Multiscale Mathematics for Nano-Particle-Endowed Active Membranes and Films

Qi Wang
SOUTH CAROLINA RESEARCH FOUNDATION
901 SUMTER ST STE 511
COUMBIA, SC 292080001

08/03/2016
Final Report
Multiscale Mathematics for Nano-Particle-Endowed Active Membranes and Films

In this project, we conducted a systematic investigation on active liquid crystal flows and flowing polymer nano-composites including studies of nonlinear phenomenon in active magnetic microbead rheology, detailed analyses and simulations of active liquid crystal models in thin films, free surface geometries, and the channel geometry, applications of active liquid crystal models to complex biological systems, numerical algorithm development for multiphase fluid flows, network analysis and simulations of nanocomposite systems. We explored spatial-temporal structures using the two-scale kinetic model by mapping out the dynamics in the phase space consisting of the active parameter and the strength of active particle-particle interaction. In addition, we used a continuum active polar liquid crystal model to study the robustness of the structures and their genesis in relation to the inherent instability in the active liquid crystal model in various geometries. Network models are brought in to analyze nanocomposites transport properties and network properties of various complex networks. A series of numerical algorithms for multiphase complex fluid models are developed using a new method that we invented call energy quadratisation (EQ) technique. With the new EQ technique, we designed energy stable schemes for several important model systems of multiphase viscous fluid mixtures, liquid crystal drops, active matter drops, active cells, etc, making the numerical simulation of the underlying fluids and biological objects more reliable.
INSTRUCTIONS FOR COMPLETING SF 298

1. REPORT DATE. Full publication date, including day, month, if available. Must cite at least the year and be Year 2000 compliant, e.g. 30-06-1998; xx-06-1998; xx-xx-1998.

2. REPORT TYPE. State the type of report, such as final, technical, interim, memorandum, master's thesis, progress, quarterly, research, special, group study, etc.

3. DATES COVERED. Indicate the time during which the work was performed and the report was written, e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996; May - Nov 1998; Nov 1998.

4. TITLE. Enter title and subtitle with volume number and part number, if applicable. On classified documents, enter the title classification in parentheses.

5a. CONTRACT NUMBER. Enter all contract numbers as they appear in the report, e.g. F33615-86-C-5169.

5b. GRANT NUMBER. Enter all grant numbers as they appear in the report, e.g. AFOSR-82-1234.

5c. PROGRAM ELEMENT NUMBER. Enter all program element numbers as they appear in the report, e.g. 61101A.

5d. PROJECT NUMBER. Enter all project numbers as they appear in the report, e.g. 1F665702D1257; ILIR.

5e. TASK NUMBER. Enter all task numbers as they appear in the report, e.g. 05; RF0330201; T4112.

5f. WORK UNIT NUMBER. Enter all work unit numbers as they appear in the report, e.g. 001; AFAPL30480105.

6. AUTHOR(S). Enter name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. The form of entry is the last name, first name, middle initial, and additional qualifiers separated by commas, e.g. Smith, Richard, J, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES). Self-explanatory.

8. PERFORMING ORGANIZATION REPORT NUMBER. Enter all unique alphanumeric report numbers assigned by the performing organization, e.g. BRL-1234; AFWL-TR-85-4017-Vol-21-PT-2.

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES). Enter the name and address of the organization(s) financially responsible for and monitoring the work.

10. SPONSOR/MONITOR'S ACRONYM(S). Enter, if available, e.g. BRL, ARDEC, NADC.

11. SPONSOR/MONITOR'S REPORT NUMBER(S). Enter report number as assigned by the sponsoring/monitoring agency, if available, e.g. BRL-TR-829; -215.

12. DISTRIBUTION/AVAILABILITY STATEMENT. Use agency-mandated availability statements to indicate the public availability or distribution limitations of the report. If additional limitations/ restrictions or special markings are indicated, follow agency authorization procedures, e.g. RD/FRD, PROPIN, ITAR, etc. Include copyright information.

13. SUPPLEMENTARY NOTES. Enter information not included elsewhere such as: prepared in cooperation with; translation of; report supersedes; old edition number, etc.

14. ABSTRACT. A brief (approximately 200 words) factual summary of the most significant information.

15. SUBJECT TERMS. Key words or phrases identifying major concepts in the report.

16. SECURITY CLASSIFICATION. Enter security classification in accordance with security classification regulations, e.g. U, C, S, etc. If this form contains classified information, stamp classification level on the top and bottom of this page.

17. LIMITATION OF ABSTRACT. This block must be completed to assign a distribution limitation to the abstract. Enter UU (Unclassified Unlimited) or SAR (Same as Report). An entry in this block is necessary if the abstract is to be limited.
In this project, we conducted a systematic investigation on active liquid crystal flows and flowing polymer nano-composites including studies of nonlinear phenomenon in active magnetic microbead rheology, detailed analyses and simulations of active liquid crystal models in thin films, free surface geometries, and the channel geometry, applications of active liquid crystal models to complex biological systems, numerical algorithm development for multiphase fluid flows, network analysis and simulations of nanocomposite systems. In the study of active liquid crystals, we explored spatial-temporal structures using the two-scale kinetic model by mapping out the dynamics in the phase space consisting of the active parameter and the strength of active particle-particle interaction. In the meantime, we used a reduced order, continuum active polar liquid crystal model to study the robustness of the structures and their genesis in relation to the inherent instability in the active liquid crystal model. Detailed studies are conducted with respect to channel flows and free surface filament flows which have direct relevance to various engineering and biological applications. Network models are brought in to analyze nanomaterials transport properties and network properties of various complex networks.

