Rotationally Commensurate Growth of MoS$_2$ on Epitaxial Graphene

Xiaolong Liu,*†,¶ Itamar Balla,‡¶ Hadallia Bergeron,‡ Gavin P. Campbell,‡ Michael J. Bedzyk,*†,‡,§ and Mark C. Hersam*†,‡,∥,⊥

†Graduate Program in Applied Physics, ‡Department of Materials Science and Engineering, §Department of Physics, ∥Department of Chemistry, and ⊥Department of Medicine, Northwestern University, Evanston, Illinois 60208, United States

Supporting Information

ABSTRACT: Atomically thin MoS$_2$/graphene heterostructures are promising candidates for nanoelectronic and optoelectronic technologies. Among different graphene substrates, epitaxial graphene (EG) on SiC provides several potential advantages for such heterostructures, including high electronic quality, tunable substrate coupling, wafer-scale processability, and crystalline ordering that can template commensurate growth. Exploiting these attributes, we demonstrate here the thickness-controlled van der Waals epitaxial growth of MoS$_2$ on EG via chemical vapor deposition, giving rise to transfer-free synthesis of a two-dimensional heterostructure with registry between its constituent materials. The rotational commensurability observed between the MoS$_2$ and EG is driven by the energetically favorable alignment of their respective lattices and results in nearly strain-free MoS$_2$, as evidenced by synchrotron X-ray scattering and atomic-resolution scanning tunneling microscopy (STM). The electronic nature of the MoS$_2$/EG heterostructure is elucidated with STM and scanning tunneling spectroscopy, which reveals bias-dependent apparent thickness, band bending, and a reduced band gap of \sim0.4 eV at the monolayer MoS$_2$ edges.

KEYWORDS: transition metal dichalcogenide, silicon carbide, scanning tunneling microscopy, synchrotron X-ray scattering, chemical vapor deposition, van der Waals heterostructure

Vertical heterostructures composed of stacked two-dimensional (2D) materials allow the exploration of fundamental interfacial interactions and novel electronic functionality. From among the 2D material library consisting of semimetals (e.g., graphene1,2), insulators (e.g., boron nitride3 and Bi$_2$Se$_3^4$), and semiconductors (e.g., black phosphorus5,6 and transition metal dichalcogenides8,9), the MoS$_2$/graphene heterostructure10,11 shows great potential for next generation electronic and optoelectronic applications due to complementary carrier mobilities and optical properties.22 Additionally, the MoS$_2$/graphene heterostructure has been shown to be an excellent catalyst for hydrogen evolution reactions13 and a promising anode material for Li-ion batteries.14

The properties of MoS$_2$/graphene heterostructures depend strongly on the underlying substrate and the graphene synthesis technique. Epitaxial graphene (EG) grown on SiC by the preferential thermal desorption15,16 of silicon from SiC not only offers uniform large-area synthesis of graphene but also provides technological advantages over alternative methods such as chemical vapor deposition (CVD) and mechanical exfoliation. For example, fine control of the growth temperature enables homogeneous monolayer or bilayer EG at the wafer scale,$^{17−19}$ while postannealing in hydrogen allows decoupling of EG from the underlying SiC substrate.2 The high quality and cleanliness of EG is evidenced by its high carrier mobility20 of 45 000 cm2 V$^{-1}$ s$^{-1}$ and observation of the quantum Hall effect.21 Furthermore, the interaction between graphene and the SiC substrate can be tailored via intercalation of different atomic species.22

Given the underlying SiC substrate as well as the different electronic characteristics of EG (e.g., substrate-induced n-type doping23,24), CVD synthesis of MoS$_2$ on EG is expected to differ from that on graphite or CVD graphene, giving rise to novel structural and electronic interactions between the two materials. While MoSe$_2$ has been grown on EG by molecular beam epitaxy,25,26 recent reports of MoS$_2$ grown by CVD on graphite27,28 and EG29,30 resulted in non-epitaxial growth, where the orientation of the MoS$_2$ crystals was not controlled. Furthermore, the atomic-scale electronic and structural properties of MoS$_2$/EG heterostructures have not been thoroughly established. Toward these ends, we report here the rotationally commensurate growth of atomically thin MoS$_2$ crystals on EG.
Figure 1. CVD-grown MoS2 on EG at different conditions. (a) UHV STM image of EG before growth of MoS2, showing a typical rotational grain boundary on EG ($V_{sample} = -0.1$ V, $I_{tunneling} = 0.4$ nA). EG lattice and underlying SiC ($6\sqrt{3} \times 6\sqrt{3}$)R30° reconstruction are clearly observed. (b) AFM height and (c) phase images of MoS2/EG grown at 43 Torr. Line profiles show monolayer MoS2 (green) and graphene (red) thicknesses. The contrast between bilayer and monolayer regions of EG is more obvious in the phase image. (d) Extraction of edge orientations of MoS2 crystals in (b), showing two predominant registrations of MoS2 on EG. (e) AFM images of MoS2/EG grown at 50 Torr and (f) 100 Torr, showing multilayer growth and larger crystal domain size. The interface between EG and MoS2 is highlighted in red.

