1. REPORT DATE (DD-MM-YYYY) 17-06-2014
2. REPORT TYPE Briefing Charts
3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE
JP-8 and Other Military Fuels (2014 Update)

5a. CONTRACT NUMBER
5b. GRANT NUMBER
5c. PROGRAM ELEMENT NUMBER
5d. PROJECT NUMBER
5e. TASK NUMBER
5f. WORK UNIT NUMBER

6. AUTHOR(S)
Joel Schmitigal
Jill Bramer

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
US Army TARDEC
6501 E. 11 Mile Road
Warren, MI 48397-5000

8. PERFORMING ORGANIZATION REPORT NUMBER
24972

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)
TARDEC

11. SPONSORING/MONITORING AGENCY REPORT NUMBER
24972

12. DISTRIBUTION AVAILABILITY STATEMENT
Distribution Statement A. Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
N/A

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT Unclassified
 b. ABSTRACT Unclassified
 c. THIS PAGE Unclassified

17. LIMITATION OF ABSTRACT
 none

18. NUMBER OF PAGES
 22

19a. NAME OF RESPONSIBLE PERSON
 Joel Schmitigal

19b. TELEPHONE NUMBER (Include area code)
 586-282-4235
1. **REPORT DATE.** Full publication date, including day, month, if available. Must cite at least the year and be Year 2000 compliant, e.g., 30-06-1998; xx-08-1998; xx-xx-1998.

2. **REPORT TYPE.** State the type of report, such as final, technical, interim, memorandum, master's thesis, progress, quarterly, research, special, group study, etc.

3. **DATES COVERED.** Indicate the time during which the work was performed and the report was written, e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996; May - Nov 1998; Nov 1998.

4. **TITLE.** Enter title and subtitle with volume number and part number, if applicable. On classified documents, enter the title classification in parentheses.

5a. **CONTRACT NUMBER.** Enter all contract numbers as they appear in the report, e.g. F33615-86-C-5169.

5b. **GRANT NUMBER.** Enter all grant numbers as they appear in the report, e.g. 1F665702D1257.

5c. **PROGRAM ELEMENT NUMBER.** Enter all program element numbers as they appear in the report, e.g. AFOSR-82-1234.

5d. **PROJECT NUMBER.** Enter all project numbers as they appear in the report, e.g. 1F665702D1257; ILIR.

5e. **TASK NUMBER.** Enter all task numbers as they appear in the report, e.g. 05; RF0330201; T4112.

5f. **WORK UNIT NUMBER.** Enter all work unit numbers as they appear in the report, e.g. 001; AFAPL30480105.

6. **AUTHOR(S).** Enter name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. The form of entry is the last name, first name, middle initial, and additional qualifiers separated by commas, e.g. Smith, Richard, Jr.

7. **PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES).** Self-explanatory.

8. **PERFORMING ORGANIZATION REPORT NUMBER.** Enter all unique alphanumeric report numbers assigned by the performing organization, e.g. BRL-1234; AFWL-TR-85-4017-Vol-21-PT-2.

9. **SPONSORING/MONITORS AGENCY NAME(S) AND ADDRESS(ES).** Enter the name and address of the organization(s) financially responsible for and monitoring the work.

10. **SPONSOR/MONITOR’S ACRONYM(S).** Enter, if available, e.g. BRL, ARDEC, NADC.

11. **SPONSOR/MONITOR’S REPORT NUMBER(S).** Enter report number as assigned by the sponsoring/monitoring agency, if available, e.g. BRL-TR-829; -215.

12. **DISTRIBUTION/AVAILABILITY STATEMENT.** Use agency-mandated availability statements to indicate the public availability or distribution limitations of the report. If additional limitations/restrictions or special markings are indicated, follow agency authorization procedures, e.g. RD/FRD, PROPIN, ITAR, etc. Include copyright information.

13. **SUPPLEMENTARY NOTES.** Enter information not included elsewhere such as: prepared in cooperation with; translation of; report supersedes; old edition number, etc.

14. **ABSTRACT.** A brief (approximately 200 words) factual summary of the most significant information.

15. **SUBJECT TERMS.** Key words or phrases identifying major concepts in the report.

