Semiconductor Nanowire and Nanoribbon Thermoelectrics:
A Comprehensive Computational Study

Irena Knezevic
University of Wisconsin - Madison
21 N. Park St., Ste 6401
Madison, WI 53715-1218

05-01-2013
Final Report

DISTRIBUTION A: Distribution approved for public release.

Air Force Research Laboratory
AF Office Of Scientific Research (AFOSR)/RTB1
Arlington, Virginia 22203
Air Force Materiel Command
Abstract

Through detailed microscopic simulation, this project advances our understanding of the transport of charge and heat in Si, SiGe, and graphene nanostructures, with the objective of furthering their applications in thermoelectric cooling and energy harvesting. Main findings include: (1) Room-temperature thermoelectric figure of merit, ZT, of ultrathin silicon nanowires varies slowly with thickness, having a soft maximum of about 0.4 at the nanowire thickness of 4 nm. The benefit of nanostructuring is much less dramatic than previously suggested; (2) We find a significantly enhanced thermoelectric power factor in gated Si nanomembranes, and explain that it occurs due to include quantum confinement, low scattering due to the absence of dopants, and, at low temperatures, a significant phonon-drag contribution; (3) In Si nanomembranes, in-plane thermal conductivity is minimal on {001}, due to the strong coupling of TA modes to {001} surfaces. Highest in-plane conductivity is achieved in [100]/(011) SOI, with benefits for passive cooling applications. (4) Thermal transport in suspended graphene nanoribbons is edge-dominated and highly anisotropic, but isotropic in realistic-sized supported nanoribbons owing to strong substrate scattering.
INSTRUCTIONS FOR COMPLETING SF 298

1. REPORT DATE. Full publication date, including day, month, if available. Must cite at least the year and be Year 2000 compliant, e.g. 30-06-1998; xx-06-1998; xx-xx-1998.

2. REPORT TYPE. State the type of report, such as final, technical, interim, memorandum, master's thesis, progress, quarterly, research, special, group study, etc.

3. DATES COVERED. Indicate the time during which the work was performed and the report was written, e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996; May - Nov 1998; Nov 1998.

4. TITLE. Enter title and subtitle with volume number and part number, if applicable. On classified documents, enter the title classification in parentheses.

5a. CONTRACT NUMBER. Enter all contract numbers as they appear in the report, e.g. F33615-86-C-5169.

5b. GRANT NUMBER. Enter all grant numbers as they appear in the report, e.g. AFOSR-82-1234.

5c. PROGRAM ELEMENT NUMBER. Enter all program element numbers as they appear in the report, e.g. 61101A.

5d. PROJECT NUMBER. Enter all project numbers as they appear in the report, e.g. 1F665702D1257; ILIR.

5e. TASK NUMBER. Enter all task numbers as they appear in the report, e.g. 05; RF0330201; T4112.

5f. WORK UNIT NUMBER. Enter all work unit numbers as they appear in the report, e.g. 001; AFAPL30480105.

6. AUTHOR(S). Enter name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. The form of entry is the last name, first name, middle initial, and additional qualifiers separated by commas, e.g. Smith, Richard, J, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES). Self-explanatory.

8. PERFORMING ORGANIZATION REPORT NUMBER. Enter all unique alphanumeric report numbers assigned by the performing organization, e.g. BRL-1234; AFWL-TR-85-4017-Vol-21-PT-2.

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES). Enter the name and address of the organization(s) financially responsible for and monitoring the work.

10. SPONSOR/MONITOR'S ACRONYM(S). Enter, if available, e.g. BRL, ARDEC, NADC.

11. SPONSOR/MONITOR'S REPORT NUMBER(S). Enter report number as assigned by the sponsoring/monitoring agency, if available, e.g. BRL-TR-829; -215.

12. DISTRIBUTION/AVAILABILITY STATEMENT. Use agency-mandated availability statements to indicate the public availability or distribution limitations of the report. If additional limitations/ restrictions or special markings are indicated, follow agency authorization procedures, e.g. RD/FRD, PROPIN, ITAR, etc. Include copyright information.

13. SUPPLEMENTARY NOTES. Enter information not included elsewhere such as: prepared in cooperation with; translation of; report supersedes; old edition number, etc.

14. ABSTRACT. A brief (approximately 200 words) factual summary of the most significant information.

15. SUBJECT TERMS. Key words or phrases identifying major concepts in the report.

16. SECURITY CLASSIFICATION. Enter security classification in accordance with security classification regulations, e.g. U, C, S, etc. If this form contains classified information, stamp classification level on the top and bottom of this page.

