Title: Ebola virus epidemiology and evolution in Nigeria

Running title: Nigeria EBOV epidemiology and evolution

Onikepe A. Folarin1,2*, Deborah Ehichioya1,2*, Stephen F. Schaffner3,4*, Sarah M. Winnicki3,4*, Shirlee Wohl3,4*, Philomena Eromon1,2, Kendra L. West3, Adrianne Gladden-Young3, Nicholas E. Oyejide1, Christian B. Matranga3, Awa Bineta Deme5, Ayorinde James6, Christopher Tomkins-Tinch3, Kenneth Onyewuru1,2, Jason T. Ladner7, Gustavo Palacios7, Dolo Nosamiefan3, Kristian G. Andersen8, Sunday Omilabu9, Daniel J. Park2,3, Nathan L. Yozwiak2,3,4, Abdusallam Nasidi10, Robert F. Garry2,11, Oyewale Tomori1,12, Pardis C. Sabeti2,3,4,13, Christian T. Happi1,2
Footnotes

*Contributed equally to this work.

1 Department of Biological Sciences, Redeemer’s University, Ede, Osun State, Nigeria
2 African Center of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
3 Broad Institute of Harvard and MIT, Cambridge, MA 02142 USA
4 FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138 USA
5 Department de Parasitologie et Mycologie, Université Cheikh Anta Diop de Dakar, Fann, Dakar, Senegal
6 Department of Biochemistry, Lagos University Teaching Hospital, Lagos, Nigeria
7 Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
8 The Scripps Research Institute, Scripps Translational Science Institute, La Jolla, CA 92037 USA
9 Department of Medical Microbiology and Parasitology, College of Medicine, University of Lagos, Lagos, Nigeria
10 Nigeria Centre for Disease Control, Abuja, Nigeria
11 Department of Microbiology and Immunology, Tulane University, New Orleans, LA 70118 USA
12 Nigerian Academy of Science, Akoka-Yaba, Lagos, Nigeria
13 Howard Hughes Medical Institute, Chevy Chase, MD 20815 USA

Correspondence should be addressed to:

Christian Happi
Redeemer’s University
Ede, Osun State, Nigeria
Tel: +234-802-338-3684
E-mail: happic@run.edu.ng

Stephen F. Schaffner
Broad Institute of Harvard and MIT
Cambridge, MA 02142
Tel: 617-714-7634
E-mail: sfs@broadinstitute.org

Conflicts of interest:
RFG: founder of Zalgen Labs
All other authors report no conflict of interest.
Abstract

Containment limited the 2014 Nigerian Ebola virus disease outbreak to 20 reported cases and 8 fatalities. We present here clinical data and contact information for at least 19 cases, and full-length Ebola virus (EBOV) genome sequences for 12 of the 20. The detailed contact data permits nearly complete reconstruction of the transmission tree for the outbreak. The EBOV genomic data is consistent with that tree. It confirms that there was a single source for the Nigerian infections, shows that the Nigerian EBOV lineage nests within a lineage previously seen in Liberia but is genetically distinct from it, and supports the conclusion that transmission from Nigeria to elsewhere did not occur.

Key words: Ebola, genomic, phylogeny, epidemiology, Nigeria, sequencing, outbreak

Introduction

The 2014 outbreak of Ebola virus disease (EVD) in Nigeria was one branch of the major West African epidemic that spanned 2013-2016. As of 13 March 2016, 28,639 EVD cases and 11,316 deaths have been reported in 10 countries. The majority of EVD burden has occurred in Liberia, Sierra Leone, and Guinea, with exported cases responsible for additional transmissions in the United States, Mali, and Nigeria, and diagnosed cases with no transmissions in the United Kingdom, Italy, Senegal, and Spain (1).

The Nigeria EVD outbreak began on 20 July 2014, when a traveller from Liberia (the index case) infected with Ebola virus (EBOV), arrived by commercial aircraft to Murtala Muhammed International Airport in Lagos. The movement of this traveller was quickly restricted, patient samples were confirmed EBOV positive by independent PCR tests within days, and intensive
contact tracing was conducted. The Nigeria EVD outbreak ended on 20 October 2014, when the

country was declared Ebola-free by the World Health Organization. During that period, 20

individuals are reported to have been infected, of whom 8 died.

