Award Number: W81XWH-12-1-0084

TITLE: "Longitudinal Study of a Novel Performance-based Measure of Daily Function."

PRINCIPAL INVESTIGATOR: Terry Goldberg, PhD

CONTRACTING ORGANIZATION: The Feinstein Institute for Medical Research
Manhasset, NY 11030

REPORT DATE: JUNE 2016

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Material Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be
construed as an official Department of the Army position, policy or decision unless so designated by
other documentation.
# Longitudinal Study of a Novel, Performance-based Measure of Daily Function

**1. REPORT DATE**
June-2016

**2. REPORT TYPE**
Final

**3. DATES COVERED**
15Mar2012 - 14Mar2016

**4. TITLE AND SUBTITLE**
Longitudinal Study of a Novel, Performance-based Measure of Daily Function

**5a. CONTRACT NUMBER**
W81XWH-12-1-0084

**5b. GRANT NUMBER**
W81XWH-12-1-0084

**5c. PROGRAM ELEMENT NUMBER**

**6. AUTHOR(S)**
Terry E. Goldberg, PhD

E-Mail: tgoldber@nshs.edu

**7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)**
The Feinstein Institute for Medical Research
350 Community Drive
Manhasset, NY 11030

**8. PERFORMING ORGANIZATION REPORT NUMBER**

**9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)**
U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

**10. SPONSOR/MONITOR’S ACRONYM(S)**

**11. SPONSOR/MONITOR’S REPORT NUMBER(S)**

**12. DISTRIBUTION / AVAILABILITY STATEMENT**
Approved for Public Release; Distribution Unlimited

**13. SUPPLEMENTARY NOTES**

**14. ABSTRACT**
As the Alzheimer’s disease field moves to studies and intervention trials in the preclinical phase and early prodromal period, it will be necessary to measure everyday function in an increasingly more sensitive and sophisticated way to capture more subtle impairments. One approach to increasing sensitivity in functional measures is to use performance based instruments, such as the UCSD Performance-based Skills Assessment (UPSA), in Mild Cognitive Impairment (MCI) or mild Alzheimer’s disease (AD) research. In this test patients are observed and their response scored as they actually perform proxies for real world tasks and it contrasts with more typical informant based measures. In a preliminary study we compared patients with MCI, patients with mild AD who by diagnosis have functional impairments, and healthy age matched controls on the UPSA, as well as measures of cognition (e.g., episodic memory, semantic memory, executive function, speed). We found that patients with MCI had compromises in everyday functional competence and that the UPSA was strikingly sensitive to these (Goldberg et al, 2010). Additionally the UPSA outperformed an informant based measure on a variety of criteria. However, that study was not longitudinal. Therefore, it is important that we obtain data on the longitudinal characteristics of the UPSA in these populations, including the severity of decline in this measure over time, the relationship of decline to cognitive changes in order to determine the validity of the UPSA, and its technical psychometric characteristics (e.g., test-retest reliability).

**15. SUBJECT TERMS**
Alzheimer’s disease, Mild Cognitive Impairment, functional impairment, UPSA
# Table of Contents

Abstract  page 5  
Introduction  page 5  
Key research accomplishments  page 6  
Methods  page 6  
Results and Discussion  page 7  
References  page 8  
Supporting data  page 8-17  
Appendix I  page 18
Abstract As the Alzheimer’s disease field moves to studies and intervention trials in the preclinical phase and early prodromal period, it will be necessary to measure everyday function in an increasingly more sensitive and sophisticated way to capture more subtle impairments. One approach to increasing sensitivity in functional measures is to use performance based instruments, such as the UCSD Performance-based Skills Assessment (UPSA), in Mild Cognitive Impairment (MCI) or mild Alzheimer’s disease (AD) research. In this test patients are observed and their response scored as they actually perform proxies for real world tasks and it contrasts with more typical informant based measures. In a preliminary study we compared patients with MCI, patients with mild AD who by diagnosis have functional impairments, and healthy age matched controls on the UPSA, as well as measures of cognition (e.g., episodic memory, semantic memory, executive function, speed). We found that patients with MCI had compromises in everyday functional competence and that the UPSA was strikingly sensitive to these (Goldberg et al, 2010). Additionally the UPSA outperformed an informant based measure on a variety of criteria. However, that study was not longitudinal. Therefore, it is important that we obtain data on the longitudinal characteristics of the UPSA in these populations, including the severity of decline in this measure over time, the relationship of decline to cognitive changes in order to determine the validity of the UPSA, and its technical psychometric characteristics (e.g., test-retest reliability).

