Air Force Project Competition

Kevin Hemker
JOHNS HOPKINS UNIV BALTIMORE MD

10/22/2014
Final Report
REPORT DOCUMENTATION PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to the Department of Defense, Executive Service Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-10-2014</td>
<td>FINAL</td>
<td>Aug-2011 to May-2014</td>
<td>Air Force Project Competition</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. AUTHOR(S)</th>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scott, Nathan W</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johns Hopkins University, The 3400 N Charles St W400 Wyman Park Bldg Baltimore, MD 21218</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Rsch Atlanta Atlanta Regional Office 100 Alabama St., SW, Suite 4R15 Atlanta GA 30303-3104</td>
<td>ONRRO</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution is unlimited.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepared on behalf of Dr Kevin Hemker; the PI</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>JHU sent a student team to the AFRL competition in 2012, 2013 and 2014. None of the teams placed in the top 3 in any year. However every student engaged sincerely with the design problems posed by the competition and had a positive experience working with AFOSR staff and military personnel. In 2012 our student team presented a quadcopter with a specialized suction device that could fly up the side of a cliff or building and create a strong attachment point for a climb rope. The team were able to demonstrate the suction and adhesive parts of thl!r system. In 2013 our team demonstrated an inflatable bridge that could span a 13’ gap - however it was heavier than desired at 45lb and the inflation system was not well resolved. In 2014 our team created a custom lift bag and an ergonomic air pump. The bag suffered a puncture while trying to lift a bulldozer. Despite these failures I am proud of all the students and their hard work, and grateful to the AFOSR for having the vision to support this competition.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Student competition, engineering education, parajumpers, innovation, equipment for airmen, climb, scale, bridge, lift jack</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>b. ABSTRACT</td>
<td>c. THIS PAGE</td>
<td>19b. TELEPHONE NUMBER (Include area code)</td>
</tr>
<tr>
<td>Unl imited</td>
<td>Unl imited</td>
<td>Unl imited</td>
<td>443-827-0198</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19. NAME OF RESPONSIBLE PERSON</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Scott, Nathan W</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20. SIGNATURE</th>
<th>21. SIGNATURE</th>
<th>22. SIGNATURE</th>
<th>23. SIGNATURE</th>
<th>24. SIGNATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8/98)

Prescribed by ANSI Std. 239.18
Adobe Professional 7.0
Summary

This document records student work at each of three years of the Air Force Project Competition at The Johns Hopkins University, Baltimore, MD.

Each year one of about 15 teams of four students was assigned to the competition and used the competition as their Mechanical Engineering Senior Design project. The teams worked in an environment rich in prototyping facilities and advice. Each team presented their work to faculty every two weeks as part of a formal reporting cycle.

Team SCALE 2011-12: John Dannenhoffer, Ben Goldberg, Rob Grande & Peter Sebrechts

The challenge was to develop a system to allow soldiers to easily ascend a cliff or wall. The team developed a system to make a strong climbing attachment on a wall using a quadcopter and custom vacuum cup with adhesive.
SCALE system components

The system consisted of 4 main subsystems:

1. a quadcopter to deploy the anchor point to the wall at a height of 90ft,
2. a vacuum cup to press a rope soaked in epoxy to the wall,
3. the epoxied rope for anchoring to the wall while the soldier climbs,
4. and an ATLAS powered ascender – not provided by the team - to help the soldier climb the rope with minimal effort.
Fig. 2 All parts of SCALE system unloaded from the rucksack.

Fig. 3 Rucksack containing all the components showed in Fig. 2, total weight 13.2lbs.
The typical usage sequence is shown in the following figures.
Fig. 4 Showing epoxy application to the frayed rope attachment on the vacuum cup.

Fig. 5 The quadcopter, carrying the vacuum cup, is then flown to the attachment site and presses the vacuum cup to the wall.
Fig. 6 Left: the vacuum cup and its boom detach from the quadcopter and remain attached to the wall by suction from two ducted fans in the assembly. The epoxy adhesive cured within about 5 minutes. Right: the frayed rope bonded to a test wall.

At the competition in Dayton, OH, in April 2012, team SCALE flew their quadcopter to a height of about 50’, carrying the vacuum cup and uncured epoxy. The quadcopter began to behave erratically and crashed. It was later found that one of the propellers had been insufficiently tightened.

Despite this failure the competition organizers allowed the team to demonstrate the vacuum cup and rope attachment system. A cherry picker was used to place the vacuum cup on the wall at a height of about 30’. After a 5 minute cure time a pararescue jumper used the attachment to climb the wall (Fig. 7). He had to pull hard at an angle of about 45 degrees to rip the adhesive and frayed rope off the wall, showing that at least the adhesive bond system was good.
Later, inside the test building, the team were given another chance to demonstrate the adhesive patch. All the military personnel were uniformly polite, encouraging and helpful during the whole test process, and it was a pleasure to work with them. They genuinely wanted to bring out all the best work of the student team and give them every opportunity to succeed.
Team BRX 2012-13: Will Crawford, Ben Wasser, Renata Smith, Danny Fisher

The challenge was to create a lightweight bridge or ladder that was very small and light in the stowed or folded condition, but which could span the longest possible gap. The team created an inflatable structure by folding a commercial half-circle shaped air beam in half. It was put into a custom sock and braced with guy ropes. See Fig. 8.