16. **SECURITY CLASSIFICATION.** Enter security classification in accordance with security classification regulations, e.g. U, C, S, etc. If this form contains classified information, stamp classification level on the top and bottom of this page.

17. **LIMITATION OF ABSTRACT.** This block must be completed to assign a distribution limitation to the abstract. Enter UU (Unclassified Unlimited) or SAR (Same as Report). An entry in this block is necessary if the abstract is to be limited.
JP-8 and Other Military Fuels (2014 update)

Disclaimer: Reference herein to any specific commercial company, product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the Department of the Army (DoA). The opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or the DoA, and shall not be used for advertising or product endorsement purposes.
• What is JP-8?

• Why do we use it?
Petroleum Distillation

- **Gasoline**
 - Avgas
 - Mogas
 - Avgas ~0.690 kg/L
 - Mogas ~0.740 kg/L

- **Kerosene Fuels**
 - Jet Fuels
 - No. 1 Diesel

- **No. 2 Diesel**
 - ~0.850 kg/L

http://www.energyinst.org/
• JET A - Kerosene cut of fuel normally only available in the U.S. for civil aviation use.
 - ASTM D1655
 - Freeze Point: ≤ -40ºC (-40ºF)
 - Density @15ºC: 0.775 to 0.840 kg/L
 - Flash Point: ≥ 38ºC (100ºF)
 - 8 to 16 carbon atoms per molecule

• JET A-1 - Kerosene grade cut of fuel suitable for most turbine engine aircraft. It is produced to a stringent internationally agreed standard. It is widely available outside the U.S.
 - ASTM D1655, DEF STAN 91-91
 - Freeze Point: ≤ -47ºC (-53ºF)
 - Density @15ºC: 0.775 to 0.840 kg/L
 - Flash Point: ≥ 38ºC (100ºF)
 - 8 to 16 carbon atoms per molecule
- JP-8 or NATO F-34 - Jet A-1 specification fuel containing military fuel additive package: static dissipater additive (SDA), corrosion inhibitor/lubricity improver (CI/LI), and fuel system icing inhibitor (FSII) and may contain antioxidant (AO) and metal deactivators (MDA). Single Fuel on the Battlefield used by the Army and Air Force per AR 70-12.
 - MIL-DTL-83133, DEF STAN 91-87
 - Freeze Point: \(\leq -47^\circ C \) (-52.6\(^\circ\)F)
 - Density @15\(^\circ\)C: 0.775 to 0.840 kg/L
 - Flash Point: \(\geq 38^\circ C \) (100.4\(^\circ\)F)

 - Army – No Use Policy In Effect (Fort Rucker exception)
 - USAF – Issued Discontinuation Memo on 23 May 2014
• JP-5 or NATO F-44 - Kerosene based fuel that is the primary fuel for Navy shipboard aircraft operations containing military fuel additive package: SDA, CI/LI, FSII, (AO) and (MDA).
 – MIL-DTL-5624, DEF STAN 91-86
 – Freeze Point: ≤ -46ºC (-50.8ºF)
 – Density @15ºC: 0.788 to 0.845 kg/L
 – Flash Point: ≥ 60ºC (140ºF)

• F-24 – JET A with Military Additives – In 2012, a DoD CONUS conversion to F-24 was initiated. The conversion eliminated the use of JP-8 at CONUS military installations and replaced it with F-24. The effort will reduce the DoD cost to purchase fuel and simplify the logistics of obtaining the fuel used by CONUS installations by allowing for Jet A fuel to be pulled off multiproduct pipelines; then additized at DFSPs.
 – Freeze Point: ≤ - 40ºC (-40ºF)
• Corrosion Inhibitor/Lubricity Improver (CI/LI) – Additive contains a polar group that adheres to metal surfaces, forming a thin surface film of the additive, thereby improving lubricity and inhibiting corrosion. Most CI/LI additives contain dilinoleic acid.

• Fuel System Icing Inhibitor (FSII) - FSII is chemically composed of di-ethylene glycol monomethylether (di-EGME) which contains both a hydrophobic (water hating) and hydrophilic (water loving) portion. This structure allows the molecule to be soluble in both nonpolar fuel and in highly polar water. Having a higher solubility in water the FSII works by combining with any free water that forms and lowering the freezing point of the mixture so that no ice crystals are formed. It also has bio-stat properties thus preventing bio-material from growing.
• Static Dissipater Additive (SDA) - Stadis® 450 increases the conductivity of the fuel, thereby increasing the rate of static charge dissipation.