17. LIMITATION OF ABSTRACT. This block must be completed to assign a distribution limitation to the abstract. Enter UU (Unclassified Unlimited) or SAR (Same as Report). An entry in this block is necessary if the abstract is to be limited.
Abstract

This project advances our understanding of the transport of charge and heat in semiconductor nanostructures, with the objective of furthering their applications in thermoelectric cooling and energy harvesting. Specifically, this project focuses on the physics of electrons (carriers of charge) and phonons (quanta of lattice vibrations, main carriers of heat) in group IV semiconductor nanowires and nanoribbons. Thermoelectric applications require efficient transport of charge (high electrical conductivity) and inefficient transport of heat (low thermal conductivity). Group IV semiconductors are ubiquitous in electronic industry and have excellent electrical and thermal conductivities, which generally makes them poor candidates as thermoelectrics. However, by introducing nanostructured barriers to the motion of phonons, thermal conductivity can be (beneficially) degraded with seemingly little penalty in electronic conductivity. Employment of group IV semiconductors in thermoelectric applications is an enticing idea, because of the maturity of their processing, wide availability, and low cost. However, the question still remains whether their thermoelectric performance can be improved to a degree significant enough to render them competitive with heavy-atom semiconductors like Bi$_2$Te$_3$.

The central goal of this project was to develop theoretical understanding and computational tools that would enable detailed microscopic simulation of the dynamics of electrons and phonons in Si, SiGe, and graphene nanostructures, and answer how good their potential really is for thermoelectric applications. Main findings include: (1) Room-temperature thermoelectric figure of merit, ZT, of ultrathin silicon nanowires varies slowly with thickness, having a soft maximum of about 0.4 at the nanowire thickness of 4 nm. The benefit of nanostructuring is much less dramatic than previously suggested; (2) We find a significantly enhanced thermoelectric power factor in gated Si nanomembranes, and explain that it occurs due to include quantum confinement, low scattering due to the absence of dopants, and, at low temperatures, a significant phonon-drag contribution; (3) In Si nanomembranes, in-plane thermal conductivity is minimal on $\{001\}$, due to the strong coupling of TA modes to $\{001\}$ surfaces. Highest in-plane conductivity is achieved along $[100]$ on the low-symmetry $\{011\}$ SOI, which benefits passive cooling applications. Thermal conductivity can be minimized in $[100]$ wires with $\{001\}$ and $\{010\}$ surface facets; (4) Thermal transport in suspended graphene nanoribbons is edge-dominated and highly anisotropic, but much more isotropic in realistic-size supported nanoribbons owing to strong substrate scattering.
Final Report: Project Highlights

1) Thermoelectric properties of ultrathin silicon nanowires

We calculated the room-temperature thermoelectric properties of highly doped ultrathin silicon nanowires (SiNW) of square cross section (3 × 3 to 8 × 8 nm²) by solving the Boltzmann transport equations for electrons and phonons on an equal footing, using the ensemble Monte Carlo technique for each. We account for the two-dimensional confinement of both electrons and phonons and all the relevant scattering mechanisms, and present data for the dependence of electrical conductivity, the electronic and phononic thermal conductivities, the electronic and phonon-drag Seebeck coefficients, as well as the thermoelectric figure of merit (ZT) on the SiNW rms roughness and thickness. ZT in ultrascaled SiNWs does not increase as drastically with decreasing wire cross section as suggested by earlier studies. The reason is surface roughness, which (beneficially) degrades thermal conductivity, but also (adversely) degrades electrical conductivity and offsets the Seebeck coefficient enhancement that comes from confinement.

For a given carrier density and with increasing confinement, the energy separation between the conduction band edge and the Fermi level increases, resulting in an increase in the average energy carried by electrons; therefore, the electronic Seebeck coefficient increases as the wire cross section decreases. The phonon-drag component of the Seebeck coefficient is negligibly small in SiNWs because of a very short phonon mean-free path. Overall, the power factor does not show orders-of-magnitude increase with decreasing wire cross section, as predicted by earlier theoretical studies, because the decrease in electrical conductivity with decreasing thickness offsets the increase in the Seebeck coefficient. Also, as in bulk silicon, the electronic contribution to thermal conductivity is more than an order of magnitude smaller than the contribution from phonons. The ZT in SiNWs calculated from this thermoelectric simulation is 20–40 times larger than that in bulk silicon: the enhancement in ZT occurs primarily because of the decrease in the lattice thermal conductivity due to strong phonon-boundary scattering and not due to an enhancement in the power factor. Overall, room-
temperature ZT of ultrathin SiNWs varies slowly with thickness, having a soft maximum of about 0.4 at the nanowire thickness of 4 nm.