In the present longitudinal study we found large between group differences on the UPSA, such that HCs outperformed MCI individuals, who in turn outperformed AD individuals. We found a significant effect of time, such that overall, groups declined over a one year period. While we did not find a group by time interaction, it was the case that in terms of effect sizes decline in the MCI and AD groups was medium, while for HCs, it was small. Psychometrically the UPSA showed very good test-retest reliability. Additionally, correlations between the long form and short form were very high. However, a practice effect was noted at six weeks.

Introduction As the Alzheimer’s disease field moves to studies and intervention trials, it will be necessary to measure everyday function in an increasingly more sensitive and sophisticated way to capture more subtle impairments. One approach to increasing sensitivity in functional measures is to use performance based instruments, such as the UCSD Performance-based Skills Assessment (UPSA), in Mild Cognitive Impairment (MCI) or mild Alzheimer’s disease (AD) research. In this test patients are observed and their response scored as they actually perform proxies for real world tasks (such as determining which bus route to take, writing a check, planning a trip to the beach, and recalling an appointment’s time and place). In a preliminary study we compared patients with MCI, patients with mild AD who by diagnosis have functional impairments, and healthy age matched controls on the UPSA, as well as measures of cognition (e.g., episodic memory, semantic memory, executive function, speed). We found that patients with MCI had compromises in everyday functional competence and that the UPSA was strikingly sensitive to these (Goldberg et al, 2010). However, that study was not longitudinal. Since our initial review several new measures of everyday function have been introduced. However, these are informant based and may be subject to informant biases, lack of knowledge, or imprecision. Therefore, it is important that we obtain data on the longitudinal characteristics of the UPSA in these populations, including the severity of decline in this measure over time, the relationship of decline to cognitive
changes in order to determine the validity of the UPSA, and its technical psychometric characteristics (e.g., test-retest reliability). We will longitudinally assess magnitude of decline in the UPSA individuals with MCI and mild AD assessed at baseline, 6 weeks, and 12 months. We will compare and contrast decline in the UPSA with a commonly used measure of function administered to informants (the FAQ) in MCI and AD using Effect Sizes (ES) and mixed model repeated measures. We will determine the cognitive measures that best predict decline in the UPSA. We predict that the UPSA will decline over time in the MCI and AD groups with and demonstrate strong relationships to cognitive decline.

**Key Research Accomplishments**

- Recruitment of subjects for baseline evaluation and longitudinal follow up. To date 77 subjects have been enrolled and data were analyzed in this report (see below). A total of 183 assessments were completed.
- Implementation of testing procedures and screening procedures. Entry of data into our database.
- We answered key scientific questions listed in our Aims. In particular we found that psychometric properties of the UPSA were robust; that the UPSA was sensitive to diagnostic class such that HCs >MCI>AD in terms of UPSA performance; that in MCI and AD cohorts over the one year period of follow up, UPSA performance declined; and that UPSA short form and long form were highly correlated. We also noted a practice effect for the UPSA at six weeks that was reduced by one year in HCs and to a lesser extent, MCI.

**Methods**

*Subjects*

Recruitment began September 21, 2012 with North Shore-LIJ IRB and ORP approval. For the analyses presented here, 36 healthy controls (HCs), 10 individuals with Mild Cognitive Impairment (MCI), and 14 individuals with Alzheimer’s disease (AD) were included at baseline. Retention rates for these subjects over the course of this one year longitudinal study (with three assessments) was high at >60%. Nevertheless, as these sample sizes are below are recruiting goals. In order to rectify this we requested a No Cost Extension (see Appendix) and successfully recruited 16 participants over this period (as well as completed examinations of subjects who entered the study earlier).