Despite emerging in the megacity of Lagos, the Nigeria EVD outbreak was well documented and

well contained because of rapid detection of the index case and thorough contact tracing

throughout the outbreak. Contact tracing provides a detailed understanding of viral spread, which

is key to controlling any viral outbreak. Sequencing of patient samples can also be used to

understand transmission routes, and is especially important in cases where contact tracing is not

available, or when contact tracing cannot completely resolve a transmission chain.

The EVD outbreak in Nigeria is unique because both genetic and contact tracing data are

available. The complete transmission chain could be reconstructed with considerable confidence,

and detailed clinical records were available for most patients. Viral sequencing data and

sampling dates can be used to estimate general transmission patterns between patients and

regions, and are used in this case to confirm and inform the transmission chain suggested by

contact tracing. Comparing the two methods highlights the strengths of each, and the importance

of both contact tracing and genomic sequencing during an outbreak.

We present here an account of the Nigeria 2014 EVD outbreak that includes clinical,

epidemiological and viral sequence data for most of the affected patients. We also describe

sequencing results generated in Nigeria and in duplicate in the U.S. for the purposes of both

outbreak investigation and validation of viral sequencing capabilities in new laboratories.
Materials and Methods

Management of Contacts and Cases of EVD

The index case presented to a private hospital in Lagos on 20 July 2014 with fever and body weakness, denied contact with known EVD cases or funeral attendance, and was treated with anti-malarial drugs and analgesics. Over the next 3 days the patient’s condition worsened (fever escalated, vomiting and diarrhea persisted), and EVD was suspected. Filovirus PCR testing was conducted at Lagos University Teaching Hospital (LUTH), and on 23 July the index case was reported as filovirus positive. Samples were then shared with Redeemer’s University (RUN) for EBOV-specific PCR testing, which was confirmed on 25 July 2014. The index patient died on 25 July 2014 (see Case Supplement and Supplementary Data 1).

All persons who were exposed to the index case and their contacts were traced, placed under surveillance and monitored for clinical features of EVD. If contacts exhibited fever or other symptoms, they were admitted into the Ebola Treatment Centre (ETC) as suspected cases; blood samples were then collected and tested by RT-PCR for presence of EBOV at both LUTH and RUN. Those positive by RT-PCR were moved to the confirmed ward of the ETC. This combination — history of contact with an EVD case, presentation with symptoms, and RT-PCR evidence of EBOV infection — defined a confirmed case. Each patient was counselled on their need for at least 4 litres of oral rehydration solution (ORS) daily. They were also placed on antibiotics because of their immunosuppression and antimalarials due to the endemicity of malaria in Nigeria. They were placed on nutritional supplements and vitamins. The only
analgesic administered was paracetamol. Injectables and invasive procedures were avoided unless patients were too ill or weak to take ORS.

Infection prevention and control procedures and protocols were strictly adhered to in patient management. Prior to discharge, patients were confirmed negative for EVD by RT-PCR. When discharged, they were decontaminated before being allowed to leave the ETC and were not allowed to take clothing or other personal items. Replacement clothes, footwear and basic personal effects were provided by family or the ETC depending on each individual’s circumstances.

Data Collection and Review

ETC-case management, clinical data, and laboratory data of all confirmed EVD cases identified during 20 July–30 September were reviewed by qualified medical professionals in the case management team. The following case data were compiled: socio-demographic (age, sex, occupation, city of residence), clinical (respiratory rate, pulse rate, blood pressure, presenting symptoms, signs, syndromes, outcome), laboratory (RT-PCR) and administrative data (date of symptoms onset, duration of symptoms, length of stay (LOS)).

Each patient’s exposure history, presenting symptoms, history of presenting symptoms, course of illness, excerpts of clinical management and illness outcome were abstracted from their medical records or contact tracing interview notes (including Suspect Evacuation Forms, Case Investigation Forms, Laboratory Request and Report Forms, Clinical Notes and Charts, and Contact Tracing Interview Notes) and summarised as case histories.
Sample collection and processing

