Software Technology Support Center

DCARC Data Analysis

Les Dupaix
Software Technology Support Center
Hill AFB, UT
Data analysis summary

- Background
- Four data types anticipated in the DCARC 2630 software data
- Summary of the DCARC 2630-3 normalized data points
- Autocode problem
- Conclusions
Simplified DCARC reports

- **Form 2630-2**
 - Initial estimate (based on scope)
 - Size
 - Effort (Cost)
 - Schedule (Milestone)
 - Interim estimates
 - Needed for growth metrics

- **Form 2630-3**
 - Completion (actuals) report
 - Size (based on scope)
 - Effort (Cost)
 - Schedule (Milestone)
Software project data types

- **Component (CSCI)**
 - Compatible with 2630 data requirements
 - Validation tests available

- **System of systems (SoS)**
 - Lack of historical data
 - Data collection strategy needs refinement (What data should be collected?)

- **Auto-generated code**
 - Lack of historical data
 - No foundation for data collection strategy

- Just plain bad or incomplete
Effective size

- Reflects work required to produce product
 - New and modified source code
 - Reused source code
 - COTS

- SLOC is produced by human effort

- Is approximated by code counting tools
 - Cannot discern code types
 - Includes dead code

- Is not related to code generated by
 - Compilers
 - Code generating tools (auto-generated)
 - Is not SLOC as we use it
Historic project data: Minimum schedule – Maximum size

Source: Long, L. G. et al, Aerospace Corp Report, 2004
Development Effort vs. Size

- Effort (pm) vs. Size, ESLOC

Productivity vs. Size

- ESLOC/pm vs. Size, ESLOC

200 lpm
Small Program Productivity

OGDEN AIR LOGISTICS CENTER

Productivity

Effective Size, sloc

BE AMERICA’S BEST
Normalized data validation tests (Minimum schedule -- CSCI level)

- Based on historical data
- “Paul Masson Rule”

 We will deliver no software before its time
- Normalized schedule (SRR through FQT)
- Determined by
 - Effective size
 - Complexity
 - Application type
 - Developer capability

Winner of the "Not My Job" Award - ADOT
Litchfield Park, AZ 85
Data normalization guide

- **Size normalization (ESLOC)**
 - Based on historic definition (NAVAIR NEMO)
 - \(ESLOC = S_{\text{new}} + 0.5S_{\text{modified}} + 0.05S_{\text{reused}} \)

- **Development effort normalization (Ed)**
 - All software effort expended between SRR and FQT
 - Includes management effort

- **Schedule normalization (Td)**
 - Elapsed months between SRR and FQT

- **Productivity (ESLOC/pm)**
 - \(PR = \frac{ESLOC}{E_d} \) (sloc/pm)
Minimum schedule calculation

- “Paul Masson” formula
 - Historically validated
 - Based on Jensen Model minimum development time projection
 - Implemented in Sage and SEER-SEM
 - \[T_{\text{min}} = \left[C_{\text{te}}^{0.4} D^{0.2} \right]^{-1} S_{\text{e}}^{0.4} \] months

- \[T_{\text{min}} = 0.23 S_{\text{e}}^{0.4} \] months

- Assumptions
 - High effective technology constant (\(C_{\text{te}} = 5000\))
 - Lowest complexity rating (\(D=15\))
Normalized data validation tests (CSCI level)

- Technology constant (or Productivity Index)
 - Calculated from normalized data
 - Constant value determined by
 - Application type
 - Developer capability

- Practical upper bound of approximately
 - $C_t \approx 7000$ (Sage, SEER-SEM)
 - $PI \approx 11$ (SLIM)

- Effective size
 - Historic CSCI upper limit $\approx 200,000$ ESLOC
 (Note: Approximate 5 year development)
Normalized DCARC effort vs size

Development Effort vs. Size

Size, ESLOC

- Effort (pm)

Effort, pm

0 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000 1,000,000

0 200 400 600 800 1,000

3,000 lpm
DCARC Development schedule vs size

Minimum schedule vs. Size

Development Effort vs. Size
Count should reflect “human” work performed
MPS DCARC 2630-3 data

DCTI Schedule vs esloc + Tmin

Max CSCI size

Auto-gen

2630-3

Valid data

Schedule (mo)

Effective size (esloc)

Schedule

Minimum

BE AMERICA’S BEST
Conclusions

- 2630 data sheets provide data resources that do support normalization
- Data suppliers are a separate problem
 - Interpretation / understanding / culture are inconsistent
- Growth can only be calculated where -2 and -3 data points are related.
 - Change in scope invalidates growth projections
- Auto-generated code distorts effective size results
 - Current practices do not support effort to measure
- Data inadequate for model calibration or development
 - Environment not included in 2630 data
 - Size information not consistent
 - Fuzzy link between data supplier and DCARC database
We learn from experience that we don’t learn from experience