![Fig. 8 Ben Wasser and Will Crawford testing the bridge in April 2013.](image-url)
The team had not resolved how to inflate the bridge in the field, which was a serious weakness of their solution. They hoped that the judges would accept that in a full military or commercial development of the system, a chemical inflator could be used.

At the competition at Eglin Air Force Base in Florida, April 2013, the team had to inflate the bridge using a mains powered air compressor. However they were then able to run the obstacle course successfully and used their bridge to span a 13’ gap and to climb a 10’ high platform.

The bridge was heavier than it should have been, since built around a commercial air beam with far more load capacity than was needed for the competition. They thought 45lb was an acceptable load for a soldier to carry – but in fact it was far too heavy.
The challenge was to lift a heavy vehicle that had fallen over in mud or on a gravel slope, using equipment that would be light enough for a pararescue jumper to carry.

Fig. 10 Team AFRL air bag, custom pump and commercial SCUBA cylinder.

- Air canister + lightweight, collapsible, human powered pump system
- Durable, easily foldable lift bag with potential for high load lift
- Offers swift inflation as well as backup in case of air depletion
The team had some difficulty designing and implementing an inner liner for their otherwise strong multi-layer Kevlar™ bag system. They learned the hard way that the rubber inner deserves as much attention as the strength layers. Their bag was able to lift the back end of the bulldozer by about an inch, but then
suffered a blowout. They were able to demonstrate the ergonomic “stair master” action of their custom pump.

Conclusion

The competition 2011-14 was an important component of our teaching in Mechanical Engineering at JHU. 12 students during those years got to work in a unique environment with support from the Air Force. Although our teams did not place in any of those years, every team worked hard and tried very sincerely to design and demonstrate equipment for the Air Force. We hope the competition continues for many years.
1.

1. Report Type
 Final Report

Primary Contact E-mail
Contact email if there is a problem with the report.
 nscott@jhu.edu

Primary Contact Phone Number
Contact phone number if there is a problem with the report
 4438270198

Organization / Institution name
 The Johns Hopkins University

Grant/Contract Title
The full title of the funded effort.
 Air Force Project Competition

Grant/Contract Number
AFOSR assigned control number. It must begin with "FA9550" or "F49620" or "FA2386".
 FA9550-11-1-0235

Principal Investigator Name
The full name of the principal investigator on the grant or contract.
 Dr Kevin Hemker

Program Manager
The AFOSR Program Manager currently assigned to the award
 Josh Osborne

Reporting Period Start Date
 08/15/2011

Reporting Period End Date
 08/14/2014

Abstract
JHU sent a student team to the AFRL competition in 2012, 2013 and 2014. None of the
teams placed in the top 3 in any year. However every student engaged sincerely with the
design problems posed by the competition and had a positive experience working with
AFOSR staff and military personnel. In 2012 our student team presented a quadcopter with a
specialized suction device that could fly up the side of a cliff or building and create a strong
attachment point for a climb rope. The team were able to demonstrate the suction and
adhesive parts of their system. In 2013 our team demonstrated an inflatable bridge that could
span a 13’ gap - however it was heavier than desired at 45lb and the inflation system was not
well resolved. In 2014 our team created a custom lift bag and an ergonomic air pump. The
bag suffered a puncture while trying to lift a bulldozer. Despite these failures I am proud of all
the students and their hard work, and grateful to the AFOSR for having the vision to support
this competition.

Distribution Statement
This is block 12 on the SF298 form.

Distribution A - Approved for Public Release

Explanation for Distribution Statement
If this is not approved for public release, please provide a short explanation. E.g., contains proprietary information.

SF298 Form
Please attach your SF298 form. A blank SF298 can be found here. Please do not spend extra effort to password protect or secure the PDF, we want to read your SF298. The maximum file size for SF298’s is 50MB.

SF298_FA9550-11-1-0235_JHU_AFRL_20141017.pdf

Upload the Report Document. The maximum file size for the Report Document is 50MB.

FA9550-11-1-0235_final_report_only_20141017.pdf

Upload a Report Document, if any. The maximum file size for the Report Document is 50MB.

Archival Publications (published) during reporting period:
None.

Changes in research objectives (if any):
None.

Change in AFOSR Program Manager, if any:
Devon Parker handed over to Josh Osborne in 2014.

Extensions granted or milestones slipped, if any:
None.

AFOSR LRIR Number

LRIR Title

Reporting Period

Laboratory Task Manager

Program Officer

Research Objectives

Technical Summary

Funding Summary by Cost Category (by FY, $K)

<table>
<thead>
<tr>
<th>Cost Category</th>
<th>Starting FY</th>
<th>FY+1</th>
<th>FY+2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Military Government Personnel Costs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-house Contractor Costs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Travel (Be Specific)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Training (Be Specific)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Expenses (Be Specific)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Resource Requirements</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Report Document

Appendix Documents

2. Thank You

E-mail user

Oct 17, 2014 21:18:31 Success: Email Sent to: nscott@jhu.edu