Software Quality Assurance

Early and Continuous Throughout the Lifecycle

Justifiable evidence and high confidence that your system performs as expected, when expected, is safe, and is secure.
Outline: Where Are We?

- Perspective, Challenges, Goals
 - Why Software Quality Assurance
 - Problem, Solution, Result
 - Software Quality Tools and Life Cycle
 - Independent Software Quality Assessment (ISQA)
 - Wrap-up
 - Glossary
Perspectives Influence Software Quality Goals

Perspectives

DOD
- Warfighter
- Tax Payer

Corporations
- Time To Market
- Reduced Expense
- Increased Profit
- Increased Market Share

Academia
- Payee sets goals
- Theory in practice
- Learning
- Research

Quality Goals
- Safety
- Security
- Performance
- Portability
- Reliability
- Maintainability
- Availability
- Interoperability
- Robust
- Adaptability
- Usability
- Etc.

CIO Executive Council™ Poll - 2006
Department of Defense

SSTC 2009 – SW Qual Assurance in Lifecycle (20-Apr-2009).ppt
Challenges to Attain Software Quality Goals

Challenges
- Defects
- Politics
- Process
- People
- Money
- Complacency
- Ignorance
- Poor planning
- Data Rights
- Training
- Motivation
- Criteria
- Tools
- Schedule
- SLOC
- Etc.

Quality Goals
- Safety
- Security
- Performance
- Portability
- Reliability
- Maintainability
- Availability
- Interoperability
- Robust
- Adaptability
- Usability
- Etc.

CIO Executive Council™ Poll - 2006
Department of Defense
Outline: Where Are We?

- Perspective, Challenges, Goals
- **Why Software Quality Assurance**
 - Problem, Solution, Result
 - Software Quality Tools and Life Cycle
 - Independent Software Quality Assessment (ISQA)
- Wrap-up
- Glossary
Why Software Quality Assurance?

- Increasing amount & complexity of software-only capabilities
- Growing complexity in COTS, GOTS, and OSS integration
- Example: Service Oriented Architecture (SOA)

Trend: “Hardened” Infrastructure; add more Software!
Outline: Where Are We?

• Perspective, Challenges, Goals
• Why Software Quality Assurance

• Problem, Solution, Result
 • Software Quality Tools and Life Cycle
 • Independent Software Quality Assessment (ISQA)
 • Wrap-up
 • Glossary
Problem: “Software vulnerabilities, malicious code, and software that does not function as promised pose a substantial risk to the Nation’s software-intensive critical infrastructure that provides essential information and services to citizens.” (DHS – Software Assurance in Acquisition: Mitigating Risks to the Enterprise, Oct. 2008)

Solution: Attain justifiable evidence throughout life cycle for your quality goals

Result: Higher confidence that system performs as intended and is not exploitable.
Outline: Where Are We?

- Perspective, Challenges, Goals
- Why Software Quality Assurance
- Problem, Solution, Result
- **Software Quality Tools and Life Cycle**
 - Independent Software Quality Assessment (ISQA)
 - Wrap-up
 - Glossary
Software Quality Assurance Tools
Where to look for “justifiable evidence”!

Contract Verbiage ➔
- Government Data Rights
- Defects – Forecasted and Actual
- Visibility at Government’s Discretion
- Payment Incentives for Defect Reduction
- Improved Configuration Management
- Supplier Credentials - clearance, pedigree, etc.
- Supplier’s evidence of their own assurance claims
- Independent Software Quality Assessment (iSQA)

Ask and You Shall Receive!
Software Quality Assurance Tools
Where to look for “justifiable evidence”!

Supplier’s Processes ➔ CMMI, ISO, Certifications, etc.

Your Own Processes ➔
- CMMI, ISO, etc.
- Defense Acquisition Guidebook (Chapter 4, Sys Eng.)
- DoD IA C&A Process (DIACAP) – (DoDI 8510.01)
- “Software Quality” DCSQ-1 (DoDI 8500.2)
- Secure Coding Requirements (IAW DoDD 8500.1)
- Open Source Software Requirements (AR25-2)
- Army Networthiness (AR25-1)
- COTS Security patch process
- Business Best Practices
- Trained Resources

Look at what is already available and required!
Software Quality Assurance Tools
Where to look for “justifiable evidence”!