• +100 Additive - Increases the thermal stability of the fuel by 100°F to ~425°F in an effort to prevent engine deposits caused by fuel being used as a heat sink. The additive is a combination of a dispersant, antioxidant, and metal deactivator, which prevents oxidation reactions and keeps potential insolubles in solution rather than depositing out on the engine surfaces.

 – Army NO USE POLICY - The currently used +100 additive has a Dispersant/Detergent component that affects Army fuel/water separators, increasing risk of water to enter fuel tanks. In addition, no benefit has been identified for Army systems.
 – Air Force Discontinued use as of 23 May 2014.
• Antioxidants (AO) - Required in military fuels that have hydrotreated components. Antioxidants improve storage stability by preventing the formation of peroxides, gums, and insoluble particulates. Peroxides attack elastomeric fuel system parts, gums can cause engine deposits, and insoluble particulates can cause engine wear and plug fuel filters. AOs function as hydrogen atom donors that stop the oxidation process. (F-24 is not required to have AO)

• Metal Deactivator Additive (MDA) - The only approved metal deactivator is N,N´-disalicylidene-1,2- propane diamine. Metals like copper and zinc can act as catalysts for oxidative reactions of fuel. MDA inhibits the catalytic activity of the metals by creating stable complexes with the metal ions.
• No. 2 Diesel Fuel or NATO F-54 - Middle distillate fuel used for automotive diesel and gas turbine engines.
 - ASTM D975
 - Density @15ºC: ~ 0.820 to 0.840 kg/L
 - Flash Point: ≥ 52ºC (125.6ºF)
 - 12 to 21 carbon atoms per molecule

• No. 1 Diesel Fuel or NATO F-44 - A special-purpose, light middle distillate fuel for use in diesel engine applications requiring a fuel with a volatility higher than that provided by No. 2 Diesel Fuel.
 - ASTM D975
 - Density @15ºC: ~ 0.775 to 0.840 kg/L
 - Flash Point: ≥ 38ºC (100ºF)
 - 8 to 16 carbon atoms per molecule
• **TS-1** – Wide cut kerosene fuel supplied at all airports within the former Soviet Union and in some Eastern European countries.
 - GOST 10227
 - Freeze Point: $\leq -60^{\circ}C$ ($-76^{\circ}F$)
 - Density @15$^{\circ}C$: $\geq ~0.787 \text{ kg/L}$
 - Flash Point: $\geq 28^{\circ}C$ (82.4$^{\circ}F$)

• **F-76** - Distillate fuel used in shipboard diesels, turbines, engines, and boilers, storage stability requirement of 24 months.
 - MIL-F-16884
 - Density @15$^{\circ}C$: 0.800 - 0.876kg/L
 - Flash Point: $\geq 60^{\circ}C$ (140$^{\circ}F$)
• Avgas - Aviation fuel for use in spark ignition piston-engine aircraft.
 - ASTM D910
 - Freeze Point: ≤ -58ºC (-72.4ºF),
 - Density @15ºC: 0.690 – 0.715 kg/L
 - 4 to 10 carbons per molecule.
 - Similar to Mogas except:
 • Composed of lighter distillation fractions that are more stable to oxidation
 • Lower vapor pressure than Mogas
 • Some grades still use Tetraethyl Lead additive to prevent engine knock

• Mogas - Automotive gasoline used in spark ignition engines.
 - ASTM D4814
 - Density @15ºC: 0.715 to 0.770 kg/L,
 - 4 to 12 carbons per molecule.
• JET B - A wide cut fuel covering portions of the gasoline and kerosene fractions of distillation. Used in cold climates where its better cold weather performance is required. Similar to JP-4 fuel.
 – ASTM D6615
 – Freeze Point ≤ - 50ºC (- 58ºF)
 – Density @15ºC: 0.751 to 0.802 kg/L
 – 5 to 15 carbon atoms per molecule.

