Reliability Index for the USMC Expeditionary Fighting Vehicle

SSTC 2008 – 1 May 2008

Robert J. Knapper
David L. Jolley
David R. Webb
Outline

- Expeditionary Fighting Vehicle
- Traditional Reliability Measures
- Why Software is Different
- Full-Lifecycle Software Reliability Measurement
- 309th SMXG
- Software Reliability Issues
- TSP Process Quality Index
- Software Reliability Index
- Pros and Cons
- Conclusions
- Contact Information
USMC Expeditionary Fighting Vehicle (EFV)

- Armored amphibious vehicle capable of seamlessly transporting Marines from Naval ships located beyond the visual horizon to inland objectives.
- Primary means of tactical mobility for the Marine Rifle Squad during the conduct of amphibious operations and subsequent ground combat operations ashore.
- Keystone for both the Marine Corps Expeditionary Maneuver Warfare and Ship-to-Objective Maneuver warfighting concepts.

EFV PMO – Program Manager, Advanced Amphibious Assault
Prime Contractor – General Dynamics Amphibious Systems

Status

- Currently in the System Development and Demonstration (SDD) Acquisition Phase.
- Operational Assessment in FY 2011.
- Low-Rate Initial Production Scheduled for FY 2012.
Expeditionary Fighting Vehicle
Mission Capabilities

Move - Land

Move - Water

Carry

Shoot

Communicate
Expeditionary Fighting Vehicle Characteristics

General
- Amphibious Tracked Vehicle
- "Drive-by-wire"
- Land mobility at 45mph on par with M1 Abrams Tank
- Water mobility from over the horizon to shore at 25kts
- Armed and armored to engage and protect
- Net-ready

Personnel Variant
- Carries Marine Rifle Squad for conduct of amphibious operations and subsequent ground combat operations ashore
- Incorporates MK46 Weapon System
 - MK44 30mm High Velocity Cannon and 7.62mm Coax Machine Gun
 - Fully Stabilized with Digital Fire Control and Thermal Sight for all-weather / all-night lethality

Command Variant
- Carries C2 systems and Operators
- Provides Situational Awareness at the Squad Level
- Provides Command and Control at the Battalion/Regimental Level.
Software Control

- Vehicle Electronics Systems for Mobility, Fire Control, and C2 supported by real-time, embedded software
- GDAMS developed software for first set of SDD EFV prototypes (9 P-Variant, 1 C-Variant)
 - SDD-1 software used for first OA and Design for Reliability Effort following OA
 - Provided valuable feedback for verifying and validating SDD-2 software requirements
- Long-term Program strategy shifted future software development and maintenance to a Government activity
 - 309 SMXG selected for SDD-2 development and follow-on sustainment activity
- Both short-term and long-term reliability measures for 309 SMXG generated SDD-2 software is needed
Traditional Reliability Measures

- Operational Definition of Reliability:
 - Mean Time to Failure (MTTF) combined with Mean Time to Repair (MTTR) is essentially an availability measure
 - Focus primarily on defect identification and removal
 - E.g. Rayleigh Model looks at defect density rates over time as well as cumulative defect arrival patterns
 - Incorporated into lifecycle modeling for post-deployment
 - Maintenance cycles
 - Spares

- Equate Quality with Reliability
 - Fewer defects means higher reliability

- Availability Improvement
 - Mitigate MTTF/MTTR risks with maintenance scheduling and execution tailored to expected failure rates
Why Software is Different

- Traditional Mean Time to Failure metric does not adequately apply to software
- Software does not “wear out” like hardware
 - Mechanical and electronic components weaken with age.
- Software does not weaken with age, but over time may become OBE or simply obsolete.