Fig. 2: (Left) Density of states (DOS) of a 5 × 5 nm² SiNW (black solid curve) and the effective DOS in the presence of appreciable surface-roughness scattering, for Δ = 0.14 nm (red dashed-dotted curve) and Δ = 0.4 nm (blue dashed curve). Roughness smears the high peaks in the DOS, thereby negating potential benefits that quantum confinement could have on the Seebeck coefficient. (Right) Variation of ZT with the doping density for different SiNW thicknesses. Δ = 0.5 nm.

2) Quantitative determination of contributions to the thermoelectric power factor in Si nanostructures

We report thermoelectric measurements on a silicon nanoribbon in which an integrated gate provides strong carrier confinement and enables tunability of the carrier density over a wide range. We find a significantly enhanced thermoelectric power factor that can be understood by considering its behavior as a function of carrier density. We identify the underlying mechanisms for the power factor in the nanoribbon, which include quantum confinement, low scattering due to the absence of dopants, and, at low temperatures, a significant phonon-drag contribution. The measurements set a target for what may be achievable in ultrathin nanowires.

We have presented measurements and calculations of the hole thermopower and power factor in gated silicon (110)/(100) nanoribbons. With increasing sheet density, tuned by a back gate, the power factor of the nanoribbons is significantly enhanced, because of the combined effects of quantum confinement, a hole mobility that does not decrease with increasing carrier density, and (especially at low temperatures) phonon drag. We have used an essentially metallic gate to demonstrate such enhancements and to facilitate understanding and comparison to theory. In a practical system, recent advances such as surface transfer doping could be used to provide carriers, in place of either bulk doping or a metallic gate, and in analogy with the field effect of a gate.
Critically, such surface transfer doping will also produce a large electric field between the surface and the carriers in the interior of a nanowire, and thus the benefits of quantum confinement are expected to remain in such an approach.

Fig. 3: Gated Si nanoribbon thermoelectric device. (a) Colorized scanning electron micrograph of a device with the same structure as the one measured here. The surface is (110), and the nanowire is oriented along the [T 1 0] direction. (b) Perspective schematic diagram of the sample. Inset: The red curve shows the charge distribution in the nanoribbon when the sheet density $n_s = 10^{12}$ cm$^{-2}$. The horizontal lines are the subbands derived from the heavy-hole band; the subbands derived from the light-hole and split-off bands are omitted from the plot, for clarity. The Fermi level is at zero energy.

Fig. 4: Power factor S^2/ρ. (a) Solid symbols show the power factor at $T = 300$ (red), 200 (black), and 100 K (blue). Solid curves show the total calculated power factor, including both diffusion and phonon-drag components. Inset: mobility as a function of n_s; solid lines: calculation; dashed lines: linear fit. (b) S^2/ρ as a function of the effective three-dimensional hole density n_{eff} at $T = 300$ K for four cases. Dashed black: doped nanoribbon of thickness 20 nm. Dashed blue: doped nanoribbon of thickness 2 nm. Solid blue: doped nanoribbon of thickness 2 nm with ionized impurity scattering (IIS) removed from the calculation. Solid red: gated nanoribbon corresponding to the experiment. For the cases with doping, $n_{eff} = N_A$; for the gated nanoribbon, $n_{eff} = n_s/w$, where w is the effective thickness of the inversion layers.
3) Anisotropy and boundary scattering in the lattice thermal conductivity of silicon nanomembranes