Demographic data are in Table 1. Mean ages of the groups were in the 73 to 75 year range. Sex ratio was more or less equivalent across groups, though slightly favoring males. The groups were well-educated with approximately 16 years of education.

*Instrument*

The long form of the UPSA included comprehension and planning, communication, finance, and transportation subtests. The short form included the comprehension and planning and communication subtests only.
Results and Discussion

Test retest reliability (over a six week period) was high in the sample at r>.89 for the long form and .83 for the short form (ps<.0001). Small but measureable practice effects were present in the 6-week condition in the HC and MCI groups. Ceiling effects were negligible in the MCI and AD groups. In the HC group they were 14%. The long and short UPSA forms had a correlation of .96.

One of our key analyses consisted of a mixed model repeated measures ANOVA on the UPSA scores. Mixed models do not exclude subjects with missing data and are the statistic of choice in longitudinal designs. Diagnostic group was a main effect, time (baseline, 6 weeks, one year) was a within subjects effect, and diagnosis*time was the interaction term. Results were as follows for both the long and short form:

1. A highly main effect of diagnostic group was present: HCs>MCI>AD in UPSA performance (p<.001).
2. A robust effect of time was present (with declining scores) (p<.05).
3. No diagnosis*time interaction was present.

Results are displayed in Figures 1 and 2. The HC group was stable over a one year period. The AD group demonstrated a consistent decline.

To understand these results more completely we used effect sizes expressed as Cohen’s d. First, we examined group differences. We found consistently medium to large effect sizes in contrasts between HC and the two impaired groups (MCI and AD) at baseline and at one year. Additionally, MCI subjects performed better than AD subjects with a large effect size.

Next, we examined within subject time differences. For the HC group performance was quite stable. For the MCI and AD groups the difference between baseline and one year performance (especially on the UPSA short) yielded effect sizes that were medium (ie, .4 to .6), indicating decline.

Over six weeks the practice effect in Cohens d effect size units was less than .20 in the HC group and in the MCI group (i.e., small) for the long form. Practice effects were slightly larger for the short form of the UPSA.

The correlation between the long form and short form of the UPSA was .94 (p<.0001). Given the high correlation between the two forms of the test and their high test-retest reliabilities, as well as the sensitivity to decline in the short form, we suggest that the short form will be utilized more frequently for pragmatic reasons (because it takes less time to administer).

In summary, these results suggest that the UPSA is sensitive to group differences in functional competence. As predicted, MCI and AD subjects performed worse than HCs. Moreover AD subjects demonstrated a medium effect sized decline over one year as did MCI subjects (notably on the short form UPSA). Psychometric properties of the UPSA were good in terms of test-retest reliability, ceiling, and floor effects. Because the short UPSA and Long UPSA were highly correlated we would recommend the short form of the UPSA if time and fatigue are issues in a given study.
References


<table>
<thead>
<tr>
<th>Demographics of HC, MCI, and AD Groups-Study 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC (N=43)</td>
</tr>
<tr>
<td>Age</td>
</tr>
<tr>
<td>Sex (m/f)</td>
</tr>
<tr>
<td>Ed.</td>
</tr>
<tr>
<td>MMSE</td>
</tr>
</tbody>
</table>
Figure 1

**UPSA Long scores over time**

*Group p < .0001, time p = .02, group x time p = .18*

![Graph showing UPSA Long scores over time]
UPSA Short percentage scores over time
Group p < .001, time p = .001, group x time p = .23
Effect Size UPSA Long (Between Groups)

Figure 3
Effect Size for UPSA Short (Between Groups)
Effect Size UPSA Long (within subject)
Effect Sizes UPSA Short (within subject)