![Failure Rate Graphs]

- Hardware Failure Rate
- Software Failure Rate

Break in | Useful Life | Wear out
Integration & test | Useful Life | Obsolete

Approved for public release – unlimited distribution
Full-Lifecycle Software Reliability Measurement

- Common Software Reliability Measurement
 - Entire Development Phase
 - Testing Phase
- Promoting Reliability Improvement
 - Front-end and back-end phases of the lifecycle are key contributors
- Need to Measure for Reliability at all phases
 - Requirements
 - Architecture and Design
 - Coding
 - Integration and Test
 - Deployment
 - Sustainment
- 309 SMXG is Piloting a Full-Lifecycle Software Reliability Measurement activity for EFV
309th SMXG
Hill AFB - Utah
Large Cadre of Talented People:

- 800+ Personnel
- Average over 10 years technical experience
- Growing by ~50 PEs/Year
309th SMXG
Process Improvement Leader

- Focused on process improvement since 1991
- Assessed in 1998 to be Capability Maturity Model (CMM) - Level 5
 - The highest rated level possible
 - First DoD government organization to receive CMM Level 5 rating
- Earned AS9100 & ISO 9001 Registration in 2006
- Assessed in 2006 to be Capability Maturity Model Integration (CMMI) – Level 5
 - Ranks SMXG in top 4% of all organic software organizations
 - Only government organization continuously rated CMM/CMMI level 5 since 1998
309th SMXG

EFV Software Configured Items

- C2 P-Variant
- Controls & Displays
- C2 C-Variant
- Fire Control
- Mobility Power & Auxiliaries
- Embedded Logistics Admin Sys
- Embedded Training
- Software Loader / Verifier
- Interactive Electronic Tech Man

OGDEN AIR LOGISTICS CENTER

Approved for public release – unlimited distribution

SSTC 2008

13
Product
- **Defects Injected**: Number of defects introduced within a phase
- **Defects Detected**: Number of defects found within a phase
- **Defects Removed**: Number of defects removed during a phase

Process
- **Defect Injection Rate**
 - **GOAL**: < 0.4 per hour per phase
 - **309th Average**: 0.03 per 1000 Hours
- **Defect Detection Ratio**
 - **GOAL**: 100% at System Test
 - **309th Average**: 96%
- **Defect Density**
 - **GOAL**: Zero Defects at System Test
 - **309th Average**: 0.2 Defects per 1000 SLOC
- **Percent Rework**
 - **GOAL**: < 10%
 - **309th Average**: 2%
309th SMXG
Tracking Total Defects

Defects Over Time

- Red: Opened
- Green: Resolved

July: 0
August: 100
September: 500
October: 700
November: 756
December: 614
January: 756
February: 756

SSTC 2008
Approved for public release – unlimited distribution
309th SMXG
Tracking Defect Types

- Miss Doc Defects: 205 (132 Open, 73 Total)
- Clarity: 82 (50 Open, 32 Total)
- Incorrect/Insufficient Data: 77 (55 Open, 22 Total)
- Documentation Style Guide: 61 (40 Open, 21 Total)
- Incorrect Reference: 52 (35 Open, 17 Total)
- Grammar: 26 (17 Open, 9 Total)
- Typo/Spelling: 9 (7 Open, 2 Total)
- Function: 8 (6 Open, 2 Total)
- Data: 8 (6 Open, 2 Total)
- Code Documentation: 8 (6 Open, 2 Total)
- Environment: 8 (6 Open, 2 Total)
- Checking: 8 (6 Open, 2 Total)
- Assignment: 8 (6 Open, 2 Total)
- Coding Style Guide: 8 (6 Open, 2 Total)
- Interface: 8 (6 Open, 2 Total)
- Execution: 8 (6 Open, 2 Total)
- Software: 8 (6 Open, 2 Total)
- Test Void: 8 (6 Open, 2 Total)
- Syntax: 8 (6 Open, 2 Total)
- GUI: 8 (6 Open, 2 Total)
- Resource Usage: 8 (6 Open, 2 Total)
309th SMXG
Tracking Product Quality

Defects

- Defects Injected
- Defects Detected
- Defects Removed

O G D E N A I R L O G I S T I C S C E N T E R

SSTC 2008
Approved for public release – unlimited distribution
Software Reliability

Software Reliability Issues

- How do we measure / control the process “up stream?”
- What measures do we take?
 - Process Quality
 - Product Quality
 - The “ilities”
 - Install-ability
 - Usability
 - Flexibility
 - Maintainability
 - Portability
 - Etc.