by van der Waals epitaxy. We investigate the electronic and structural properties of the resulting MoS2/EG heterostructures by a comprehensive suite of methods including atomic force microscopy (AFM), ultrahigh vacuum (UHV) scanning tunneling microscopy and spectroscopy (STM/STS), synchrotron X-ray scattering, in situ X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. In addition to the inherent advantages of van der Waals epitaxy (e.g., reduced defect density,19 sharper interfaces,20 and consistent material quality), the registry between the MoS2 and EG allows for the study of crystal orientation-dependent properties (e.g., anisotropic thermal conductance of MoS221) and specific types of grain boundaries (e.g., mirror twin grain boundaries34) for fundamental studies19 and electronic applications.35 Specifically, the epitaxial growth of MoS2 hinders the formation of tilt grain boundaries that degrade in-plane electrical conductivity and favors the formation of mirror twin grain boundaries that preserve in-plane electrical conductivity.21 It has also been demonstrated that the type of grain boundary affects the optical properties of MoS2.34 Therefore, the ability to synthesize rotationally commensurate MoS2 domains on EG facilitates ongoing efforts to realize reproducibly high-performance MoS2/graphene electronic and optoelectronic devices.

RESULTS AND DISCUSSION

CVD growth of MoS2 on EG is performed at a variety of conditions in order to tune and optimize the MoS2 film thickness. Figure 1a is an STM image of EG prior to MoS2 growth that contains a rotational grain boundary on EG with atomic structure consistent with that in previous literature. In addition to the rotational grain boundary defect, the graphene lattice and underlying ($6\sqrt{3} \times 6\sqrt{3}$)R30° SiC reconstruction are clearly resolved. Figure 1b,c shows the AFM topography and phase images, respectively, of MoS2 grown on EG at 43 Torr (detailed growth conditions are given in Methods; additional AFM images are provided in Figure S1).

The measured thickness of a MoS2 triangular domain is 7.0 Å, as indicated by the green line profile in Figure 1b, corresponding to monolayer MoS2.38 Monolayer and bilayer graphene regions are observed in the topography image (Figure 1b) and are more clearly distinguished in the phase image (Figure 1c), where monolayer regions are brighter. The measured step height is 3.5 Å, as indicated by the red line profile in Figure 1b, which is also in agreement with the literature.39 Figure 1d extracts the edge orientations of the MoS2 triangles shown in Figure 1b by plotting a line along one edge of each triangle. A large majority of the triangles have parallel edges as indicated by the blue lines, while a few triangles, indicated in red, have edges rotated by 30°. The rare occurrence of a third rotational orientation of a MoS2 triangular domain is shown in pink. From this analysis, it is apparent that there are two predominant types of azimuthal registration of MoS2 on EG. This crystal orientation alignment is attributed to van der Waals epitaxy,32 which accommodates the large lattice mismatch (~28%) between graphene and MoS2, as will be further discussed below.

