Revitalization of Manufacturing and Quality Assurance within Systems Engineering

Dr. Thomas F. Christian, Richard Stepler, Hamid Akhbari
Aeronautical Systems Center
SSTC, 21 June 2007
Manufacturing & Quality in Systems Engineering

• Why are we here?
 • Are there really deficiencies in our Systems Engineering Process or is there a problem in execution?
 • What metrics are our critics using to gauge our performance?
 • Failures to make rate, cost, and schedule in production
 • Unresolved engineering issues from the development phase manifest themselves as cost and rate failures detected during LRIP and Production
 • Fixing the root cause of manufacturing problems means including manufacturing as a mandatory discipline in the System Engineer tool set during design and development

• My perspective on the Past, Present, and Future of Manufacturing and Quality involvement in Systems Engineering
Overview

• Where we were ►

• Where we are ►

• Where we are going ►
Where We Were: M&Q in America

• Ahhh….”The Good Old Days”?
 …..Were they as “good” as we remember…
• Separation of design and manufacturing functions
 • Transition to production always problematic
 • LRIP created to address problem but only addressed symptoms
 • Major redesigns of components required to achieve desired production rates
 • Producibility changes euphemism for “we can’t afford to build what you designed”
 • Cost high: low first pass yields and traveled work
 • Schedule fluctuations due to excessive “work in process”
• Quality by inspection
 • The most expensive and least effective approach
 • Build-test-fix-retest-fix-retest-----who pays for quality
Where We Were: M&Q in America

• Need proof?
 • Back in the 1970s, how long did your domestic car last?
• Corporate commitment to quality and the customer’s satisfaction?
 • “What’s good for General Motors is good for the country”
• Then came competition from Japan, with help from Deming
• The American auto industry wakes up
 • Recognized Japan’s focus on customer satisfaction and quality
• Today: we expect our cars to work every time….all the time
• Toyota is still at the forefront of quality
 • Their “secret” – focus on quality and producibility during design
Where We Are: M&Q in America

• **FACT**: The American Defense Aerospace Industry has produced, unquestionably, the finest weapon systems in the world

 • But at what cost? How long does it take? How much “cost of quality” have we shifted to operations and maintenance?

“...DoD is simply not positioned to deliver high-quality products in a timely and cost-efficient fashion.”

GAO (HASC) Testimony [GAO-06-585T](http://example.com) “Actions Needed to Get Better Results on Weapons Systems Investments” 5 April 2006

“*In 2001, The Average Weapon System Acquisition Program Experienced a 36% Cost Overrun and Schedule Delay of Two Years*” – *Dr. Marvin Sambur*
M&Q in the DoD:
Who We Were Then..... and Who We Are Now

• THEN….1975 to 1985
 • M&Q Organization
 • Every level of acquisition decision authority in DoD
 • Independent M&Q evaluation with veto power
 • Large numbers of experienced people
 • Career field with opportunities
 • Mentoring
 • Tribal knowledge well documented in Specs and Standards

• NOW.....2001 to present
 • Not sitting at the decision table
 • No seat and no vote on program readiness
 • Under-represented at most locations
 • No representation at some locations
 • M&Q Specs and Standards cancelled
GAO Findings:
Production Maturity

<table>
<thead>
<tr>
<th>Program</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPATS</td>
<td>Program is not taking steps to meet GAO production maturity criteria</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>ABL</td>
<td>n/a</td>
<td>Program is not taking steps to meet GAO production maturity criteria</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>F/A-22</td>
<td>Program demonstrates sufficient production maturity</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>JSF</td>
<td>n/a</td>
<td>n/a</td>
<td>Program demonstrates sufficient production maturity</td>
<td>n/a</td>
</tr>
<tr>
<td>Global Hawk</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>Program demonstrates sufficient production maturity</td>
</tr>
<tr>
<td>JHMCS</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>Program demonstrates sufficient production maturity</td>
</tr>
<tr>
<td>Predator B</td>
<td>n/a</td>
<td>n/a</td>
<td>Program demonstrates sufficient production maturity</td>
<td>n/a</td>
</tr>
<tr>
<td>B-2 RMP</td>
<td>n/a</td>
<td>n/a</td>
<td>Program demonstrates sufficient production maturity</td>
<td>n/a</td>
</tr>
<tr>
<td>V-22</td>
<td>Program is not taking steps to meet GAO production maturity criteria</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Color ratings based on GAO opinions
n/a = not assessed
Defense Science Board ManTech Study

• DSB was tasked by SAF/AQ to evaluate the ManTech program
• Released report in February 06
• Much of the report pertains specifically to ManTech
• Portion of the report addresses global acquisition manufacturing issues
 • Assessing program readiness for production…..(suggested using the new Manufacturing Readiness Levels (MRLs), more on the MRLs Later)
 • Workforce Expertise – clearly addresses the entire DoD acquisition workforce

Complete DSB report is located at:

Defense Science Board ManTech Study

Findings:
• Manufacturing talent in the DoD workforce, and its supporting industrial base, has and continues to decline
• Not enough people (both at working level and in leadership positions) understand the processes involved in developing and manufacturing defense systems

Recommendations to correct knowledge deficiency:
• Create policy requiring support for programs such as ManTech
• Implementation of MRLs as part of DoDI 5000.2
Customer Expectations

1. Avoid cost overruns, performance shortfalls, and schedule slips typically manifested during production
2. Improve quality and avoid surprises
3. Ensure affordability and producibility
4. Identify all potential MFG risks during transition from development to production and establish risks mitigation plans
5. Provide rapid response to emerging needs, e.g., readiness (includes combat ops, surge, parts and spares, etc.)