Suspected EVD patient samples were shipped both to the Virology laboratory at LUTH for diagnostics and to the African Center of Excellence for Genomics of Infectious Diseases (ACEGID) at RUN for diagnostics and sequencing. Whole blood samples shipped to RUN were inactivated using Buffer AVL (Qiagen) or TRIzol LS (Life Technologies) in a 4:1 ratio, both following the manufacturer’s protocol. Inactivated samples were stored in a -20°C freezer. Buffer AVL and TRIzol LS have been used extensively in virus inactivation including EBOV (2-7). Samples inactivated in Buffer AVL were extracted using the QIAamp Viral RNA Mini Kit extraction protocol (Qiagen) according to manufacturer’s protocol. Samples inactivated in TRIzol were extracted using chloroform modified with an AVL inactivation and QIAamp Viral RNA Mini Kit extraction protocol. Following this modified protocol, 140 µL of chloroform was added to 1 mL of TRIzol inactivated sample. After vortex and centrifugation, 200 µL of the aqueous phase was transferred to a tube with 700 µL of AVL without carrier RNA added. The sample was then processed following the manufacturer’s protocol for extraction using the QIAamp Viral RNA Mini Kit. Extracted RNA samples were divided into aliquots for sequencing at both RUN and the Broad Institute of MIT and Harvard (Broad). Samples destined for the Broad were shipped on dry ice and subsequently stored at -80°C.

Diagnostics performed at RUN

EBOV-specific diagnostic tests were performed on the suspected EBOV samples at RUN with RT-PCR using the SuperScript III One-Step RT-PCR System with Platinum Taq High Fidelity DNA Polymerase (Life Technologies). The 25 µL assay mix included 5 µL RNA, KGH primer
set (2) at 250 nM final concentration (fwd: GTC GTT CCA ACA ATC GAG CG, rvs: CGT CCC
GTA GCT TTR GCC AT), 12.5 µL 2x Reaction Mix and 0.5 µL 0.5 µL SuperScript™ III RT/
Platinum® Taq High Fidelity Enzyme Mix. The cycling conditions were 60° C for 20 min and
94° C for 5 min, followed by 35 cycles of 94° C for 15 sec, 58° C for 15 sec and 68° C for 15 sec
with a final extension at 68° C for 2 min. RT-PCR was performed on an Eppendorf Mastercycler
thermocycler. The samples were run on a 1.5% agarose gel and visual results recorded.

qRT-PCRs performed at RUN and the Broad

To assess sample quality, extracted RNA was quantified using qRT-PCR for both EBOV and
human rRNA (18S). RNA selected for sequencing was quantified using the Power SYBR Green
RNA-to-Ct 1-Step qRT-PCR assay (Life Technologies). The Kulesh assay protocol was adapted
from a probe-based qPCR assay to a SYBR qPCR assay by omitting the probe (8). The 10 µL
assay mix included 3 µL RNA, 0.3 µM primer Kulesh fwd (TCT GAC ATG GAT TAC CAC
AAG ATC), 0.3 µM Kulesh r (GGA TGA CTC TTT GCC GAA CAA TC), 5 µL 2x Power
SYBR Green RT-PCR Mix and 0.08 µL RT Enzyme Mix. The cycling conditions were 48° C for
30 min and 95° C for 10 min, followed by 45 cycles of 95° C for 15 sec and 60° C for 30 sec
with a melt curve of 95° C for 15 sec, 55° C for 15 sec and 95° C for 15 sec. qRT-PCR was
performed on the LightCycler 96 (Roche) instrument at both RUN and the Broad. Synthetic
oligonucleotide amplicons were prepared as a standard to quantify the viral copy number in the
qRT-PCR assays. These amplicons represent a portion of the EBOV segment within the L gene
as a template for PCR. The amplicons were cleaned using AMPure XP beads (Beckman Coulter
Genomics) and quantified by TapeStation (Ambion). Amplicon concentrations were converted to
EBOV copies per microliter for quantification.
RNA processing and library preparation

DNA was depleted from the RNA samples using TURBO DNase (Ambion), then host rRNA was depleted from the samples using an RNase H selective depletion method described previously (2,9-10). cDNA was then synthesized from the resulting depleted RNA, Nextera XT libraries were constructed and Illumina sequencing was carried out according to methods described previously (2,11), with the following modification: Nextera libraries were generated using 16-18 cycles of PCR. At RUN samples were sequenced on the MiSeq, while at the Broad samples were sequenced on both the MiSeq and HiSeq2500 platforms (Illumina).