Examination of the growth nucleation sites reveals that MoS2 growth preferentially (but not exclusively) initiates at the step edges of the underlying SiC and graphene. This observation can be explained by the higher reactivity of graphene as a function of local curvature40,41 at SiC steps and exposed graphene edges.42 Indeed, STS spatial maps reveal different electronic properties of the graphene wrinkles and edges compared to the flat regions, as shown in Figure S2. Higher growth pressures of 50 and 100 Torr result in bilayer and pyramid-like multilayer growth with larger domain sizes and higher coverage, as shown in Figure 1e,f, respectively, where the interface between EG and MoS2 is highlighted in red. Higher synthesis pressure increases the local concentration of growth precursors and facilitates growth on the MoS2 basal planes, resulting in multilayer crystals.43,44 Hence, by tuning the growth pressure, the thickness of the MoS2 domains can be controlled.
The as-grown MoS2/EG heterostructure is characterized by Raman spectroscopy as shown in Figure 2a. Raman signatures of MoS2 (A1g at 407.2 cm$^{-1}$, E2g at 386.4 cm$^{-1}$) and graphene (D at 1391.2 cm$^{-1}$, G at 1575.4 cm$^{-1}$, 2D at 2740.8 cm$^{-1}$) are clearly resolved. Several factors affect the positions of the A1g and E2g modes, including layer number, strain, and doping. Using a method previously demonstrated on graphene, the strain and doping effects of MoS2 on EG can be deconvoluted. For this analysis, a sample of CVD-grown MoS2 on SiO2 was prepared (see the optical microscopy and AFM images in Figure S3). To circumvent the MoS2 thickness effects on the Raman peak positions, the two samples were prepared under growth conditions that yield primarily MoS2 monolayers. Spatial Raman mapping of the MoS2/EG and MoS2/SiO2 samples was then performed, and the E2g versus A1g mode positions are plotted in Figure 2b. It has been shown previously that A1g and E2g modes shift up with compressive strain and down with tensile strain. Since the reported ratio of the shifting rates of E2g to A1g under biaxial strain is ~ 1.5, and hole doping shifts up the A1g mode while the E2g mode remains unchanged, pure strain and doping effects are represented by two arrowed lines with slopes of 1.5 and 0 in Figure 2b, respectively. Thus, in comparison to MoS2 on SiO2, MoS2 grown on EG has higher hole doping and lower tensile strain. The higher hole doping level may be due to differences in charge transfer for the two systems. In addition, the lower tensile strain can be explained by the fact that while MoS2/SiO2 is under tensile strain, MoS2/EG is strain-free as will be demonstrated later by X-ray scattering. Given that the difference in the E2g mode positions between the two systems is 2.4 cm$^{-1}$, the corresponding tensile strain of MoS2/SiO2 is $\sim 0.2\%$. The electronic properties of the MoS2/EG heterostructure are further explored using a custom-designed UHV STM with a base pressure of $\sim 6 \times 10^{-11}$ Torr at room temperature. Prior to scanning, the sample is degassed at 205 °C for 6 h in UHV and then characterized by in situ XPS. The molybdenum core level XPS spectrum is shown in Figure 2c, with detailed subpeak positions provided in the Methods section. The doublets of the Mo 3d orbital corresponding to MoS2 are considerably higher than those of MoO2, indicating the high quality of the MoS2 crystals. Figure 3a is an STM image showing a typical monolayer MoS2 crystal on EG. The (6√3 × 6√3)R30° reconstruction of EG is seen in the bottom half of the image. Nine STS spectra taken at different positions on the MoS2 crystal far from its edges are shown in Figure 3b. The band gap is uniformly ~ 2 eV across a single domain, which falls within the range of reported STS band gaps of monolayer MoS2 on graphite (1.9 eV, 2.15 eV, and 2.4 eV). Thermal broadening and energy uncertainty resulting from the small tunneling junction may explain the small deviations in the STS-measured band gap. Atomic resolution images of a MoS2 triangular domain and EG in Figure 3a are shown in Figure 3c,d, respectively. From the line profiles, the periods of atomic corrugation for MoS2 and EG are measured to be 3.15 and 2.46 Å, corresponding to their respective lattice constants. Both the MoS2 and EG atomic-scale STM images show six-fold symmetry and rotational commensurability as a result of van der Waals epitaxy. Figure 4a contains STS mappings of the corner of a monolayer MoS2 crystal domain on EG, where the underlying SiC (6√3 × 6√3)R30° reconstruction is seen at the bottom ($V_{\text{sample}} = 0.2 \text{ V}, I_{\text{tunneling}} = 50 \text{ pA}$). (b) STS dI/dV spectra taken at nine different positions on the MoS2 crystal domain far away from the edges, showing a uniform band gap of ~ 2 eV. (c,d) Atomic-scale images and line profiles of (c) MoS2 ($V_{\text{sample}} = -0.2 \text{ V}, I_{\text{tunneling}} = 50 \text{ pA}$) and (d) EG ($V_{\text{sample}} = -0.1 \text{ V}, I_{\text{tunneling}} = 0.4 \text{ nA}$), demonstrating aligned lattice orientations.
The nature of EG give rise to the inversion of the relative DOS at these two biases.