We have calculated the full thermal conductivity tensor in (001), (011), and (111) silicon-on-insulator (SOI) nanomembranes based on solving the Boltzmann transport equation while accounting for the full phonon dispersion, momentum-dependent boundary scattering, as well as three-phonon and isotope scattering. In-plane thermal conductivity is minimal on {001} Si nanomembranes, due to the strong coupling of TA modes to {001} surfaces. Highest in-plane conductivity is achieved along [100] on the low-symmetry (011) SOI. Therefore, for applications requiring efficient passive cooling (i.e., high thermal conductivity), such as in digital electronic circuits, [100]/(011) should offer twice the thermal conductivity of Si(001) at room temperature even in relatively thick (10 nm) nanomembranes. The rougher the samples, the more pronounced the surface-orientation dependence of the in-plane thermal conductivity becomes. Overall, the strong interplay between the phonon dispersion anisotropy and boundary scattering enables one to have the surface facet orientation as an additional degree of control over thermal conduction in nanostructures. In rectangular or square wires, which can be fabricated by lithography and etching from Si nanomembranes, thermal conductivity is expected to be lowest for [100] wires with (001) and (010) surface facets. Intentional roughening, feature size reduction, and surface decoration of nanowires are likely to bring the most detriment to thermal conductivity if applied to these wires.

Fig. 5: Lattice thermal conduction in thin SOI membranes. (a) Eigenvalues of the thermal conductivity tensor for a 20-nm-thick SOI with rms surface roughness 0.45 nm. Maximal in-plane thermal conductivity eigenvalue is along [100] on (011) SOI and it is minimal on (001) SOI due to the very strong scattering of TA modes from (001) boundaries. (b) & (c) Energy isosurfaces for TA and LA modes, respectively. Dashed lines denote the Brillouin-zone edges. The TA constant-energy surfaces are boxlike with box faces perpendicular to <001> directions. The LA mode energy isosurfaces have faces perpendicular to <111> and <001> directions. (d) & (e) Ratio of the highest to the lowest in-plane thermal conductivity, $K_{[100]/[001]} / K_{[100]/[001]}$, for SOI with thicknesses in the 5–100 nm range, as a function of (d) temperature (surface-roughness rms height is 0.4 nm) and (e) rms roughness height (at room temperature).

We present a calculation of the thermal conductivity of graphene nanoribbons (GNRs), based on solving the Boltzmann transport equation with the full phonon dispersions, a momentum-dependent model for edge roughness scattering, as well as three-phonon and isotope scattering. For suspended GNRs, the interplay between edge roughness scattering and the anisotropy of the phonon dispersions results in thermal conduction that depends on the chiral angle of the nanoribbon. Lowest thermal conductivity occurs in the armchair direction and highest in zig-zag nanoribbons. Both the thermal conductivity and the degree of armchair/zig-zag anisotropy depend strongly on the width of the nanoribbon and the rms height of the edge roughness, with the smallest and most anisotropic thermal conductivities occurring in narrow GNRs with rough edges.

For supported GNRs, transport is characterized by a complex interplay between line edge roughness (LER) and internal scattering, as captured through an effective LER scattering rate that depends not only on the surface roughness features, but also on the strength of internal scattering mechanisms (substrate, isotope, and umklapp phonon scattering). Substrate scattering is the dominant internal mechanism, with a mean free path (mfp) of approximately 67 nm. In narrow supported GNRs ($W < 130$ nm, i.e., roughly twice the mfp due to substrate scattering), phonon transport is limited by LER and spatially anisotropic. For intermediate widths (130 nm < $W < 1$ µm) a competition between LER and substrate scattering governs transport, while thermal transport in wide GNRs ($W > 1$ µm) is dominated by substrate scattering and spatially isotropic. Thermal transport in supported GNRs can be tailored by controlling the ribbon width and edge roughness. Narrow ribbons act as longitudinal heat conduits, wide ribbons as omnidirectional heat spreaders.

Fig. 6: (Left) Phonon dispersion relationship of single-layer graphene calculated using the 4NNR model, showing the TA, LA, ZA, and ZO branches over the first Brillouin zone of graphene. The dispersions are strongly anisotropic, causing phonon group velocities given by the gradients of the radial frequency to be strongly dependent on the direction of the phonon wave vector. The remaining two optical branches (TO and LO) are not depicted due to their negligible contribution to thermal transport. (Right panel) Comparison of lattice thermal conductivity of a wide ($W = 2$ µm) graphene ribbon supported on SiO$_2$ with experimentally measured data. Dashed lines are calculated contributions by individual phonon branches and the solid line is the total, showing excellent agreement with experiment throughout the temperature range. At low temperatures, the dominant contribution is from the out-of-plane acoustic (ZA) mode, which gets suppressed by the strong substrate interaction above 100 K, where in-plane modes take over.
Publications

JOURNAL PUBLICATIONS

1. Z. Aksamija and I. Knezevic,
"Thermal transport in graphene nanoribbons supported on SiO₂,"

2. E. B. Ramayya, L. N. Maurer, A. H. Davoody, and I. Knezevic,
"Thermoelectric properties of ultrathin silicon nanowires,"

