Analysis and Modeling of Multistatic Clutter and Reverberation and Support for the FORA

John R. Preston
Applied Research Laboratory
The Pennsylvania State University
P.O. Box 30, MS3510D
State College, PA 16804
phone: (814) 863-1310 fax: (814) 863-8783 email: jrp7@arl.psu.edu

Grant Number: N00014-13-1-0029
http://www.arl.psu.edu

LONG-TERM GOALS

The long-term goals of this effort are to:

• Assess capability of directional arrays for inversion and reverberation studies
• Characterize acoustic clutter in a manner that will lead to its mitigation
• Improve geo-acoustic parameter extraction from reverberation data
• Construct suitable high fidelity reverberation and scattering models for model/data comparison and inversion
• Operate and maintain the Five Octave Research Array (FORA) for ONR-OA

OBJECTIVES

• Help plan, participate in, and analyze data from the GULFEX12 pilot and TREX13 Reverberation experiments, the 2014 Nordic Seas experiment. The PI’s technical objectives for the experiment are to characterize and model multistatic bottom clutter and demonstrate inverse methods on reverberation data.
• Continue improvement and validation of a new range-dependent reverberation and clutter model (a more accurate forward model for inversion) and the automated geo-acoustic inversion technique from reverberation data developed by the PI and D. Ellis of DRDC. Continue Reverberation Modeling Workshop follow-on activities.
• Use nearfield triplet data from the Five Octave Research Array (FORA) to extract bottom information for the upcoming ONR experiments and fold it into inversion schemes using reverberation data (together with C. Holland). Continue investigations of optimum triplet processing to enhance the quality of extracted clutter and reverberation data.
• Continue to investigate statistical differences between sonar clutter from the sea bottom interface and the bio-clutter masses seen in select data sets.
Operate, maintain and improve FORA hardware and data acquisition systems. Participate in ocean experiments like the 2013 TREX13 experiment, and the 2014 Nordic Seas experiments, as well as other efforts as directed by ONR-OA.

APPROACH

There is a 6-year ONR OA plan for three large experiments involving many researchers and organizations. The first experimental effort was the TREX13 experiment which took place last year near Panama City. It was focused on the characterization of very shallow water reverberation. The PI will use his techniques for statistically characterizing acoustic reverberation and clutter. The triplet array section at the head of the FORA was used to give a directional look at clutter, reverberation and scattering in shallow water. In the GulfEx12 pilot experiment FORA was first successfully deployed in a fixed-fixed configuration with the triplet section mounted on tripods while the RV Sharp was in a 4-point moor. In the 2017 Bottom Characterization experiments, if feasible, FORA will be modified to conduct nearfield bottom reflection and scattering strength measurements in collaboration with C. Holland. The FORA would provide an alternative to using the CMRE AUV and towed array that may not be available. The FORA would also be used to make wide-area reverberation and clutter measurements together with the ARL-UT bottom mounted SWAMI array.

Relative to using reverberation data for geo-acoustic inversion, a key focus of this work will involve steering the short time cardioid beamformed data up/down to separate the vertical arrival structure on the triplet array. This will involve working with C. Holland and using the data in a similar fashion to what he does to extract layering and density estimates and possibly scattering strength estimates that are not available from reverberation data taken on conventional towed arrays.

The PI has completed an analysis of the normalization needed to provide calibrated levels out of cardioid arrays and highlighted problems at larger ka (J.O.E., 2007). Work on extending the frequency range of validity will continue either by trying a higher order version of the Hughes algorithm [2] or by trying some techniques being used by Groen et al., (J.O.E., 2005).

A new adiabatic range-dependent reverberation model using ORCA and MATLAB has recently been developed together with Dale Ellis of DRDC who is working with the PI. It has been tested against Ellis’ model for several problems and compared quite well with that model. A focus of the model development work will be to speed up the computations. It is expected that other refinements to this model, including further benchmarking, will continue under this effort. Part of this work would also be devoted to participating in any new ONR sponsored Reverberation Modeling Workshops and other follow-on efforts being organized by M. Ainslie of TNO.