STS spectra for monolayer and bilayer MoS\(_2\) are shown in Figure 4b. Compared to monolayer, bilayer MoS\(_2\) has a reduced band gap of \(\sim 1.7\) eV, resulting from an increased valence band maximum (VBM) and a subtle decrease of the conduction band minimum (CBM). Although the physical thickness of monolayer MoS\(_2\) is \(\sim 7\) Å, the apparent height measured by STM depends on applied bias, as indicated by the blue curve in Figure 4c. This convolution of topography and electronic structure in constant current STM imaging is well-known and often pronounced for ultrathin films.\(^{56}\) Qualitatively, at high positive bias, the MoS\(_2\) conduction band shows higher DOS than EG, as shown in Figure 4a, which implies that the tip retracts more on MoS\(_2\) than EG to maintain a constant current. On the other hand, at low negative bias, the opposite occurs as EG shows higher DOS than MoS\(_2\) (Figure 4a). This change in relative DOS and the proximity of the MoS\(_2\) CBM to zero makes the MoS\(_2\) apparent thickness larger at high positive bias and smaller at negative bias than its physical thickness. Also shown in Figure 4c is the measured apparent height of the step edge from bilayer to monolayer MoS\(_2\) at different sample biases. Since bilayer and monolayer MoS\(_2\) have similar DOS in the measured range, the apparent thickness does not vary significantly from its physical thickness.

The effects of edges\(^{7,58}\) on the electronic properties of MoS\(_2\) are also investigated by spatially resolved STS spectra. A series of vertically offset STS spectra taken across an EG to MoS\(_2\) step edge are shown in Figure 5a, with their respective positions marked by colored dots in the inset. The distance from each measured point to the step edge is further indicated in the figure. These spectra reveal that the band gap increases gradually to \(\sim 2\) eV after moving \(\sim 5\) nm into the MoS\(_2\) flake. The dashed black lines denote the VBM and CBM of each spectrum. Both band edges shift to higher energy when approaching the MoS\(_2\) edge from the interior, similar to the band bending observed for MoS\(_2\) on graphite.\(^{9}\) However, the gradual decrease of the band gap (i.e., faster increase of the VBM than the CBM) when approaching the MoS\(_2\) edge differs from the nearly constant band gap observed in the band bending region of MoS\(_2\) on graphite.\(^{9}\) Similar STS spectra taken across the transition from bilayer to monolayer MoS\(_2\) are shown in Figure 5b. In this case, the band gap changes from \(\sim 1.7\) eV on bilayer MoS\(_2\) to \(\sim 2.0\) eV on monolayer MoS\(_2\). However, at the edge position, the band gap drops significantly to \(\sim 0.4\) eV. This large decrease in the band gap is consistent with edge states\(^{58}\) that have been predicted by density functional theory (DFT) to reduce the band gap of MoS\(_2\) to 0.43 eV at the monolayer to bilayer step edge\(^{59}\) and below 0.6 eV at isolated MoS\(_2\) monolayer edges.

To verify that these local AFM and STM observations persist over the entire sample, synchrotron grazing-incidence wide-angle X-ray scattering (GIWAXS) is employed to investigate the van der Waals epitaxy of MoS\(_2\) on EG. A schematic of...
GIWAXS is shown in Figure 6a, and experimental details are outlined in the Methods section. In GIWAXS, the incident X-ray beam is at an incident angle of α = 0.14°, slightly below the critical angle of total external reflection of the substrate. The out-of-plane angle β and in-plane angle 2θ define the position at which the scattered X-ray wave vector k_i intersects the plane of the 2D detector. The Q_x, Q_y reciprocal space map of MoS_2/EG projected from Q_z = 0.08 to 0.12 Å⁻¹ is shown in Figure 6b, with first-order spots of MoS_2, EG, and SiC identified. The blue, orange, and magenta arrows indicate the reciprocal lattice vectors b* for MoS_2, EG, and SiC, respectively. As seen by the reciprocal space points, the reciprocal lattices for MoS_2 and EG are aligned, whereas SiC has a well-known 30° rotation with respect to EG.00 This observation indicates that the majority of the MoS_2 crystals are epitaxially grown along the EG lattice direction with matching six-fold symmetry, confirming the symmetry inferred from AFM (Figure 1 and Figure S1) and STM (Figure 3). The real-space structure reconstructed for such aligned MoS_2 growth is shown in Figure 6c, where the two MoS_2 triangles represent the preferred orientations in the epitaxial MoS_2/EG heterostructure shown in Figure 3d. Projected first-order MoS_2 and SiC peaks onto ϕ are included in Figure 6d to examine the angular distribution. The relative angle between the MoS_2 and SiC lattices is indeed 30 ± 0.3°, which is a much narrower azimuthal distribution than that of CVD MoS_2 grown on sapphire.01 The full width at half-maxima of the first-order MoS_2, EG, and SiC peaks as a function of ϕ are 0.7, 0.5, and 0.05° (limited by X-ray optics), respectively, which confirms that the MoS_2 is in excellent registry with EG.