Ebola virus genome assembly and analysis

Raw sequencing reads from all sequencing runs were processed together and assembled using the viral-ngs pipeline (12,13) with mostly default parameters. Reads from 2 flowcells were not included due to suspected contamination. Two parameters were varied from defaults: the minimum length of assembly (expressed as a fraction of the reference genome length) and minimum fraction of unambiguous bases were both decreased to allow assembly of lower quality samples (assembly_min_length_fraction_of_reference=0.8; assembly_min_unambig=0.7).

Consensus variants were called using a custom pipeline and annotated using SnpEff (14). Multiple alignments were done using MAFFT v7.017 (15,16) with default parameters. Within-host variants were identified as part of the viral-ngs pipeline with default minimum read and strand bias filters.
The maximum likelihood tree was made using IQ-TREE v1.3.13 (17), a TIM+I substitution model selected by ModelFinder (implemented in IQ-TREE), and 1000 bootstrap replicates. Liberian EBOV sequences included all genomes publicly available on GenBank as of 17 February 2016 (Supplementary Data 3).

Data analysis

As noted in the Discussion, new SNPs were observed to be clustered, with 6 SNPs appearing in one sample, 2 in another and zero in the remaining 9 samples. To determine whether this was unlikely given a uniform mutation rate per transmission, a p-value was calculated as follows.

From the transmission tree, the sequenced cases represent a minimum of 11 transmissions from the index case. Assume that new SNPs in a transmission occur in a Poisson process at an unknown rate \(\mu_s \). For a given \(\mu_s \), calculate the probability of seeing 4 new SNPs in at least 1 case, and then integrate over all values of \(\mu_s \), weighting by the probability of observing 6 SNPs in 11 transmissions. That is,

\[
p = \frac{\int p(S_t = 6|\mu_s)(1 - p(S_s < 4|\mu_s)^N_t)d\mu_s}{\int p(S_t = 6|\mu_s) d\mu_s}
\]

where \(S_t \) is the total number of new SNPs, \(S_s \) is the number of new SNPs seen in a single case, and \(N_t \) is the number of transmissions. The first probability is the Poisson pdf, \(p(S_t|\mu_s) = \frac{(\mu_s N_t)^S_t e^{-\mu_s N_t}}{S_t!} \), and the second is the cdf: \(e^{-\mu_s} \sum_{i=0}^{N_t-1} \frac{\mu_s^i}{i!} \).

Results
Clinical data

Available metadata on the Nigerian EVD patients is summarized in Supplementary Data 1, while symptoms and outcome for all 20 are summarized in Supplementary Tables 1 and 2. Among the 20 EVD cases, the median age was 33 years (range: 26-62 years); 55% were female. Most (65%) were less than 40 years of age, and most were health workers (65%). At presentation, the most common symptoms were fever (85%), fatigue (70%) and diarrhea (65%). The pulse rate and blood pressure were within normal range in 50% of the patients; however, the respiratory rate was elevated in 90% of the cases with available data. The common clinical syndromes documented were gastroenteritis (45%), haemorrhage (30%) and encephalopathy (15%). Of 20 cases, 12 (60%) survived, with 1 having post illness mental health complication requiring follow-up. The average duration from onset of symptoms to presentation at the ETC was 3±2 days among survivors, compared to 5±2 days for non-survivors. The mean duration from symptom onset to death or discharge from the ETC was 15±5 days for survivors and 11±2 days for non-survivors.

Sequencing data

We prepared 16 samples from 13 of the 20 confirmed cases and discharge samples for 3 of these cases. This includes case #9, which could not be confidently matched to a sample (suspected match to E030). We prepared an additional 16 samples from suspected cases where the sample could not be clearly associated with a particular case because of incomplete records. Dates and RT-qPCR results for each of these samples are reported in Supplementary Data 1. Because this table includes re-tested and discharge samples, as well as incomplete information collated many
months after the outbreak, we were not able to confirm that there were exactly 20 EVD cases in Nigeria. Following inactivation and extraction at RUN, we divided RNA from each sample into 2 aliquots for independent library preparation and sequencing at RUN and the Broad. Extracted RNA samples contained an average of 3.97×10^6 18S copies/mL (range: 3.28×10^4 – 2.31×10^7 copies/mL) as determined by qRT-PCR.

