Software-Intensive Systems
Producibility Initiative

Mr. Robert Gold
Associate Director, SW and Embedded Systems
Director, Defense Research and Engineering (DDR&E)

Mr. Tom McGibbon
Defense Analysis Center for Software (DACS)
DoD Software is Growing in Size and Complexity

Total Onboard Computer Capacity (OFP)

Software PRodUcibility Collaboration and Evaluation Environment (SPRUCE²)

- Managed by the Air Force
- Open collaborative research and development environment
 - Demonstrate, evaluate, and document the ability of novel tools, methods, techniques, and technologies
- Facilitate testing of Software-Intensive Systems Producibility research products and methods
- Provide a realistic environment for research of DoD embedded systems and software problems
- Provide an ability for university and industry leverage of technology development
- Support successful technology transition and transfer
- Investigators will collaborate with major defense acquisition program developers as well as analyzing the utility of tools

Note: SPRUCE² is the new name for the Systems and Software Test Track (SSTT).
SPRUCE² Phase I Completed

- Defined Concept of Operations (CONOPS)
 - Facility characteristics for a proposed system from the users' viewpoint.

- Defined Architecture and the fundamental organization of the SPRUCE²
 - Components,
 - Their relationships to each other and the environment, and
 - Principles governing its design and evolution.
SPRUCE2 Phase II Goals

- Implement the architecture of SPRUCE2
- Stand up the fundamental organization of SPRUCE2
- Begin experimentation
- Identify challenge problems that require research
 - Develop representative case studies
SBIR Objective

Facilitate use of state-of-the-art analysis tools with commercial model-driven development tools

- **Kestrel Technology LLC**
 - Develop architecture and hub language that support semantic integration of models
 - Establish both as formal standards

- **Reactive Systems, Inc.**
 - Collaborate with Kestrel Technology
 - Develop translators between hub language and
 - Simulink®/Stateflow® modeling languages
 - SALSA analysis tool
 - Reactis® automated test generator
STTR Objective

Approaches and tools to analyze existence, completeness, and adequacy of error handling policies and paths

– GrammaTech, Inc.
 • Analyze error behavior at component boundaries using machine code & file/socket format analysis
 • Trace error propagation, flag policy violations, or uncontained errors

– WW Technology Group
 • Model-driven development of error-handling architecture based on SBIR-developed EDICT tool suite
 • Tradeoff analysis of alternative architectures using multiple formalisms and stochastic & statistical approaches
Sage. Methods and tools supporting **agile, model-driven development** of high assurance distributed agent-based systems

SOL. Declarative specification language supporting **automated synthesis** of distributed agent-based systems

SALSA. Static analysis tool establishes **behavioral properties** of SOL-like specifications

SINS. Secure deployment, management, and communication **infrastructure for distributed agents**

Secure open source software. Methods and tools facilitating adaptation, development, and/or **assurance of open source software** for DoD use.
Army Software Technologies for Interoperable Systems of Systems

- Develop and establish principles of interoperability and complexity management
 - Foundation for developing a service-oriented architecture for ultra large scale systems

- Two awards
 - UC Berkeley
 - Vanderbilt University
• Composition of systems based on
 – Integration technologies for legacy and custom subsystems that provide an understanding of the interaction of subsystems;
 – Scalable composition mechanisms for system-of-systems architectures;
 – Interface formalisms through which compatibility and properties of compositions can be determined from properties of the subsystems;
 – Ontology models for the organization of components together with a semantic type system for the data on which they operate; and
 – Hybrid models for designing and analyzing the dynamics of subsystem interactions with their physical environment
Enable system architects and integrators in creating large-scale SOA-based systems on MANETs

- “Model-based tools for Service Architectures on Mobile Ad hoc Networks.” (MOSAMAN)

Emphasis on model-based approaches
- Service Oriented Architecture middleware and
- Applications on Mobile Ad hoc Network platforms

Results and deliverables include
- Domain-specific modeling environments
- Analysis tool chains, and
- Architecture analysis tradeoffs
Future Activities

- Navy-led new start in FY2008
- Completion of the National Academy of Sciences study
 - “Advancing Software Intensive Systems Producibility”
- SISPI and ULS Technology Focus Team
 - Technology Roadmap
 - Industry Summit
 - Recommendation for POM-10 investment
- Coordinate with National Science Foundation Cyber-Physical Systems initiative
Software-Intensive System (SIS) Producibility

Program Overview
- Enable DoD to develop and affordably acquire software for large-scale, complex, embedded and net-centric systems by providing innovations in technologies, tools and techniques
- Invigorate DoD software research and provide dedicated efforts to demonstrate and transition improvements to acquisition programs
- Issues:
 - Software is an integral part of advanced warfighting systems but owing to technology shortfalls, DoD software-intensive acquisitions experience serious inefficiency, cost/schedule overruns, and critical failures
 - Trends in software size and complexity grow exponentially

Program Objectives
- Develop new technologies, tools and techniques that achieve 20% productivity improvement and 20% reduction in re-work by FY14
- Demonstrate impacts of technology improvements on representative acquisition program software artifacts
- Transition new technologies to software-intensive acquisition programs
- Milestones
 - Release BAA(s) Summer ’06
 - Establish university/industry centers, research mid-’07
 - Software test track, 2007

Project Structure
- Projects to be funded with POM-08 Request
 - Software and Systems Development Focused Research Centers
 - Software and Systems Test Track
 - Transition

Metrics/Benefit
- Long-Term measures –
 - Improved affordability (improving trends in software cost and schedule from DoD 5000 SRDR*)
 - Reduced software re-work
 - Improved programmatic predictability
 - Increased industry productivity (SLOC/MM)
 - Decreased defect density (defects/1000SLOC)
- Will enable DoD to acquire software with reduced cost/schedule, increased quality, and avoid cost/schedule overruns by reducing rework

* Software Resources Data Report
SISP Technology Ecosystem

Education
Training
Tools
Publications

Acq
Oversight
Prog Mgmt
Test

Warfighters

Integrators

Developers

Tool Vendors
Start-ups
Champions/Agents
Open Source
Industry Gurus

Research
Academia | Industry | Gov’t Labs

NSF, NIST, DoD S&T
Opportunities for Progress

<table>
<thead>
<tr>
<th>Rules of Engagement</th>
<th>People</th>
<th>Product</th>
<th>Process & Proj mgmt</th>
<th>Tools Technologies Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Law</td>
<td>Education</td>
<td>Existing code</td>
<td>CMMI</td>
<td>MDA</td>
</tr>
<tr>
<td>Policy</td>
<td>Training</td>
<td>Libraries</td>
<td>iCMM</td>
<td>Code Checkers</td>
</tr>
<tr>
<td>Business Models</td>
<td>Licensing</td>
<td>OS/Middleware</td>
<td>ISO 9000</td>
<td>Code generators</td>
</tr>
<tr>
<td></td>
<td>Experience #’s</td>
<td>DOTS</td>
<td>Lean 6Sigma</td>
<td>Req’ts mgrs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GOTS</td>
<td>TOC</td>
<td>Visualization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COTS</td>
<td></td>
<td>Etc.</td>
</tr>
</tbody>
</table>