Figure 6e shows the scattered intensity from the 2D reciprocal space map of Figure 6b collected along Q_z at Q_z = 0. The real-space lattice constants calculated for MoS_2, EG, and SiC are 3.16 ± 0.01, 2.46 ± 0.01, and 3.07 ± 0.01 Å, respectively. To gain more insight into the structure of MoS_2 on EG, in-plane X-ray diffraction of MoS_2/EG and bulk MoS_2 was performed (Figure S4). The resulting lattice constants of MoS_2/EG and bulk MoS_2 are 3.160 ± 0.005 and 3.159 ± 0.006 Å, which indicate a relaxed in-plane structure of MoS_2 on EG similar to its bulk counterpart. The lack of in-plane strain in the synthesized MoS_2 2D crystals can be explained by total strain relaxation in the van der Waals gap, analogous to a buffer layer alleviating the strain in conventional epitaxy.02

As indicated by the red MoS_2 triangles in Figure 1d, there is a secondary, less preferred registration between MoS_2 and EG, where the MoS_2 lattice is rotated by 30°. To examine the relative amount of 30° rotated growth, GIWAXS data of the MoS_2(010) peak taken along the EG[010] direction (aligned growth, blue) and the SiC[010] direction (30° rotated growth, red) are shown in Figure 7. From the integrated intensities of the two MoS_2 peaks, the amount of MoS_2 with lattice 30° rotated from the EG lattice is determined to be 14 ± 4% of the total intensities, while the aligned growth is found to be dominant at 86 ± 4%. This large-area GIWAXS result is consistent with the orientation distribution of MoS_2 domains

![Figure 7. Examination of the growth orientation of MoS_2. GIWAXS data of the MoS_2(010) peak taken along the EG[010] direction (aligned growth, blue) and the SiC[010] direction (30° rotated growth, red). The integrated intensities of these two peaks are 2.6 × 10⁴ and 4.2 × 10⁴, respectively. Inset: Schematic of the two growth orientations of MoS_2 on EG. The armchair directions of MoS_2 from aligned (blue) and 30° rotated (red) growth are indicated by the blue and red arrows, respectively. The black arrow indicates the armchair direction of EG.](https://example.com/figure7.png)
shown in the AFM images in Figures 1 and S1. Thus, in Figure 1d, we attribute the majority blue MoS2 triangles to aligned growth, and the minority red triangles to 30° rotated growth. The inset of Figure 7 shows the schematic of these two registrations, where the blue, black, and red arrows indicate the armchair directions of aligned MoS2, EG, and 30° rotated MoS2, respectively. These two growth orientations have also been observed previously for MoS2 grown on sapphire.61,63 Rare deviations in the preferred orientations, such as the pink MoS2 crystal domain shown in Figure 1d, indicate lack of registry of the MoS2 domain with the EG and can be attributed to local disturbances in the substrate surface. These occurrences were not frequent enough to produce detectable scattered X-ray intensity.

CONCLUSIONS

In summary, a 2D heterostructure of rotationally commensurate MoS2 on EG has been grown via van der Waals epitaxy with controlled thickness. The structural and electronic quality of these samples has been probed down to the atomic scale using a combination of UHV STM/STS and synchrotron X-ray scattering. MoS2 is found to preferentially grow with lattice aligned with EG. The relative amount of a less preferred 30° rotated growth is also determined. Furthermore, Raman spectroscopy and in-plane X-ray diffraction show that the MoS2 is nearly strain-free, thus providing an ideal system for probing the fundamental properties of two-dimensional MoS2. For example, spatially resolved STS measurements across MoS2 step edges reveal band gap narrowing that is in close agreement with DFT calculations. Overall, this study suggests that EG may be a promising substrate for van der Waals epitaxial growth of other emerging two-dimensional nanomaterials in addition to providing a well-defined platform for the future study and application of MoS2/graphene heterostructures.

