>
<td>Helmet Mounted Display</td>
</tr>
<tr>
<td>JPO</td>
<td>JSF Program Office</td>
</tr>
<tr>
<td>JSF</td>
<td>Joint Strike Fighter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td>Mission Systems</td>
</tr>
<tr>
<td>OMS</td>
<td>Off-Board Mission Support</td>
</tr>
<tr>
<td>PHM</td>
<td>Prognostic Health Management</td>
</tr>
<tr>
<td>SLOC</td>
<td>Source Lines of Code</td>
</tr>
<tr>
<td>SPAR</td>
<td>System Product Anomaly Report</td>
</tr>
<tr>
<td>VS</td>
<td>Vehicle Systems</td>
</tr>
</tbody>
</table>