We prepared Nextera libraries for all 32 of the samples. Using the Kulesh qRT-PCR assay, we detected EBOV RNA in 18 of the 32 samples, including 2 discharge samples and 3 samples unassociated with a particular case. After library construction, we used Kulesh qPCR to detect the presence of any EBOV copies in the libraries. Based on the results, we sequenced 23 samples using a combination of the MiSeq and HiSeq 2500 platforms (Illumina). We were able to generate assembled EBOV genomes from 12 of these samples, all from confirmed EVD cases with associated case histories. We combined the MiSeq and HiSeq sequencing data from RUN and the Broad for analysis. The median sequencing coverage was 225.5x (range: 6 – 4864x) (Table 1). Although we recorded combined sequencing data, the MiSeq data from RUN separately confirmed EBOV reads in 6 of the 12 samples with assembled EBOV genomes.

Consensus and within-host variants

We identified 17 consensus-level variants (9 synonymous, 5 non-synonymous, 3 non-coding, all relative to the earliest EBOV sequence from the West African outbreak (accession number KJ660346.2)) in EBOV genomes from the 12 sequencing-positive Nigerian samples (Table 2). Variants characteristic of the LB5 (Liberia sublineage 5) (18) were shared by all Nigeria EBOV genomes.
The Nigerian EBOV genomes also shared 3 variants not common in Liberia, at positions 4037, 17016, and 18754 (Table 2). These variants were present in all Nigerian samples sequenced, including the index case (we note that 2 samples did not have coverage at position 18754). Two of these variants were unique to Nigeria, and 1, the variant at position 18754, was also seen in 2 EBOV genomes from Liberia (accession numbers: KT725314, KT725261), suggesting a close relationship of the Nigeria clade to those samples. Two Nigerian samples had unique additional consensus variants.

We also identified 31 intrahost variants (iSNVs) in 5 of the 12 EBOV genomes from Nigeria (5 synonymous, 5 non-synonymous, 5 non-coding SNPs, and 16 insertions/deletions) (Supplementary Data 2). We sequenced each of the 5 samples with iSNVs at least twice from replicate libraries, and iSNV calls were concordant between libraries. Eight of these iSNVs were shared by 2 or more samples, and 2 iSNVs (positions 7551 and 10503), both found in sample E027, were also consensus variants in sample E030. Presence and number of iSNVs found correlated roughly with sample coverage; only samples with >100x coverage had more than 1 iSNV call that passed our basic filters.

Phylogenetic tree

To better understand the evolutionary relationship between the EVD outbreak in Nigeria and the West African outbreak as a whole, we created a maximum likelihood tree (Figure 1). The tree confirms that the EVD outbreak in Nigeria was due to a single introduction from Liberia, as suggested by contact tracing. More specifically, the EBOV genomes from Nigeria are
descendants of the LB5 clade in Liberia (18). No EBOV sequences yet sampled outside Nigeria
descend from the Nigerian EBOV isolates (2,19-23), indicating containment of EVD cases in
Nigeria within the larger outbreak, as also suggested by contact tracing.

Reconstructed transmission tree

Given the phylogenetic tree of the sampled viruses, along with their dates, it is possible to infer
at least the outlines of the chain of transmission from one patient to another (Figure 2a). Ten
Nigerian EBOV have identical consensus sequences, suggesting that these sequences are closely
connected by direct transmissions. Date information identifies sample E001, the index case, as
the earliest-sampled case in Nigeria (collection date: 22 July 2014). Of the other 9 identical
genomes, 7 have collection dates from 4 August 2014 – 8 August 2014.

The close proximity of the sample collection dates to each other suggests that each of the
corresponding cases was infected by the index case (i.e. it is unlikely that an individual
presenting symptoms on 8 August 2014 would have been infected <4 days previously) (24). The
remaining 2 cases with viral genomes identical to the index case are dated 15 August and 1
September, and therefore may have been infected by one of the earlier cases. The presence of
additional SNPs in the viral genomes corresponding to cases #2 and #9 make it difficult to place
these samples within the transmission chain. However, case #6 has an iSNV at each of the 2 case
#9 SNP positions (position 7551, 21% minor allele frequency; position 10503, 16% minor allele
frequency) (Supplementary Data 2), suggesting these 2 cases are closely linked.
In the limited Nigeria EVD outbreak, it was also possible to reconstruct a nearly complete transmission chain based on contact tracing alone (Figure 2b). Such a reconstruction is feasible in this case because (i) EBOV spreads primarily through direct contact, (ii) there were few cases (multiple exposures were uncommon), and (iii) intensive efforts were made to trace and monitor all suspected contacts. The contact tracing information resulted in a transmission tree similar to that suggested by genetic data, with the index case responsible for a majority of transmissions. This data also revealed that one individual (case #18) traveled from Lagos to Port Harcourt while infected with EBOV, where he acted as the index patient in a small secondary outbreak containing 4 additional EVD cases.