METHODS

Synthesis of Epitaxial Graphene. Following a similar procedure of producing EG on 6H-SiC (0001) as outlined previously,5,16 an n-type 4H-SiC (0001) wafer (Cree Inc.) degreased in an acetone and isopropyl alcohol (IPA) sonication bath was degassed at 550 °C for 12 h under UHV conditions (∼5 × 10−10 Torr). Few-layer EG was grown on the Si face by thermal desorption of Si atoms at 1270 °C for 20 min. The first carbon-rich buffer layer has a 6√3 × 6√3 unit cell, which is known as the (√3 × √3)R30° reconstruction.

Synthesis of MoS2. Molybdenum trioxide (MoO3, 99.98% trace metal Sigma-Aldrich) was placed in the middle of the hot zone of a Lindberg/Blue 1 in. quartz tube furnace in an alumina boat 2.5 cm upstream of a 5 mm × 9 mm EG substrate (graphitized Si face is facing up). The sulfur powder (Sigma-Aldrich) in an alumina boat was placed 30 cm upstream of the MoO3 boat under a proportional integral derivative temperature-controlled heating belt. The tube was initially pumped to a base pressure of ∼50 mTorr and purged with Ar gas to 400 Torr. During the anneal prior to the reaction and during the reaction itself, the pressure was kept constant at 43 Torr (to yield mostly monolayer MoS2 crystals) using a needle valve controller and Ar carrier gas flowing at 25 sccm. The MoO3 and EG substrate were annealed for 20 min at 150 °C (with a 5 min ramp to 150 °C from room temperature) to eliminate residual water and physisorbed contaminants in the tube and on the substrate. Subsequently, the furnace was heated to a maximum temperature of 800 °C at a rate of 12 °C/min. Once the target temperature was reached, the furnace was kept at 800 °C for 20 min and cooled down naturally to room temperature. Concurrently, the sulfur was annealed under the same inert conditions for 49 min at 50 °C (with 5 min ramp to 50 °C from room temperature) and brought to a maximum temperature of 140 °C at a rate of 4 °C/min. The sulfur ramp to 140 °C began when the furnace was approximately at 500 °C. The sulfur was then kept at the maximum temperature for 23 min.

For the synthesis of MoS2 on SiO2, a 4 cm × 1 cm 300 nm thick SiO2/Si wafer (SQC Inc.) was sonicated in acetone and IPA bath for 10 min, rinsed with deionized water, and treated with oxygen plasma for 1 min. The wafer was then placed in close proximity to the MoO3 boat, and the same growth procedure was applied with a change to the following parameters: a reaction chamber pressure of 150 Torr was maintained instead of 43 Torr, and the sulfur was brought to a maximum temperature of 150 °C instead of 140 °C at a rate of 4.5 °C/min.

Scanning Tunneling Microscopy and Spectroscopy. A home-built UHV STM system4–4 integrated with a preparation chamber, an XPS chamber, and a load lock was utilized for STM, STS, and XPS measurements. The microscope adopts a Lyding design64 with a bias voltage applied to the sample with respect to the grounded tip. The base pressure in the STM chamber was ∼6 × 10−11 Torr. Both electrochemically etched W and PtIr tips (Keysight) were used. STS spectra and mappings were taken with a lock-in amplifier (SRS model SR850) with a modulation frequency of ∼8.5 kHz and rms amplitude of 30 mV. The experimental variability of band gap measurements in this work is estimated to be 0.08 eV. This estimate is based on the standard deviation of band gap measurements (Figure S3) from 80 STS spectra on multiple monolayer MoS2 domains. Specifically, these measurements imply that the band gap is 2.01 ± 0.08 eV. Nanonis SPM control electronics were used for data collection. The STM system was calibrated using atomic resolution EG for the x−y piezo and Ag(111) single-crystal monolayer step height for the z piezo.

