Lateral-Directional Active Flow Control on a Hybrid ICE-101/Saccon UCAV

Jürgen Seidel

October 8, 2015
Table of contents

1 Simulations
 • Setup
 • Results
Lateral-Directional Active Flow Control on a Hybrid ICE-101/Saccon UCAV Simulations

Setup

CFD description

CFD code

- HPCMP CREATE-AV™/Kestrel
- Cell-centered finite volume
- Compressible Navier-Stokes equations
- 2nd-order in space and time
- SARC turbulence model

Grid

- Geometry with 6 forcing slots
- 71M cells
- \(y^+ < 1 \)

Forcing

- Source boundary condition
- \(c_\mu = 0.005 \)
Lateral-Directional Active Flow Control on a Hybrid ICE-101/Saccon UCAV

Simulations

Results

Comparison Unforced - Apex Forcing

Unforced

Unforced

Apex Forcing

Apex Forcing
Comparison Unforced - Midspan Forcing

Unforced

\[\alpha = +12 \text{deg} \]
\[\beta = +0 \text{deg} \]

Midspan Forcing

\[\alpha = +28 \text{deg} \]
\[\beta = +0 \text{deg} \]
Lateral-Directional Active Flow Control on a Hybrid ICE-101/Saccon UCAV

Simulations

Results

Comparison Unforced - Combined Forcing

Unforced

\[\alpha = +12 \text{deg} \]
\[\beta = +00 \text{deg} \]

Combined Forcing

\[\alpha = +12 \text{deg} \]
\[\beta = +00 \text{deg} \]
Comparison Unforced - Trailing Edge Forcing