Software Quality Assurance

Early and Continuous Throughout the Lifecycle

Justifiable evidence and high confidence that your system performs as expected, when expected, is safe, and is secure.
Outline: Where Are We?

- Perspective, Challenges, Goals
 - Why Software Quality Assurance
 - Problem, Solution, Result
 - Software Quality Tools and Life Cycle
 - Independent Software Quality Assessment (ISQA)
 - Wrap-up
 - Glossary
Perspectives Influence Software Quality Goals

Perspectives

DOD
- Warfighter
- Tax Payer

Corporations
- Time To Market
- Reduced Expense
- Increased Profit
- Increased Market Share

Academia
- Payee sets goals
- Theory in practice
- Learning
- Research

Quality Goals
- Safety ★★★
- Security ★★★
- Performance
- Portability
- Reliability ★★★
- Maintainability
- Availability
- Interoperability
- Robust
- Adaptability
- Usability
- Etc.

CIO Executive Council™ Poll - 2006
Department of Defense

SSTC 2009 – SW Qual Assurance in Lifecycle (20-Apr-2009).ppt
Challenges to Attain Software Quality Goals

Challenges

- Defects
- Politics
- Process
- People
- Money
- Complacency
- Ignorance
- Poor planning
- Data Rights
- Training
- Motivation
- Criteria
- Tools
- Schedule
- SLOC
- Etc.

Quality Goals

- Safety
- Security
- Performance
- Portability
- Reliability
- Maintainability
- Availability
- Interoperability
- Robust
- Adaptability
- Usability
- Etc.

CIO Executive Council™ Poll - 2006
Department of Defense
Outline: Where Are We?

- Perspective, Challenges, Goals
- **Why Software Quality Assurance**
 - Problem, Solution, Result
 - Software Quality Tools and Life Cycle
 - Independent Software Quality Assessment (ISQA)
 - Wrap-up
 - Glossary
Why Software Quality Assurance?

- Increasing amount & complexity of software-only capabilities
- Growing complexity in COTS, GOTS, and OSS integration
- Example: Service Oriented Architecture (SOA)

Trend: “Hardened” Infrastructure; add more Software!
Outline: Where Are We?

- Perspective, Challenges, Goals
- Why Software Quality Assurance
- **Problem, Solution, Result**
 - Software Quality Tools and Life Cycle
 - Independent Software Quality Assessment (ISQA)
 - Wrap-up
 - Glossary
Software Quality Assurance

Problem, Solution, Result

Problem: “Software vulnerabilities, malicious code, and software that does not function as promised pose a substantial risk to the Nation’s software-intensive critical infrastructure that provides essential information and services to citizens.” (DHS – Software Assurance in Acquisition: Mitigating Risks to the Enterprise, Oct. 2008)

Solution: Attain justifiable evidence throughout life cycle for your quality goals

Result: Higher confidence that system performs as intended and is not exploitable.
Outline: Where Are We?

- Perspective, Challenges, Goals
- Why Software Quality Assurance
- Problem, Solution, Result

Software Quality Tools and Life Cycle
- Independent Software Quality Assessment (ISQA)
- Wrap-up
- Glossary
Software Quality Assurance Tools
Where to look for “justifiable evidence”!

Contract Verbiage ➔
- Government Data Rights
- Defects – Forecasted and Actual
- Visibility at Government’s Discretion
- Payment Incentives for Defect Reduction
- Improved Configuration Management
- Supplier Credentials - clearance, pedigree, etc.
- Supplier’s evidence of their own assurance claims
- Independent Software Quality Assessment (iSQA)

Ask and You Shall Receive!
Software Quality Assurance Tools
Where to look for “justifiable evidence”!

<table>
<thead>
<tr>
<th>Materiel Solution Analysis</th>
<th>Technology Development</th>
<th>Engineering & Manufacturing Development</th>
<th>Production & Deployment</th>
<th>Operations & Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS A</td>
<td>MS B</td>
<td>MS C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Suppliers’ Processes ➔ CMMI, ISO, Certifications, etc.

Your Own Processes ➔
- CMMI, ISO, etc.
- Defense Acquisition Guidebook (Chapter 4, Sys Eng.)
- DoD IA C&A Process (DIACAP) – (DoDI 8510.01)
- “Software Quality” DCSQ-1 (DoDI 8500.2)
- Secure Coding Requirements (IAW DoDD 8500.1)
- Open Source Software Requirements (AR25-2)
- Army Networthiness (AR25-1)
- COTS Security patch process
- Business Best Practices
- Trained Resources

Look at what is already available and required!
Independent Software Quality Assessment (iSQA)

- Code-level forensics
- Static and Runtime assessments
- Automated tools reduce time to “find” defects
- Targeted, actionable recommendations to improve
- Subject Matter Experts provide “operational” perspective
- Motivates software developers to do better
- Repeatable measure of software quality

“In general, third-party testing and evaluation provide a significantly greater basis for customer confidence than many other assurance techniques.”

Outline: Where Are We?

- Perspective, Challenges, Goals
- Why Software Quality Assurance
- Problem, Solution, Result
- Software Quality Tools and Life Cycle
- ISQA
- Wrap-up
- Glossary
ISQA Capabilities
Perspectives to let the code speak.