- While much has been written about this, there is no common way of evaluating software reliability other than tracking defect rates
- It is difficult to track software reliability issues and make mid-course corrections
The Software Engineering Institute has developed a tool for use the Team Software ProcessSM teams to measure quality.

Teams measure the quality of the process used to produce their software in terms of measurable goals.

A high quality process typically produces a high quality product.

The TSP Process Quality Index (PQI) is a product of five factors:

- Design Time (Goal: Design Time ≥ Code Time)
- Review Time (Goal: Review Time ≥ 50% of Phase Time)
- Compile Defect Density (Goal: ≤ 10 defects/KLOC)
- Unit Test Defect Density (Goal: ≤ 5 defects/KLOC)

TSP PQI goals are adjusted so that “1” represents meeting the goal.
The TSP PQI – 2

Source: Software Engineering Institute’s “Managing TSP Teams” © 2006 by Carnegie Mellon University
PQI vs. Post-development Defects

Source: Software Engineering Institute’s “Managing TSP Teams” © 2006 by Carnegie Mellon University
selected TSP quality profiles

source: software engineering institute’s “managing TSP teams” © 2006 by carnegie mellon university

quality profile for assembly 1
Test defects = 0

PQI = 0.97

quality profile for assembly 2
Test defects = 0

PQI = 0.88

quality profile for assembly 3
Test defects = 0

PQI = 0.71

quality profile for assembly 4
Test defects = 0

PQI = 0.59

quality profile for assembly 5
Test defects = 1

PQI = 0.15

quality profile for assembly 6
Test defects = 3

PQI = 0.04

SSTC 2008

approved for public release – unlimited distribution
Software Reliability Index (SRI)

The SRI Must:
- Be measurable throughout the software lifecycle
- Be independent of the software lifecycle selected (waterfall, spiral, iterative, etc.)
- Provide early warning signs of reliability issues
- Provide ability to make effective mid-course corrections

SRI Format:
- A format similar to TSP PQI would be helpful
- As in TSP PQI, a set of measurable objectives that promote high reliability would be required
- Measures must be adjusted to a number between 0 (unreliable) and 1 (highly reliable)
- Measures must directly point to possible reliability issues
- One approach is to use measurements from each software lifecycle phase
Software Lifecycle
Typical Phases

Requirements

Architecture
& Design

Code
& Integration

Deployment

Test

Sustainment
Software Lifecycle Using Phases

Advantages

- While some has been developed for Software Reliability, much has been developed for each lifecycle phase.
- It is fairly easy to identify a few key reliability factors in each lifecycle phase.
- Each lifecycle phase could, in fact, have its own reliability index which would then feed into the overall index.

Disadvantages

- While there is a lot of data for each lifecycle phase, the data have never been correlated to true reliability.
- Since there is little data on what constitutes reliability, it makes validating any reliability model difficult.
SRI Parameters

Software Reliability Index

Requirements

Sustainment

Architecture & Design

Deployment

Code & Integration

Test
SRI Parameters

Software Reliability Index

- Requirements
- Sustainment
- Architecture & Design
- Deployment
- Code & Integration
- Test
Software Reliability Index

Requirements

- **Stability**
 - The percent of unchanged requirements per release
 - A new or deleted requirement is a changed requirement

- **Clarity**
 - The percent of requirements that are clear and understandable

- **Completeness**
 - The percent of requirements without TBDs, TBRs, TBAs, etc.