Independent Software Quality Assessment (iSQA)

- Code-level forensics
- Static and Runtime assessments
- Automated tools reduce time to “find” defects
- Targeted, actionable recommendations to improve
- Subject Matter Experts provide “operational” perspective
- Motivates software developers to do better
- Repeatable measure of software quality

“In general, third-party testing and evaluation provide a significantly greater basis for customer confidence than many other assurance techniques.”

Outline: Where Are We?

- Perspective, Challenges, Goals
- Why Software Quality Assurance
- Problem, Solution, Result
- Software Quality Tools and Life Cycle
 - ISQA
- Wrap-up
- Glossary
ISQA Capabilities
Perspectives to let the code speak.

- Error Detection
- Open Source Software Assessment
- Networthiness Assessment
- Service Oriented Architecture (SOA)
- Test Coverage

- Software Threat Detection
- Quality Software

- Performance Tuning
- Memory Leak Analysis
- Unit Inline
- 2nd Order Analysis
- Custom...

- Quality Assessment And Audit
Typical ISQA Customer Profiles
Your profile drives your perspective and ISQA needs.

1. “Code Red” Project
2. Rapid Prototyping
 (Creativity & Speed, not quality)
3. Legacy System
 (Reduce Cost, Reuse Fresh Coat of Paint)
4. System Integrator Syndrome
5. Conformance
 (Industry/Customer Standards)
6. Schedule Compression
7. Assessment for Confidence
8. Security Posture and Networthiness
ISQA Return On Investment
Composite Example – 4 Actual Projects

Industry Accepted SW Metrics

- $10,000/bug to Find & Fix a Defect
- Finding Bugs = 80% of Cost ($8,000 per)

<table>
<thead>
<tr>
<th>Traditional Defect Cost</th>
<th>"find" $$ Avoided</th>
<th>ISQA Cost</th>
<th>Net $$ Avoided</th>
<th>ROI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 335 Defects x $8,000 =</td>
<td>$2,680,000</td>
<td>$545,000</td>
<td>$2,135,000</td>
<td>4.9</td>
</tr>
<tr>
<td>2 219 Defects x $8,000 =</td>
<td>$1,608,000</td>
<td>$219,000</td>
<td>$1,389,000</td>
<td>7.3</td>
</tr>
<tr>
<td>3 1895 Defects x $8,000 =</td>
<td>$15,160,000</td>
<td>$1,214,000</td>
<td>$13,946,000</td>
<td>12.5</td>
</tr>
<tr>
<td>4 70 Defects x $8,000 =</td>
<td>$560,000</td>
<td>$140,000</td>
<td>$420,000</td>
<td>4.0</td>
</tr>
<tr>
<td>2519 Defects x $8,000 =</td>
<td>$20,008,000</td>
<td>$2,118,000</td>
<td>$17,890,000</td>
<td>9.5</td>
</tr>
</tbody>
</table>
ISQA Artifacts
What Justifiable Evidence Should You Expect?

- **Scorecard Summary**
 - Quick assimilation of data (e.g. graphics)
 - Highlight areas for improvement
 - Management / Executive audience

- **Detailed Technical Report**
 - Description of findings
 - Qualitative description of coverage
 - Short, Medium, and Long Term actionable recommendations

- **Raw Data – per defect**
 - Module, LOC, severity, problem, actionable recommendation
 - Formatted for ease of use (e.g. Common separated values, Excel spreadsheet, links from defect to actual line of code, etc.)
Scorecard Example
Against DISA Application Security and Development STIG

CODE INSPECTION RESULTS

<table>
<thead>
<tr>
<th>APP No.</th>
<th>Defects</th>
<th>Instances</th>
<th>CAT I</th>
<th>CAT II</th>
<th>Minor</th>
<th>Bad Style</th>
<th>No Defect</th>
<th>Informational</th>
<th>% Assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>3050</td>
<td>Dead or Dormant Code</td>
<td>388</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>3100</td>
<td>Apparent Undisclosed Stream</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>3120</td>
<td>Exception Handling Attributes: Error Handling</td>
<td>233</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>3120</td>
<td>Exception Handling Attributes: The program can potentially dereference a null pointer, thereby causing a segmentation fault</td>
<td>2300</td>
<td>0</td>
<td>115</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>3110</td>
<td>Unreleased Resource</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>3120</td>
<td>Exception Handling Attributes: Localizing Return Value Of Symbol</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