In a related effort, the PI completed work to statistically characterize the bistatic bottom clutter and shipwreck echoes seen in the Clutter07 data sets using methods developed by D. Abraham (an article for J.O.E. was published this year). Results show many data segments of matched filtered amplitudes to be non-Rayleigh and will therefore lead to higher false alarms on conventional sonar systems. Recently a Rayleigh mixture model has been added to the analysis toolbox to augment the K-distribution parameterization of the data. This work will be extended to develop statistical characterizations of the reverberation data that are likely fish-dominated scattering as compared to the bottom-dominated regions to check for possible discriminants.
The ONR Five Octave Research Array (FORA) at Penn State, is operated and maintained by ARL-PSU. Work under this task includes overseeing repairs at Teledyne Instruments in Houston TX as funds are made available for that work. It includes regular maintenance and testing of the array, winch, acquisition systems and all other system components requiring attention. FORA acquisition system upgrade and software testing will be done under this task. It includes acting as point of contact for researchers asking about calibration issues, older data sets, data format problems, system specifications, array capability etc. It also includes coordination of array transportation and logistics. Finally, it will also include engineering coordination for any future upgrades or repairs to FORA and planning for possible follow-on arrays to the FORA.

WORK COMPLETED

Since the TREX13 Experiment a considerable effort has gone into completing an automated data processing scheme for FORA data from pulsed sources. The stream uses Linux scripts to manage Fortran, c and Matlab processing software. It takes raw data, extracts an aperture and moves it into a matrix of hydrophone vs. time. From there the data are bandshifted, bandpass filtered and decimated, then they are beamformed and matched filtered. Ancillary data like array heading and triplet roll, etc.; are combined to form the inputs necessary to produce geo-referenced polar plots of reverberation clutter and ambient noise. Each processed ping results in several intermediate files as well as spectrograms, beam (raw and matched filtered) vs. time outputs, K-distribution fits to the matched filtered amplitude data and polar plots. This suite of tools can now be made available to any future users of FORA.

In 2015 the Automated Reverberation Processing System (ARPS) has been upgraded to work on towed FORA data rather just fixed-fixed date from the TREX13 Experiment and K-distribution fits to the data are now broken out by time increment and beam, rather than just by beam.

The PI has also spent some effort this year in overseeng repairs to the ONR FORA at Penn State and in processing and discussing reverberation and clutter data with APL-UW, DRDC Canada and many other organizations.

RESULTS

Some Preliminary Data Processing Results

Figures 1 and 2 are from towed FORA data taken in 2007 after using the new ARPS. The data are from the first shipwreck circle sub-experiment taken in the CLUTTER07 Experiment. Figure 1 shows 191 consecutive bistatic pings spaced 60 s apart using a 1 s LFM pulse from 800 – 1800 Hz. Results are after using a triplet beamformer and steering the output to 129 Deg. True. The direct arrival is the sinusoidal shaped return between 10 and 15 s after the start of recording. Also shown after the direct are 2 returns visible at increasing times after the direct. Near ping 1 they come in around 12 and 16 s after start of recording. By ping 70 they come in about 20 and 25 s after recording start. Figure 2 shows the K-distribution shape parameter, alpha, which is a measure of how non-Rayleigh the data are vs. ping number and time. Values of alpha less than 10 are usually strongly non-Rayleigh while values greater than 20 are usually very Rayleigh-like. Time in this plot starts 1.5 s after the direct arrival. The two deep blue valleys on the right roughly correspond to the two other arrivals in figure 1 suggesting they are strongly non-Rayleigh..
Figure 1 Matched filter output in fixed look direction over 191 bistatic pings of Wreck Circle Experiment from Clutter 07
Regarding the FORA maintenance, this year’s work has centered around assessing repairs to FORA at Teledyne Instruments in Houston TX (actual repairs are being done under a different ONR program).

IMPACT/APPLICATIONS

A better understanding of sonar clutter is key to improving sonar performance in shallow water. The FORA triplet array is an exciting tool for ocean acoustic researchers. Improvements made to the FORA acquisition system recently have made one-way travel time estimates accurate to within a ms. For the first time with FORA, time tagging and error logging the data blocks has made it possible to find data dropouts quickly. Significant improvements have been made by the PI to his normal-mode-based reverberation and clutter model.

The CLUTTER07, BASE07 and CLUTTER09 experiments on the Malta Plateau have produced a large quantity of high quality data that will help ONR researchers to understand and eventually
mitigate sonar clutter. New fixed-fixed reverberation and clutter data from the GULFEX12 and TREX13 experiments have added to this understanding by removing source and receiver motion effects from the data collection.

TRANSITIONS

Work on DRDC clutter model is very relevant to the Canadian program on multistatics

RELATED PROJECTS

A long-term collaboration with D. Ellis of DRDC-Atlantic in Canada continues and has helped the PI greatly with his own work.

REFERENCES

PUBLICATIONS