Have you met your customers expectations?
Swinging Pendulum of Acquisition Reform

• Where we were was not cheap….but it was defined
• Where we are is neither cheap nor defined
• The faster..better..cheaper “acquisition reform” pendulum… for us a wrecking ball….left M&Q vulnerable
• We can anticipate the return swing but must not let it drive us back to the old approach.

1996
• …a narrow approach to QA, based on inspections, reviews, and documentation audits
• Numerous deliverable data items (Mfg Plan, QA Plan, Line of Balance, Quality Status Reports, etc.)
• Army of DCMA inspectors

2006
• Minimal Government oversight of contractor QA and Manufacturing processes
• Minimal contractual requirements
• No dedicated representation in Mfg/QA at OSD

Let’s tailor the “return trip”
ASC/ENSM Response to Customer Concerns

- ASC/ENSM plans to conduct a 360° evaluation to identify solutions and best practices

Diagram:
- Requirements (SAF/AQ)
- Customers (Users’ Experience)
- Industry Benchmarking (Airlines, Toyota, etc.)
- Competitive Assessment (Navy, Army Acquisition)
- Prime Contractors
- ASC Acquisition Mfg
Big Industry Messages

2. Government does not specify the right deliverables in their contracts.
3. Benchmark other industries to get a better picture on MFG related issues during product development and risk mitigation plans to address them.
4. Assess production readiness in a meaningful way.
5. More emphasis on suppliers during product development.
Big Industry Message

1. Government acquisition strategies do not require an in-depth risk analysis for manufacturing during product design:
 - Establish effective source selection criteria to emphasize producibility and affordability
 - Identify incentives for contractors to focus on producibility and affordability during product development.
 - More MFG/QA emphasis during ASP reviews
 - Strong Government advocate/champion are needed
 - There is a gross lack of knowledge and personnel in this area
 - Hold PMs and chief engineers accountable
 - Educate Government PMs with potential MFG/QA risks and their impacts to the overall system life cycle cost
 - Make long-term decisions thoroughly considering all production risks down the road
Big Industry Message

2. Government does not specify the right deliverables in their contracts:

• Government needs to verify that the contractor has the right processes in place to deliver the right product
• Government does not use the right metrics to measure performance
• Make the contractor demonstrate that they have a solid production plan
• Require the prime to demonstrate control of MFG processes during development
• Specify proper MFG/QA contractual requirements in development contracts
Big Industry Message

3. Benchmark other industries to get a better picture on MFG related issues during product development and risk mitigation plans to address them:

- Consider world-class performers in other industries
- Think outside the box
- Develop lessons learned
- Evaluate commercial programs and practices as well as the FAA
- Consider having budget for “Producibility Improvement Plan” (PIP)
Big Industry Message

4. Assess production readiness in a meaningful way:

- Government needs to develop better MFG transition strategies
- Willoughby templates (Transition from Development to Production) are useful tools
- PRRs are not focusing on the right parameters. Many programs do not conduct full blown PRRs like they once did
- MRLs will be a useful tool once up and running
- Government PMs should be required to develop MFG exit criteria for milestone reviews
- Industry recognizes “Production Plans” once required by the Government for most programs as a useful tool
Big Industry Message

5. More emphasis on suppliers during product development:

- The vast majority of quality related issues come from lower-tier suppliers. Ensure that the prime’s processes for management of their suppliers are solid
- Properly manage requirements flow-down to lower-tier suppliers
- Require suppliers participation on IPTs during product development
- Ensure supplier participation in the systems engineering process, in particular MFG processes and procedures
- Develop predictive indicators to assess supplier’s “internal health”
- Use of common metrics
Where We Should Be Going

• The way forward…..
 • Internally: Manufacturing and Quality must be the responsibility of design engineers and be considered early in the development process
 • Externally: Supplier Management….engineers at primes must partner with suppliers to achieve maximum affordability

• To help with all of it: The M&Q tool set:
 • Manufacturing Development Guide-Available now
 • Manufacturing Readiness Levels-Draft available now
 • Manufacturing and Quality Integrity Program-Available soon

Systems Engineering – Ensure that design meets requirements and *is producible*

Mfg/QA helps SE meet producibility, OSS&E, and Airworthiness Design requirements
Producibility…M&Q’s Contribution to Systems Engineering

• America’s Defense Aerospace Industry is #1 in the world. However…
 • Are we be able to buy desired quantities?
 • How many B-2s were originally planned? F-22s? JSFs?
• If we can’t figure out a way to build better systems cheaper, we will fulfill Norm Augustine’s prophecy:
 • “In the year 2054, the entire defense budget will purchase just one aircraft. This aircraft will have to be shared by the Air Force and Navy 3-1/2 days each per week except for leap year, when it will be made available to the Marines for the extra day.”
• My primary focus is to integrate quality and producibility early in the Systems Engineering process (see the ASC, MDG)
Summary: We Know We Are There When.....

- The process used to manufacture a part is given equal consideration as the functionality of the part
- Product performance and producibility are equal in the risk analysis trade studies during product development
- The “chiefs” of design, manufacturing and logistics have equal votes on critical design decisions during development
- “Design” executives are held accountable for unit production cost and cost of quality decisions
- M&Q metrics are present in entry and exit criteria for each phase of the acquisition life cycle
- Integrating people, processes, and technology using the System Engineering Process proven effective by world class producers

As good systems engineers, our commitment to M&Q starts in design
Thank you for your time and attention
Thomas.Christian@wpafb.af.mil
Phone: 937-255-1826