Atomic Force Microscopy. AFM experiments were carried out on an Asylum Cypher AFM in tapping and contact modes. Si cantilevers NCHR-W from NanoWorld with a resonant frequency of ∼320 kHz were used for tapping mode imaging, and PPP-CONTSCAu cantilevers from NanoSensors were used for contact mode imaging (2−5 nN force was applied). The images were taken with a pixel resolution of 512 × 512 or 1024 × 1024 at a scanning rate of ∼1 Hz.

X-ray Photoelectron Spectroscopy. XPS spectra were taken at a base pressure of ∼4 × 10−10 Torr with an Omicron DAR 400 M X-ray source, XM 500 X-ray monochromator, and EA 125 energy analyzer. The XPS system was integrated with the UHV STM system for in situ measurements. The binding energy resolution was 0.1 eV. Ten scans were averaged for each core level spectrum. All subpeaks were fit with a modified Shirley background in Avantage (Thermo Scientific) software after calibrating the spectra to graphene carbon at 284.5 eV. The peaks positions are as follow: S 2s, 227.0 eV; MoS2 3d3/2, 229.7 eV; MoS2 3d5/2, 232.8 eV; MoO3 3d5/2, 233.1 eV; and MoO3 3d3/2, 236.3 eV.

Raman Spectroscopy. Raman measurements were carried out on a Horiba Scientific XploRA PLUS Raman microscope with excitation laser line of 532 nm (with spot size ∼1 μm2) in ambient conditions. The Raman signal was collected using a 100X Olympus objective (NA = 0.9) and dispersed by 1800 grooves/mm gratings to a Synchrotron X-ray scattering. The GIWAXS data of MoS2/EG/SiC were collected at sector 12-ID-C at the Argonne National Laboratory Advanced Photon Source. The 23.5 keV monochromatic X-ray beam was defined using slits of 50 μm × 2 mm to have a 5 mm × 2 mm footprint on the sample at incident angle α = 0.14°. The incident flux was 4 × 1012 photons/s. As depicted in Figure 6a, a 100 K Pilatus area detector was mounted on a rotating x-arm positioned at approximately 354 mm from the sample to collect the GIWAXS signal. Data within q = 2.2 to 4.8 Å−1 in Figure 6 was collected at ν = 10.262° relative to the direct beam. The sample was kept under a helium
environment and placed on a ϕ rotation stage. The 33-ID-C line was used to collect high-resolution grazing-incidence X-ray scattering and diffraction data from the bulk MoS$_2$, single crystal and MoS$_2$/EG samples. Monochromatic 10 keV X-rays were focused to 70 μm using a horizontal Kirkpatrick-Baez mirror with a flux of 2×10^{11} photons/s. Data were collected using a Dectris 100 K Pilatus area detector mounted on a Newport 6-circle goniometer. The reciprocal space map in Figure 6b was generated using the Ewald sphere construction method, wherein pixels from $Q_z = 0.08$ to 0.12 Å$^{-1}$ were projected onto a 2D reciprocal space map using interpolation plots in Mathematica. Peaks were fit using the Gaussian fitting function in MATLAB.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.5b06398.

Additional information including supplemental AFM, STM/STS, optical images, and lattice constants analysis (PDF)

AUTHOR INFORMATION

Corresponding Authors
*E-mail: bedzyk@northwestern.edu.
*E-mail: m-hersam@northwestern.edu.

Author Contributions
†X.L. and I.B. contributed equally.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

CVD growth was supported by the National Institute of Standards and Technology (NIST CHiMaD 70NANB14H012). STM/STS characterization was supported by the U.S. Department of Energy SISGR program (DOE DE-FG02-09ER16109). Raman and XPS characterization was supported by the Office of Naval Research (ONR N00014-14-1-0669), and synchrotron X-ray scattering measurements were supported by the Materials Research Science and Engineering Center (MRSEC) of Northwestern University (NSF DMR-1121262). Use of the Advanced Photon Source at Argonne National Laboratory was supported by DOE-BES (DE-AC02-06CH11357). The Raman instrumentation was funded by the Argonne–Northwestern Solar Energy Research (ANSER) Energy Frontier Research Center (DOE DE-SC0001059). The authors kindly thank Dr. Kan-Sheng Chen, Dr. Jian Zhu, Dr. Junmo Kang, Dr. Joshua Wood, Dr. Jonathan Emery, Dr. Zhan Zhang, Dr. Hua Zhou, Andrew Mannix, and Zonghui Wei for valuable discussions.

REFERENCES