- **Ambiguity**
 - The percent of requirements with potential multiple meanings

- **Traceability**
 - The percent of requirements traced upward to a higher level document and traced to a lower level design component

- **Process Yield**
 - The percent of defects removed

Process Yield

SRIR
Software Reliability Index
Architecture & Design

- Stability
 - The percent of unchanged platform components
 - A new or deleted component is a changed component
- Interface Definition Completeness
 - The percent of completeness of Interface Control Documents
- Design Coupling
 - The percent of modules that exhibit low coupling
- Design Cohesion
 - The percent of modules that exhibit high cohesion
- Traceability
 - The percent of requirements traced upward to a higher level document and traced to a lower level design component
- Process Yield
 - The percent of defects removed
Software Reliability Index
Code & Integration

- Cyclomatic Complexity
 - McCabe Cyclomatic Complexity
- Code Coupling
 - The percent of modules that exhibit low coupling
- Code Cohesion
 - The percent of modules that exhibit high cohesion
- Traceability
 - The percent of requirements traced upward to a higher level document and traced to a lower level design component
- Process Quality Index (PQI)
 - The combined TSP PQI measure for all modules
- Process Yield
 - The percent of defects removed
Software Reliability Index

Test

- **Coverage**
 - The percent of requirements covered through testing

- **Effectiveness**
 - The level of confidence that existing defects are being found through testing

- **Stress**
 - The percentage of system components tested outside the expected limits

- **Stability**
 - The percent of requirements tested relative to the requirements implemented

- **Traceability**
 - The percent of requirements traced upward to a higher level document

- **Process Yield**
 - The percent of defects removed
Software Reliability Index

Deployment

- **Training**
 - The percentage of system features covered by training prior to deployment

- **Documentation**
 - The percentage of required documentation completed at time of deployment

- **Stability**
 - The percentage of the implemented system that is fully configured and supported at deployment

- **Functionality**
 - The percent of the total system requirements implemented at time of deployment

- **Restrictions**
 - The percent of implemented system requirements that are fully functional

- **Product Quality**
 - The percent of total defects found prior to deployment

SRID

SSTC 2008

Approved for public release – unlimited distribution
Software Reliability Index

Sustainment

- Rate of Change
 - Percent of requirements unchanged per month
- Module Stability
 - Percent of total software modules unchanged
- TSP Process Quality Index
 - The combined TSP PQI measure for all updated modules
- Test Stability
 - The percent of requirements tested relative to the requirements implemented
- Functionality
 - The percent of functional improvement over the original release
- Process Yield
 - The percent of defects removed
Software Reliability Index

\[\text{SRI} = \text{SRI}_R \times \text{SRI}_A \times \text{SRI}_C \times \text{SRI}_T \times \text{SRI}_D \times \text{SRI}_S \]
Pros and Cons

Pros

- Each lifecycle phase can be measured independently or in concert with the others
- Data on each lifecycle phase are derived from data which are typically collected in these phases
- Collection and examination of these data encourages a high maturity approach to the software development life cycle, which has been proven to produce reliable software

Cons

- 36 is a large number of factors, many of which may not be controllable
- Statistical analysis of these factors has not been conducted to determine the relevance of each to SRI
- The index may be unstable, since the SRI is a product of products and a major variation of any one factor or minor variations of several factors can have a major influence on the outcome
Conclusions

- Software does not wear out like Hardware, but its Reliability is an important contributor to overall System Reliability
- Most measures for Software Reliability concentrate on the Development or Testing phases
- Full-lifecycle (i.e. Requirements phase through to Sustainment phase) reliability measures potentially provide a more comprehensive assessment
- An overall Software Reliability Index (SRI) can be computed as a product of Reliability Indices from each lifecycle phase
- The SRI can be used to track reliability over time, used as a predictor to compare with actual reliability, or to identify areas of improvement that will increase reliability
- The SRI model presented here is just now being put into practice for EFV software and evidence of its efficacy will be published at a later date
Questions???
Contact Information

■ The MITRE Corporation / PM AAA, USMC
 Robert J. Knapper
 (703) 496-9237
 rknapper@mitre.org
 knapperrj.ctr@efv.usmc.mil

■ 309th Software Maintenance Group/
 520th Software Sustainment Squadron
 David R. Webb
 (801) 586-9330
 david.webb@hill.af.mil

 David L. Jolley
 (801) 777-3823
 david.jolley@hill.af.mil