Discussion

The 2014 Nigeria outbreak is unusual for an EVD outbreak in the detailed information available about its development: we have both a good reconstruction of the transmission chain of 20 patients, and viral genomic data from most of the cases in the chain. The completeness of the record reflects the public health situation: Nigeria was prepared for the arrival of EBOV, and was able to implement thorough contact tracing promptly after the index case was diagnosed, while the number of cases was still small. That effort was critical in containing the outbreak, but it is also very helpful in reconstructing its details afterward. Combined with sequence data, the transmission chain helps us interpret the changes occurring in the virus, since it generally lets us pinpoint where in the chain each new mutation actually occurred.

Viewed by itself, sequence data can serve to provide a broad picture of an outbreak, and that is true of this EVD outbreak. This capability is obviously useful when contact tracing is absent or
incomplete, as is usually the case with epidemics. In the 2014 Nigeria outbreak, sequencing alone makes it clear that the entire outbreak stemmed from a single introduction of EBOV into the country. It also places the Nigerian outbreak in its larger context, identifying a particular branch of the Liberian LB5 lineage of EBOV as the source, and showing that the Nigerian lineage did not spread into other countries.

Identifying individual links in the transmission chain is usually beyond the resolution of sequence data, however, and requires contact tracing in the field. The resolution of genomic data is limited because new variants arise less often than new cases, meaning that many cases will be genetically indistinguishable. This can be seen in our data in Figure 2a, in which multiple successive links in the chain share identical genomes. In addition, when mutations do occur, more than one can arise in a single patient, making genetic distance an imperfect guide to the number of transmission links that have occurred. Thus, most of the cases infected directly by the index patient in Nigeria had identical genomes, but one case (#4) differed by 4 mutations, even though it too resulted from a single transmission. Contact tracing (Figure 2b) — when it is available — does not suffer from such limitations.

Within-host variants (iSNVs) that are shared between patients can provide a more detailed picture of transmission routes, but our data point up some important caveats about their usefulness. First, detection of iSNVs requires deep sequencing of good quality samples, and that is not always possible: deep enough sequencing could only be achieved for two-thirds of our sequenced samples. Second, even when iSNV data is available, it may not all be meaningful. Some of the iSNVs we observed have previously been documented in unrelated datasets from...
Sierra Leone and Liberia (2,13,18); these included all 8 of the shared iSNVs. Most of our iSNVs, including most shared iSNVs, were low-frequency frameshift insertions or deletions. Because they can disrupt protein structure, they are unlikely to be transmitted. More likely, these recurrent iSNVs represent either recurring mutations in highly mutable regions of the EBOV genome, or sequencing errors, especially since many of them occur in homopolymer regions. In either case, their value for determining transmission chains is uncertain. More research is necessary to fully utilize within-host genomic data in understanding transmission, including better sequencing coverage for all samples and improved methods to identify false positives.

One aspect of our genomic data that is slightly surprising is the distribution of new variants, which is not at all uniform. Our sequenced samples include the results of 11 transmissions from the index case. Nine of these produced no new consensus SNPs, while one produced 4 new SNPs and another produced 2 (Figure 2a). This clustering of mutations in certain samples suggests the possibility that the mutation rate was not uniform across all of the cases. This is no more than a possibility, though, since the clustering is not statistically significant (p = 0.07).

Also puzzling is a pair of variants that were seen twice, once as consensus SNPs (in case #9) and once as iSNVs (in case #6). Based on sample dates and contact data, both of these cases were infected by the index patient, so presumably they inherited these variants from that patient. We do not, however, find them in the sample from the index case, either as consensus SNPs or as iSNVs, despite high sequencing depth. Nor do they appear as consensus SNPs in the other cases derived from the index, or as iSNVs in the one other case that was deeply sequenced and that was sampled around the same time as samples #6 and #9. The explanation may simply be that
the variants were present in the index but at too low a frequency for us to detect. It is also possible that their frequency changed in the index patient between the time he was sampled and transmission to the other cases, or that they differed across tissues within the patient. Better understanding of the dynamics of within-host evolution and transmission, and of our power to detect iSNVs, would help to clarify this issue.