New numerical algorithms are developed for a host of multiphase phase field based hydrodynamic models, in which a new method called Energy Quadratization or EQ was invented to systematically linearize transport equations derived from the generalized Onsager principle. These new methods are then applied to efficiently integrate the governing system of equation for the active matter systems are continuously improved.

We present experimental data and numerical modeling of a nonlinear phenomenon in active magnetic microbead rheology that appears to be common to entangled polymer solutions (EPS). Dynamic experiments in a modest range of magnetic forces show (1) a short-lived high viscosity plateau, followed by (2) a bead acceleration phase with a sharp drop in apparent viscosity, and (3) a terminal steady state that we show resides on the shear-thinning slope of the steady-state flow curve from cone and plate data. This latter feature implies a new protocol to access the nonlinear steady state flow curve for biological EPS available only in microliter-scale volumes. We use the moment closure form of the Rolie–Poly kinetic model for EPS hydrodynamics, together with a decoupling approximation that obviates the need for a full three-dimensional (3D) flow solver, to qualitatively reproduce this dynamic experimental sequence. We thereby explain the phenomenon in terms of entangled polymer physics, and show how the nonlinear event
(acceleration and termination on the shear-thinning response curve) is tunable by the interplay between molecular-scale mechanisms (relaxation via reptation and chain retraction) and magnetic force controls. The experimental conditions mimic movement of cilia tips, bacteria, and sperm in mucus barriers, implying a physiological relevance of the phenomenon and compelling further quantitative kinetic-flow 3D numerical modeling.

We have developed a set of kinetic models and simulation tools to study anisotropic nano-particle dispersions and active particle dispersions to generate spatial-temporal structures that the ensemble can exhibit. Using the kinetic models, we have investigated the spatial-temporal structure of the model solutions. In the end, we have obtained the phase diagram for the solutions in the important model parameters. Using a coarse-grain model for active polar liquid crystals, we analytically and numerically explored the spatial-temporal patterns in active particle systems and studied the solution instability in details in channel flows and free surface liquid filaments. In particularly, we investigated the capillary instability of a falling active liquid crystal filament and discovered a stunning set of instabilities due to the activities of the liquid crystal molecules or active nanoparticles. We anticipate that this will lead to new applications of active particle dispersions in material processing and interpretation for capillary dynamics in biological systems.

After quenching/annealing, we adopt the statistics in the probability density function to analyze the materials properties, primarily electric properties, using network models and assessment tools developed for community networks. The work performed builds on kinetic models and corresponding solution algorithms for processing conditions of nano-particle-endowed films, coatings and membranes. Drawing from databases generated by these codes, we are actively investigating network-mediated properties that are not well-modeled by homogenization theory. We have explored DC resistive electrical response of connected nanorod composites at particle volume fractions above the percolation threshold. These calculations are performed in the high aspect ratio conductivity limit, wherein only currents along particulates are considered. As an extension of the above investigation, and as a means towards understanding the general behaviors observed there, we have also considered similar effects and observations obtained in the classic “random resistor” setting of bond percolation on 3D cubic lattices. We have also investigated dielectric properties at particle volume fractions below the percolation threshold. In these calculations, the associated network is an all-to-all capacitance network.

New and efficient numerical algorithms for multiphase fluid flows formulated using phase field are developed to decouple the momentum transport equation from the phase transport equations making the numerical computational tool more robust and modular. Some of these numerical schemes are applied to study cellular aggregate fusions and liquid jet dynamics of liquid crystal polymers.

We also applied the active liquid crystal models and the numerical technology to develop a set of new models and simulation tools for cell motion in mitosis and migration on patterned substrate. These models are being used in collaboration with applied physicists
and material scientists to study the interaction between the cell and the substrate material in order to design novel cell-sensing and guiding materials.

5 PhD students have been partially supported by this award during their graduate studies. They have graduated and move on to either continue their postdoc training or working in universities and industries.

The team has been very productive during the last four years. Papers published and submitted in the period are listed below:

**Publications:**

4. Xiaofeng Yang, Yi Sun, and Qi Wang, Phase Field Approach for Multicellular Aggregate Fusion in Biofabrication,” Journal of Biomedical Engineering, 135(7), 2013, 071005.
30. Xiaogang Yang and Qi Wang, Role of Active Viscosity and Self-propelling Speed on Channel Flows of Active Polar Liquid Crystals, Soft Matter, 2016, 12, 1262 -

DISTRIBUTION A: Distribution approved for public release.