DATA SECURITY
- **3150.2** Cryptography: Standard pseudo-random number generators cannot withstand cryptographic attacks
- **3310** Password Management: Credential Management-Passwords Stored as Clear Text

INPUT VALIDATION
- **3570** Command Injection: Executing commands that include un-validated user input can cause an application to act on behalf of an attacker
- **3510** SQL Injection: SQL Injection User Input
- **3540.1** SQL Injection: SQL Injection User Input

PORTABILITY AND SECURITY
- **3600** Code Hacking Attributes: Canonical Representation Vulnerabilities
- **3630.3** Code Hacking Attributes: Deprecated Thread Functions

SUMMARY OF ISSUES FOUND

<table>
<thead>
<tr>
<th>Key Defects</th>
<th>ALL Defects</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>162</td>
</tr>
<tr>
<td>162</td>
<td>162</td>
</tr>
</tbody>
</table>

- **Category of Finding**
- **STIG Requirement Number**
- **Validate “Real and Actionable”**
- **Actionable Results Feed Into developer’s “Get Well Plan” for the system.**
Outline: Where Are We?

- Perspective, Challenges, Goals
- Why Software Quality Assurance
- Problem, Solution, Result
- Software Quality Tools and Life Cycle
- Independent Software Quality Assessment (ISQA)

- Wrap-up
- Glossary
DoD / Army Software Quality Assurance
Life Cycle Evidence for Confidence to Operate

Materiel Solution Analysis
Technology Development
Engineering & Manufacturing Development
Production & Deployment
Operations & Support

IA Management & Engineering
Contract Language
Networthiness
ISQA

Certificate Of Networthiness
Authorization To Operate
<table>
<thead>
<tr>
<th>Glossary</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR – Army Regulation (e.g. AR25-2)</td>
</tr>
<tr>
<td>Assurance - a statement or indication that inspires confidence, a guarantee</td>
</tr>
<tr>
<td>C&A – Certification and Accreditation</td>
</tr>
<tr>
<td>CON – Certificate of Networthiness for the Army</td>
</tr>
<tr>
<td>COTS – Commercial Off the Shelf software</td>
</tr>
<tr>
<td>DHS – Department of Homeland Securities</td>
</tr>
<tr>
<td>DIACAP – Defense Information Assurance Certification and Accreditation Process</td>
</tr>
<tr>
<td>DISA - Defense Information Systems Agency</td>
</tr>
<tr>
<td>DoDD – Department of Defense Directive</td>
</tr>
<tr>
<td>DoDI – Department of Defense Implementation</td>
</tr>
<tr>
<td>GOTS – Government Off the Shelf software</td>
</tr>
<tr>
<td>Life Cycle – all phases of a system’s life from concept through disposal</td>
</tr>
<tr>
<td>OSS – Open Source Software</td>
</tr>
<tr>
<td>Quality – an essential or distinctive characteristic, property, or attribute</td>
</tr>
<tr>
<td>Software Assurance - “…the level of confidence that software is free from vulnerabilities, either intentionally designed into the software or accidently inserted at any time during its life-cycle, and that it functions in the intended manner.” [CNSSI no 40090]</td>
</tr>
<tr>
<td>STIG – Security Technical Implementation Guide</td>
</tr>
</tbody>
</table>
Presenter’s Credentials and Contact Information
About The Presenter

Credentials

Name: Bruce Weimer

Employer: US Army – CECOM LCMC Software Engineering Center, Software Assurance Division

Experience:

- 4+ years in Civilian Army – System’s Engineer
- 23 years in Industry – Pharma., Financial, Telecom, SW products
- Full Software Life-cycle Development
- Software Quality Assurance
- Information Assurance (IA)
- Process Improvement – CMMI, Lean Six Sigma, ISO
- Content/Document Management
- Workflow and Process Improvement
- Masters in Software Engineering

Contact: bruce.weimer@conus.army.mil, 732.532.5020 / DSN 992