The genomic data was invaluable in revealing what was happening to the virus during the outbreak, but it would have been even more informative had samples been of uniformly high quality. Many samples did not produce whole-genome assemblies because of poor sample quality, and a third of those that did could not be used to detect iSNVs. This highlights the importance of rapid sequencing in clinical settings during outbreaks, with well-established sample collection and processing protocols. Although at the time of the outbreak, sequencing was not yet ready on site, sequencing capability is now becoming increasingly available throughout many regions. With high-throughput deep sequencing now being routinely performed by ACEGID at RUN, high resolution pathogen information can now be generated to better understand outbreak dynamics and response, both in Nigeria and throughout West Africa.

Data handling could similarly benefit from good protocols established in advance. In the case of the data presented here, clinical and contact data were separated from sequence data, and the correspondence between the two had to be established post hoc, a process that was both laborious and uncertain. In an outbreak setting, keeping track of different kinds of data is not the highest priority, but valuable information can be lost as a result. Having a system for collecting and maintaining both clinical and laboratory data established in advance would be very helpful.
Sequence assemblies are available from GenBank and reads available from SRA, accessible under BioProject PRJNA316870.

The content of this publication does not necessarily reflect the views, policies, or official positions of the US Army.

Figure and Table Legends

Figure 1. Maximum likelihood tree. Phylogenetic analysis confirms a single introduction of EBOV into Nigeria from Liberia, and places all Nigerian sequences as descendents of Liberia sublineage 5 (LB5). Two LB5 genomes (accession numbers: KT725314 and KT725261) cluster closely with Nigerian samples due to a shared variant at position 18754.

Figure 2. Transmission tree. (a) Transmission reconstructed from EBOV genome sequence and sample dates only. Arrows indicate likely transmission; cases not connected to arrows cannot be placed within the transmission tree given the available data. (b) Transmission reconstructed from contact tracing only. Contact tracing provides more precise information, but is not always available. Samples were collected in Lagos, Nigeria unless otherwise identified. Each case is labeled with its sample collection date; cases not connected to sequenced samples are labeled with date of hospitalization. LB5: Liberia sublineage 5 reference. Samples are colored by consensus sequence; i.e. samples with identical viral genomes are similarly colored. Cases colored in grey are those for which genetic data is not available.
Table 1. Sample coverage. Percent coverage: percent of bases with ≥1x coverage. x Coverage: median depth of coverage.

Table 2. Consensus SNPs seen in Nigeria. All variants and positions are relative to the KJ660346.2 Guinea genome from early in the outbreak. The “Lineage” column indicates previously published clade-defining SNPs ancestral to the Nigeria lineage. The 3 highlighted SNVs are novel to Nigeria (with the exception of 18754, which is shared by 2 EBOV genomes from Liberia) and are shared by all Nigerian samples.

Supplementary Table 1. Clinical records for 20 Nigerian EBOV patients.

Supplementary Table 2. Additional clinical information for Nigerian EBOV patients.

Supplementary Data 1. Sample metadata.

Supplementary Data 2. Annotated intrahost variants (iSNVs).

Supplementary Data 3. GenBank accession numbers for Liberian EBOV genomes used in phylogenetic analysis.

Funding
This work was supported by grants from the United States Agency for International Development [grant number OAA-G-15-00001], the National Institutes of Health [grant...
number 5U01HG007480-02], the World Bank [ACE 019], the Bill and Melinda Gates Foundation [grant number OPP1123407], and the Howard Hughes Medical Institute [to PCS]. Sequencing and analysis work at the Broad Institute was supported by Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Grant No.:U19AI110818.

Acknowledgements

We would like to thank Mike Lin and Yifei Men at DNAnexus for their engineering work to assist with analysis of ACEGID, Redeemer’s University generated data. We also thank the management of Redeemer's University for the support provided to ACEGID staff during the 2014 EVD outbreak in Nigeria. We also thank members of the EOC in Nigeria during the outbreak. Our appreciation also goes to the Federal Government of Nigeria.

References

antiviral compounds against Lassa virus, SARS coronavirus and Ebola virus in vitro.

10. Morlan JD, Qu K, Sinicropy DV. Selective Depletion of rRNA Enables Whole