PhD graduates of Qi Wang, Forest and Mucha supported in part by this contract:

1. Jia Zhao, University of South Carolina, 2012-2016, PhD May 2015, University of South Carolina, June 2015-Juky 2016, University of North Carolina at Chapel
Hill, July 2016-present
2. Norazaliza Mond Gamil, PhD May 2015, Universiti Malaysia Pahang, 2015-present
3. Chen Chen, PhD August 2012, Citibank, 2013-present
4. Feng (Bill) Shi, PhD May 2013, University of Chicago, Computation Institute, June 2013 - present
5. Simi Wang, PhD May 2014, Amazon, May 2014 - present
1.

1. Report Type
Final Report

Primary Contact E-mail
Contact email if there is a problem with the report.
quwang@math.sc.edu

Primary Contact Phone Number
Contact phone number if there is a problem with the report
8037776268

Organization / Institution name
University of South Carolina

Grant/Contract Title
The full title of the funded effort.
Multiscale Mathematics for Nano-Particle-Endowed Active Membranes and Films

Grant/Contract Number
AFOSR assigned control number. It must begin with “FA9550” or “F49620” or “FA2386”.
FA9550-12-1-0178

Principal Investigator Name
The full name of the principal investigator on the grant or contract.
Qi Wang

Program Manager
The AFOSR Program Manager currently assigned to the award
Fariba Fahroo

Reporting Period Start Date
5/1/2012

Reporting Period End Date
4/30/2016

Abstract
In this project, we conducted a systematic investigation on active liquid crystal flows and flowing polymer nano-composites including studies of nonlinear phenomenon in active magnetic microbead rheology, detailed analyses and simulations of active liquid crystal models in thin films, free surface geometries, and the channel geometry, applications of active liquid crystal models to complex biological systems, numerical algorithm development for multiphase fluid flows, network analysis and simulations of nanocomposite systems. We explored spatial-temporal structures using the two-scale kinetic model by mapping out the dynamics in the phase space consisting of the active parameter and the strength of active particle-particle interaction. In addition, we used a continuum active polar liquid crystal model to study the robustness of the structures and their genesis in relation to the inherent instability in the active liquid crystal model in various geometries. Network models are brought in to analyze nanocomposites transport properties and network properties of various complex networks. A series of numerical algorithms for multiphase complex fluid models are developed using a new method that we invented call energy quadratization (EQ) technique. With the new EQ technique, we designed energy stable schemes for several important model systems of multiphase viscous fluid mixtures, liquid crystal drops, active matter drops, active cells, etc, making the DISTRIBUTION A: Distribution approved for public release.
numerical simulation of the underlying fluids and biological objects more reliable.

**Distribution Statement**
This is block 12 on the SF298 form.

**Distribution A - Approved for Public Release**

**Explanation for Distribution Statement**
If this is not approved for public release, please provide a short explanation. E.g., contains proprietary information.

**SF298 Form**
Please attach your SF298 form. A blank SF298 can be found here. Please do not password protect or secure the PDF. The maximum file size for an SF298 is 50MB.

sf298-filed.pdf

**Upload the Report Document. File must be a PDF. Please do not password protect or secure the PDF. The maximum file size for the Report Document is 50MB.**

AFOSR-Final-report-2016.pdf

**Upload a Report Document, if any. The maximum file size for the Report Document is 50MB.**

**Archival Publications (published) during reporting period:**

6. Yi Sun, Xiaofeng Yang, and Qi Wang, "In-Silico Analysis on Biofabricating Vascular Networks using Kinetic Monte Carlo Simulations." Biofabrication, 6, 2013, 015008.
17. C. Liu, J. Shen and X. Yang, Decoupled Energy Stable Schemes for a phase filed model of two-phase
38. Ya Shen, Jia Zhao, César de la Fuente-Núñez, Zhejun Wang, Robert E. W. Hancock, Clive R. Roberts, Jingzhi Ma, Jun Li, Markus Haapasalo and Qi Wang, "Development and Experimental Validation of a Model for Oral Multispecies Biofilm Recovery after Chlorhexidine Treatment", Scientific Reports, 6, 2016, 27537.


2. New discoveries, inventions, or patent disclosures:
Do you have any discoveries, inventions, or patent disclosures to report for this period?

No

Please describe and include any notable dates

Do you plan to pursue a claim for personal or organizational intellectual property?

Changes in research objectives (if any):

Change in AFOSR Program Manager, if any:

Extensions granted or milestones slipped, if any:

AFOSR LRIR Number

LRIR Title

Reporting Period

Laboratory Task Manager

Program Officer

Research Objectives

Technical Summary

Funding Summary by Cost Category (by FY, $K)

<table>
<thead>
<tr>
<th></th>
<th>Starting FY</th>
<th>FY+1</th>
<th>FY+2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment/Facilities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Report Document

Report Document - Text Analysis

Appendix Documents

2. Thank You

E-mail user

Jul 29, 2016 16:16:33 Success: Email Sent to: qwang@math.sc.edu

DISTRIBUTION A: Distribution approved for public release.