- Error Detection
- Software Threat Detection
- Performance Tuning
- Open Source Software Assessment
- Memory Leak Analysis
- Networthiness Assessment
- Unit Inline
- Service Oriented Architecture (SOA)
- 2nd Order Analysis
- Test Coverage
- Quality Assessment And Audit
- Custom...
Typical ISQA Customer Profiles

Your profile drives your perspective and ISQA needs.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>“Code Red” Project</td>
</tr>
</tbody>
</table>
| **2** | **Rapid Prototyping**
Creativity & Speed, not quality |
| **3** | **Legacy System**
Reduce Cost, Reuse
Fresh Coat of Paint* |
| **4** | **System Integrator Syndrome** |
| **5** | **Conformance**
*Industry/Customer Standards*** |
| **6** | **Schedule Compression** |
| **7** | **Assessment for Confidence** |
| **8** | **Security Posture and Networthiness** |
ISQA Return On Investment

Composite Example – 4 Actual Projects

Industry Accepted SW Metrics
- $10,000/bug to Find & Fix a Defect
- Finding Bugs = 80% of Cost ($8,000 per)

<table>
<thead>
<tr>
<th>Traditional Defect Cost</th>
<th>"find" $$ Avoided</th>
<th>ISQA Cost</th>
<th>Net $$ Avoided</th>
<th>ROI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 335 Defects x $8,000 =</td>
<td>$2,680,000</td>
<td>$545,000</td>
<td>$2,135,000</td>
<td>4.9</td>
</tr>
<tr>
<td>2 219 Defects x $8,000 =</td>
<td>$1,608,000</td>
<td>$219,000</td>
<td>$1,389,000</td>
<td>7.3</td>
</tr>
<tr>
<td>3 1895 Defects x $8,000 =</td>
<td>$15,160,000</td>
<td>$1,214,000</td>
<td>$13,946,000</td>
<td>12.5</td>
</tr>
<tr>
<td>4 70 Defects x $8,000 =</td>
<td>$560,000</td>
<td>$140,000</td>
<td>$420,000</td>
<td>4.0</td>
</tr>
<tr>
<td>2519 Defects x $8,000 =</td>
<td>$20,008,000</td>
<td>$2,118,000</td>
<td>$17,890,000</td>
<td>9.5</td>
</tr>
</tbody>
</table>
ISQA Artifacts

What Justifiable Evidence Should You Expect?

- **Scorecard Summary**
 - Quick assimilation of data (e.g. graphics)
 - Highlight areas for improvement
 - Management / Executive audience

- **Detailed Technical Report**
 - Description of findings
 - Qualitative description of coverage
 - Short, Medium, and Long Term actionable recommendations

- **Raw Data – per defect**
 - Module, LOC, severity, problem, actionable recommendation
 - Formatted for ease of use (e.g. Common separated values, Excel spreadsheet, links from defect to actual line of code, etc.)
Scorecard Example
Against DISA Application Security and Development STIG

<table>
<thead>
<tr>
<th>CODE INSPECTION RESULTS</th>
<th>Instances</th>
<th>CAT I</th>
<th>CAT II</th>
<th>Minor</th>
<th>Bad Style</th>
<th>No Defect</th>
<th>Informational</th>
<th>% Assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSPECTION ATTRIBUTES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APP No.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3050</td>
<td>388</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3100</td>
<td>10</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3120</td>
<td>2353</td>
<td>0</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STIG Requirement Number</td>
<td>Validate “Real and Actionable”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actionable Results Feed Into developer’s “Get Well Plan” for the system.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Outline: Where Are We?

- Perspective, Challenges, Goals
- Why Software Quality Assurance
- Problem, Solution, Result
- Software Quality Tools and Life Cycle
- Independent Software Quality Assessment (ISQA)
- **Wrap-up**
- Glossary
DoD / Army Software Quality Assurance
Life Cycle Evidence for Confidence to Operate

Materiel Solution Analysis Technology Development Engineering & Manufacturing Development Production & Deployment Operations & Support

IA Management & Engineering

Contract Language

Networthiness

ISQA

Certificate Of Networthiness

Authorization To Operate
Glossary

- **AR** – Army Regulation (e.g. AR25-2)
- **Assurance** - a statement or indication that inspires confidence, a guarantee
- **C&A** – Certification and Accreditation
- **CON** – Certificate of Networthiness for the Army
- **COTS** – Commercial Off the Shelf software
- **DHS** – Department of Homeland Securities
- **DIACAP** – Defense Information Assurance Certification and Accreditation Process
- **DISA** - Defense Information Systems Agency
- **DoDD** – Department of Defense Directive
- **DoDI** – Department of Defense Implementation
- **GOTS** – Government Off the Shelf software
- **Life Cycle** – all phases of a system’s life from concept through disposal
- **OSS** – Open Source Software
- **Quality** – an essential or distinctive characteristic, property, or attribute
- **Software Assurance** - “…the level of confidence that software is free from vulnerabilities, either intentionally designed into the software or accidently inserted at any time during its life-cycle, and that it functions in the intended manner.” [CNSSI no 40090]
- **STIG** – Security Technical Implementation Guide
Presenter’s Credentials and Contact Information
About The Presenter

Credentials

Name: Bruce Weimer

Employer: US Army – CECOM LCMC Software Engineering Center, Software Assurance Division

Experience:
• 4+ years in Civilian Army – System’s Engineer
• 23 years in Industry – Pharma., Financial, Telecom, SW products
• Full Software Life-cycle Development
• Software Quality Assurance
• Information Assurance (IA)
• Process Improvement – CMMI, Lean Six Sigma, ISO
• Content/Document Management
• Workflow and Process Improvement
• Masters in Software Engineering

Contact: bruce.weimer@conus.army.mil, 732.532.5020 / DSN 992