• JP-4 or NATO F-40 - A distillate fuel covering the gasoline and kerosene fractions of distillation including military fuel additive package: SDA, CI/LI, FSII and may contain OA and MDA. In use by USAF from 1951 to 1996.
 – MIL-DTL-5624
 – Freeze Point: ≤ - 58ºC (-72.4ºF)
 – Density: 0.751 - 0.802 kg/L
 – 5 to 15 carbon atoms per molecule.
• F-65 - 50/50 blend of No. 2 Diesel fuel (F54) and aviation turbine fuel JP-5 or JP-8. The fuel mixture, termed “M1 fuel mix” was developed in 1981 after turbine power plant of the M1 Abrams tank experienced waxing and filterability problems in Germany. The fuel mixture reduces waxing tendency and the viscosity of the diesel fuel in cold temperature environments. This fuel has not been needed since the implementation of the Single Fuel Policy, i.e., JP-8
• 1st Generation Alternative Fuels
 – Largely made from edible sugars, starches, animal fats and vegetable oils
 – Food based crops
 – Examples: Biodiesel, Ethanol
 – Not cost competitive with fossil fuels
• 2nd Generation Alternative Fuels
 – Fischer-Tropsch Synthetic Paraffinic Kerosene (FT-SPK) and
 Hydroprocessed Esters and Fatty Acids (HEFA)
 – More highly refined or made from synthesis process to make fuel.
 • Largely made from inedible plant materials, agricultural, wood waste
 • Jatropha, switchgrass, camelina
• 3rd Generation Alternative Fuels
 – Genetically modified crops that have a carbon-neutral output
 – Must be processed using FT or HEFA process.
 – Example: Algal biofuels
• 4th Generation Alternative Fuels - ??
Biodiesel – a fuel comprised of mono-alkyl esters of long chain fatty acids derived from Vegetable oils or animal fats (Fatty Acid Methyl Esters, FAME).

- DoD NO USE POLICY in tactical equipment for B20
- ASTM D6751 – blend stock
- B5 is allowed in ASTM D975
- B6 to B20 allowed in ASTM D7467

Problems:
- Storage stability
- Material compatibility
- Cost
- Water affinity and microbial growth
CTL / GTL / BTL / CBTL: All use Fischer-Tropsch Processes

Because of the similar end-processing, FT SPK and HEFA are chemically similar blendstocks.
3rd Generation Alternative Fuels

Synthetic Biology
- Genetically Engineered Microbes
- Fermentation

Alcohol Oligomerization
- Fermentation
- Dehydration
- Olefins

Pyrolysis
- Pyrolysis
- Bio-Crude

Conventional Refinery Processes
- Polymerization
- Hydroprocessing
- Jet Fuel-Like Product

Materials:
- Sugarcane
- Switchgrass
- Corn stover
- Forest waste
- Lignocellulose

Used with permission from Mark Rumizen, FAA
• JPTS - Jet Propellant Thermally Stable is fuel specifically formulated and produced for use in the USAF U-2 aircraft.
 - MIL-DTL-25524
 - Freeze Point: \(\leq -53^\circ C\) (-63.4\(^\circ F\))
 - Flash Point: \(\geq 43^\circ C\) (109.4\(^\circ F\))

• JP-1 - First jet propellant specified by the U.S. military in 1944.
 - AN-F-32
 - Freeze Point: \(\leq -60^\circ C\) (-76\(^\circ F\)),

• JP-2 - wide cut fuel covering portions of the gasoline and kerosene fractions of distillation specified in 1945.

• JP-6 - Kerosene based fuel developed in 1956 for the XB-70 Valkyrie aircraft.
 - MIL-J-25656

• JP-7 - A fuel created from special blending stocks to create a fuel with low vapor pressure, high thermal oxidation stability, and low volatility. Developed in SR-71 Blackbird in the 1960’s.
 - MIL-DTL-38219
 - Density @15ºC: 0.935 to 0.955 kg/L
 - Freeze Point: ≤ -54ºC (-65.2ºF)
 - Flash Point: ≥ 21ºC (70ºF)

• JP-10 - A high density synthetic fuel composed entirely or nearly entirely of Exo-tetrahydrodi (cyclopentadiene) used in air launched cruise missiles.
 - Density @15ºC: 0.935 to 0.943 kg/L
 - Freeze Point: ≤ -79ºC (-110.2ºF)
 - Flash Point: ≥ 55ºC (131ºF)