LS Effect Sizes for UPSA Short Within Group

Baseline vs 6 Weeks  Baseline vs 1 Year

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

d

HS  MCI  AD
Table 1 Group Demographics

<table>
<thead>
<tr>
<th>Group</th>
<th>Age</th>
<th>Gender</th>
<th>Education</th>
<th>n(baseline)</th>
<th>n(6 weeks)</th>
<th>n(1 year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy Control</td>
<td>71.5 (12.03)</td>
<td>53% male</td>
<td>16.61 (2.57)</td>
<td>36</td>
<td>31</td>
<td>26</td>
</tr>
<tr>
<td>Mild Cognitive Impairment</td>
<td>72.8 (10.16)</td>
<td>50% male</td>
<td>17.2 (2.25)</td>
<td>10</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Alzheimer’s Disease</td>
<td>74 (10.05)</td>
<td>50% male</td>
<td>15.5 (3.37)</td>
<td>14</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>
Table 2. Descriptive data for the UPSA long and short forms

**Diagnosis=HC**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Minimum</th>
<th>Maximum</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSE_BL</td>
<td>28.916667</td>
<td>1.518928</td>
<td>23.000000</td>
<td>30.000000</td>
<td>36</td>
</tr>
<tr>
<td>UPSA_ SHORT_1</td>
<td>88.3230453</td>
<td>6.178789</td>
<td>74.074074</td>
<td>100.000000</td>
<td>36</td>
</tr>
<tr>
<td>UPSA_ LONG_1</td>
<td>89.7802095</td>
<td>6.7589245</td>
<td>73.4680135</td>
<td>100.000000</td>
<td>36</td>
</tr>
<tr>
<td>MMSE_6WK</td>
<td>28.3548387</td>
<td>1.7425726</td>
<td>22.0000000</td>
<td>30.0000000</td>
<td>31</td>
</tr>
<tr>
<td>UPSA_ SHORT_2</td>
<td>90.3823178</td>
<td>7.0988087</td>
<td>75.9259259</td>
<td>100.0000000</td>
<td>31</td>
</tr>
<tr>
<td>UPSA_ LONG_2</td>
<td>92.5811882</td>
<td>5.0450183</td>
<td>81.7508418</td>
<td>100.0000000</td>
<td>31</td>
</tr>
<tr>
<td>MMSE_1YR</td>
<td>28.6923077</td>
<td>1.5432234</td>
<td>24.0000000</td>
<td>30.0000000</td>
<td>26</td>
</tr>
<tr>
<td>UPSA_ SHORT_3</td>
<td>87.6153846</td>
<td>8.0147195</td>
<td>68.5185185</td>
<td>98.1481481</td>
<td>26</td>
</tr>
<tr>
<td>UPSA_ LONG_3</td>
<td>90.9790210</td>
<td>6.9215856</td>
<td>72.4915825</td>
<td>99.0740741</td>
<td>26</td>
</tr>
</tbody>
</table>

**Diagnosis=MCI**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Minimum</th>
<th>Maximum</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSE_BL</td>
<td>27.0000000</td>
<td>2.3570226</td>
<td>21.0000000</td>
<td>30.0000000</td>
<td>10</td>
</tr>
<tr>
<td>UPSA_ SHORT_1</td>
<td>77.0370370</td>
<td>9.1641203</td>
<td>64.8148148</td>
<td>90.7407407</td>
<td>10</td>
</tr>
<tr>
<td>UPSA_ LONG_1</td>
<td>84.2912458</td>
<td>5.7579939</td>
<td>72.8619529</td>
<td>90.8249158</td>
<td>10</td>
</tr>
<tr>
<td>MMSE_6WK</td>
<td>26.3333333</td>
<td>2.0615528</td>
<td>24.0000000</td>
<td>29.0000000</td>
<td>9</td>
</tr>
<tr>
<td>UPSA_ SHORT_2</td>
<td>80.8641975</td>
<td>10.7183675</td>
<td>62.9629630</td>
<td>96.2962963</td>
<td>9</td>
</tr>
<tr>
<td>UPSA_ LONG_2</td>
<td>86.5937149</td>
<td>8.7528287</td>
<td>71.9360269</td>
<td>95.8754209</td>
<td>9</td>
</tr>
<tr>
<td>MMSE_1YR</td>
<td>26.2000000</td>
<td>1.6431677</td>
<td>25.0000000</td>
<td>28.0000000</td>
<td>5</td>
</tr>
<tr>
<td>UPSA_ SHORT_3</td>
<td>75.1851852</td>
<td>8.7449770</td>
<td>64.8148148</td>
<td>83.3333333</td>
<td>5</td>
</tr>
<tr>
<td>UPSA_ LONG_3</td>
<td>83.9562290</td>
<td>6.1380319</td>
<td>75.5892256</td>
<td>91.6666667</td>
<td>5</td>
</tr>
</tbody>
</table>