3. N. Sule and I. Knezevic,
"Phonon-limited electron mobility in graphene using electronic tight-binding Bloch waves,"

4. Z. Aksamija and I. Knezevic,
"Lattice thermal conductivity of graphene nanoribbons: anisotropy and edge roughness scattering,"

5. H. J. Ryu, Z. Aksamija, D. M. Paskiewicz, S. A. Scott, M. G. Lagally, I. Knezevic, and M. A. Eriksson,
"Quantitative determination of contributions to the thermoelectric power factor in Si nanostructures,"

6. Z. Aksamija and I. Knezevic,
"Anisotropy and boundary scattering in the lattice thermal conductivity of silicon nanomembranes,"

7. Feng Chen, E. B. Ramayya, C. Euarusakul, F. J. Himpsel, G. K. Celler, Bingjun Ding, I. Knezevic, and M. G. Lagally,
"Quantum confinement, surface roughness, and the conduction band structure of ultrathin silicon membranes,"

8. Z. Aksamija and I. Knezevic,
"Thermoelectric properties of silicon nanostructures,"

9. E. B. Ramayya and I. Knezevic,
"Self-consistent Poisson-Schrödinger-Monte Carlo Solver: electron mobility in silicon nanowires,"
Journal of Computational Electronics 9, 206-310 (2010). (invited article)

PAPERS IN REVIEW

10. Z. Aksamija and I. Knezevic,
"Lattice thermal conductivity in Si₁₋ₓGeₓ/Si₁₋ₓGeₓ superlattices: Competition between interface and internal scattering,"

FULL PAPERS IN CONFERENCE PROCEEDINGS

Personnel, Theses, and Awards

PERSONNEL

Irena Knezevic (PI, partial salary support and travel covered on this grant)

Edwin B. Ramayya (PhD student, RA support and travel)

Jie Chen (MS student, RA support)

Amirhossein Davoody (PhD student, RA support and travel)

AWARDS

2011 Best Dissertation Award (UW ECE) -- Edwin Ramayya

2008 Best Paper Award Finalist (IEEE NANO 2008) -- Edwin Ramayya

DISSERTATIONS AND THESES

Edwin Ramayya, PhD 2010

PhD dissertation: “Thermoelectric properties of ultrascaled silicon nanowires”

PDF available at http://homepages.cae.wisc.edu/~knezevic/pdfs/EdwinBoscoRamayya_AsPrinted.pdf

Amirhossein Davoody, MS 2011

MS project report “Thermoelectric Properties of Ultrascaled GaN Nanowires”

PDF available at http://144.92.161.87/handle/1793/56412
Invited and Contributed Talks

INVITED TALKS

2. “Phonon transport in silicon and graphene nanostructures,” XIV International Conference on Phonon Scattering in Condensed Matter (Phonons 2012), University of Michigan Ann Arbor, MI, USA (July 8-13, 2012)

5. “Computational Design of Semiconductor Nanostructures for Electronic, Thermoelectric, and Optoelectronic Applications,” University of Houston, Electrical and Computer Engineering (March 5, 2010).

6. “Thermoelectric properties of silicon nanowires” Boston University, Electrical and Computer Engineering Department (May 1, 2009)

CONTRIBUTED CONFERENCE PRESENTATIONS

5. Z. Aksamija and I. Knezevic “Simulation of Thermal Transport in Semiconductor Nanostructures on Heterogeneous Systems”, XSEDE12 Conference, Chicago, IL (July 2012).

6. Z. Aksamija and I. Knezevic “Reduced Thermal Conductivity in SiGe Alloy-based Superlattices for Thermoelectric Applications”, 14th International Conference on Phonon Scattering in Condensed Matter (PHONONS 2012), Ann Arbor, MI (July 2012).

8. Z. Aksamija and I. Knezevic “Thermal transport in graphene-based nanostructures”, American

21. Z. Aksamija and I. Knezevic, "Interface Scattering in the Lattice Thermal Conductivity of Si/SiGe Superlattices", 2011 March Meeting of the American Physical Society, Dallas, TX, March 21-25, 2011.

23. Z. Aksamija and I. Knezevic, "Interface Scattering in the Lattice Thermal Conductivity of Si/SiGe

FA9550-09-1-0230 Final Report

DISTRIBUTION A: Distribution approved for public release.

