Software Technology Support Center

DCARC Data Analysis

Les Dupaix
Software Technology Support Center
Hill AFB, UT
Data analysis summary

- Background
- Four data types anticipated in the DCARC 2630 software data
- Summary of the DCARC 2630-3 normalized data points
- Autocode problem
- Conclusions
Simplified DCARC reports

- **Form 2630-2**
 - Initial *estimate* (based on scope)
 - Size
 - Effort (Cost)
 - Schedule (Milestone)
 - Interim estimates
 - Needed for growth metrics

- **Form 2630-3**
 - Completion (*actuals*) report
 - Size (based on scope)
 - Effort (Cost)
 - Schedule (Milestone)
Software project data types

- Component (CSCI)
 - Compatible with 2630 data requirements
 - Validation tests available

- System of systems (SoS)
 - Lack of historical data
 - Data collection strategy needs refinement (What data should be collected?)

- Auto-generated code
 - Lack of historical data
 - No foundation for data collection strategy

- Just plain bad or incomplete
Effective size

- Reflects work required to produce product
 - New and modified source code
 - Reused source code
 - COTS
- SLOC is produced by human effort
- Is approximated by code counting tools
 - Cannot discern code types
 - Includes *dead* code
- Is not related to code generated by
 - Compilers
 - Code generating tools (auto-generated)
 - Is not SLOC as we use it
Historic project data:
Minimum schedule – Maximum size

Source: Long, L. G. et al, Aerospace Corp Report, 2004
DCARC Size, Effort, and Productivity

Development Effort vs. Size

- Effort (pm)
- Size, ESLOC

Productivity vs. Size

- ESLOC/pm
- Size, ESLOC
Small Program Productivity

Productivity

Effective Size, sloc

Productivity, lppm
Normalized data validation tests
(Minimum schedule -- CSCI level)

- Based on historical data
- "Paul Masson Rule"

 We will deliver no software before its time

- Normalized schedule
 (SRR through FQT)

- Determined by
 - Effective size
 - Complexity
 - Application type
 - Developer capability

Winner of the "Not My Job"
Award - ADOT
Litchfield Park, AZ 85
Data normalization guide

- Size normalization (ESLOC)
 - Based on historic definition (NAVAIR NEMO)
 - \[ESLOC = S_{new} + 0.5S_{modified} + 0.05S_{reused} \]

- Development effort normalization (Ed)
 - All software effort expended between SRR and FQT
 - Includes management effort

- Schedule normalization (Td)
 - Elapsed months between SRR and FQT

- Productivity (ESLOC/pm)
 - \[PR = \frac{ESLOC}{E_d} \text{ (sloc/pm)} \]
Minimum schedule calculation

- “Paul Masson” formula
 - Historically validated
 - Based on Jensen Model minimum development time projection
 - Implemented in Sage and SEER-SEM
 - \(T_{\min} = \left[C_{te}^{0.4} D^{0.2} \right]^{-1} S_e^{0.4} \) months

- \(T_{\min} = 0.23 S_e^{0.4} \) months

- Assumptions
 - High effective technology constant \((C_{te} = 5000)\)
 - Lowest complexity rating \((D=15)\)
Normalized data validation tests (CSCI level)

- Technology constant (or Productivity Index)
 - Calculated from normalized data
 - Constant value determined by
 - Application type
 - Developer capability
 - Practical upper bound of approximately
 - $C_{te} \approx 7000$ (Sage, SEER-SEM)
 - $PI \approx 11$ (SLIM)

- Effective size
 - Historic CSCI upper limit $\approx 200,000$ ESLOC
 (Note: Approximate 5 year development)
Normalized DCARC effort vs size

Development Effort vs. Size

- Effort (pm)

Size, ESLOC

0 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000 1,000,000

0 100 200 300 400 500 600 700 800 900 1,000

3,000 lpm
DCARC Development schedule vs size

Minimum schedule vs. Size

Development Effort vs. Size
Auto-Code from History

1965

Human Work

Fortran

Assembler

Code Counter

Assembler

Compiled

2008

Visual Objects

C++

UML, etc

C++

Count should reflect “human” work performed
MPS DCARC 2630-3 data

DCTI Schedule vs esloc + Tmin

Max CSCI size

Auto-gen

Valid data

Schedule (mo)

Effective size (esloc)

Schedule
Minimum

BE AMERICA'S BEST
Conclusions

- 2630 data sheets provide data resources that do support normalization.
- Data suppliers are a separate problem.
 - Interpretation / understanding / culture are inconsistent.
- Growth can only be calculated where -2 and -3 data points are related.
 - Change in scope invalidates growth projections.
- Auto-generated code distorts effective size results.
 - Current practices do not support effort to measure.
- Data inadequate for model calibration or development.
 - Environment not included in 2630 data.
 - Size information not consistent.
 - Fuzzy link between data supplier and DCARC database.
Experience

We learn from experience that we don’t learn from experience