**Diagnosis=AD**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Minimum</th>
<th>Maximum</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSE_BL</td>
<td>20.3571429</td>
<td>5.2857885</td>
<td>11.0000000</td>
<td>28.0000000</td>
<td>14</td>
</tr>
<tr>
<td>UPSA_ SHORT_1</td>
<td>55.0264550</td>
<td>21.6501455</td>
<td>12.9629630</td>
<td>83.3333333</td>
<td>14</td>
</tr>
<tr>
<td>UPSA_ LONG_1</td>
<td>53.8768639</td>
<td>29.8509381</td>
<td>6.4814815</td>
<td>91.6666667</td>
<td>14</td>
</tr>
<tr>
<td>MMSE_6WK</td>
<td>20.5000000</td>
<td>4.7809144</td>
<td>14.0000000</td>
<td>28.0000000</td>
<td>8</td>
</tr>
<tr>
<td>UPSA_ SHORT_2</td>
<td>55.3240741</td>
<td>23.0965032</td>
<td>18.5185185</td>
<td>74.0740741</td>
<td>8</td>
</tr>
<tr>
<td>UPSA_ LONG_2</td>
<td>59.0256734</td>
<td>30.9748460</td>
<td>9.2592593</td>
<td>83.8383838</td>
<td>8</td>
</tr>
<tr>
<td>MMSE_1YR</td>
<td>20.2500000</td>
<td>5.7008771</td>
<td>8.0000000</td>
<td>25.0000000</td>
<td>8</td>
</tr>
<tr>
<td>UPSA_ SHORT_3</td>
<td>47.2222222</td>
<td>21.2300557</td>
<td>3.7037037</td>
<td>74.0740741</td>
<td>8</td>
</tr>
<tr>
<td>UPSA_ LONG_3</td>
<td>51.3383838</td>
<td>27.7088757</td>
<td>1.8518519</td>
<td>84.7643098</td>
<td>8</td>
</tr>
</tbody>
</table>
March 10, 2015

The Feinstein Institute for Medical Research
Ms. Rita Nigri
Office of Grants and Contracts
350 Community Drive
Manhasset, NY 11030
(516) 562-3106

Project Officer, Cheryll Quirin
Telemedicine and Advanced Technology Research Center (TATRC)
US Army Medical Research and Materiel Command (USAMRMC)
Fort Detrick, MD 21702

Dear Ms. Quirin,

I am writing to request a no cost extension (NCE) for a period of 12 months under Award No. W81XWH-12-1-0084 through April 15, 2016 for the project entitled “Longitudinal Study of a Novel, Performance-based Measure of Everyday Functional Competence”. The award is currently scheduled to end on April 15, 2015.

The progress on this project was delayed because of slowed recruiting for this ambitious study. While we have recruited nearly 70 subjects with excellent retention across the one year longitudinal study period (incorporating 3 assessments, for a total of nearly 200 assessments) we appreciate the need for more subjects to test our hypotheses fully. We will continue to seek ORP and IRB approval for this ongoing study.

The current award is fully spent, and we will use internal funds to support the study during the extension, including the post-doctoral fellow, study coordinator/recruiter, psychometrician, physician, and Principal Investigator time and effort during this period.

Also enclosed please find an updated SOW and revised timeline. Thank you for your understanding and assistance.

Sincerely,

Rita Nigri
Institutional Official

Enc.
Cc: Dr. Anthony Pacifico