Noise Propagation and Uncertainty Quantification in Hybrid Multiphysics Models

Daniel Tartakovsky
UNIVERSITY OF CALIFORNIA SAN DIEGO

06/09/2016
Final Report
Title: Noise Propagation and Uncertainty Quantification in Hybrid Multi-Physics Models
Subtitle: Initiation and Reaction Propagation in Energetic Materials

Granular energetic materials exhibit complex chaotic behavior due to the coexistence of a wide range of energy scales without scale separation. The main challenges involved in modeling the physical processes leading to initiation of explosive reactions are (i) the lack of a general model for heterogeneous granular media under compaction and (ii) the lack of a reliable multiscale discrete-to-continuum framework for describing diffusion-advection-reaction processes in heterogeneous particulate media. This heterogeneity plays a major role in stress and heat localization, which is responsible for initiating reactions in energetic materials. In particular, hot-spots emerge as a consequence of visco-plastic pore collapse, inter-granular friction, and granular compaction. We developed a number of computation tools for stochastic analysis of granular materials dynamics. These include a continuum-discrete model of heat dissipation/diffusion and a continuum-discrete model of compaction of a granular material with macro-pores. We have also proposed a class of randomly fluctuating macroscopic equations of motion for granular materials and powders.
INSTRUCTIONS FOR COMPLETING SF 298

1. REPORT DATE. Full publication date, including day, month, if available. Must cite at least the year and be Year 2000 compliant, e.g. 30-06-1998; xx-06-1998; xx-xx-1998.

2. REPORT TYPE. State the type of report, such as final, technical, interim, memorandum, master's thesis, progress, quarterly, research, special, group study, etc.

3. DATES COVERED. Indicate the time during which the work was performed and the report was written, e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996; May - Nov 1998; Nov 1998.

4. TITLE. Enter title and subtitle with volume number and part number, if applicable. On classified documents, enter the title classification in parentheses.

5a. CONTRACT NUMBER. Enter all contract numbers as they appear in the report, e.g. F33615-86-C-5169.

5b. GRANT NUMBER. Enter all grant numbers as they appear in the report, e.g. AFOSR-82-1234.

5c. PROGRAM ELEMENT NUMBER. Enter all program element numbers as they appear in the report, e.g. 61101A.

5d. PROJECT NUMBER. Enter all project numbers as they appear in the report, e.g. 1F665702D1257; ILIR.

5e. TASK NUMBER. Enter all task numbers as they appear in the report, e.g. 05; RF0330201; T4112.

5f. WORK UNIT NUMBER. Enter all work unit numbers as they appear in the report, e.g. 001; AFAPL30480105.

6. AUTHOR(S). Enter name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. The form of entry is the last name, first name, middle initial, and additional qualifiers separated by commas, e.g. Smith, Richard, J, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES). Self-explanatory.

8. PERFORMING ORGANIZATION REPORT NUMBER. Enter all unique alphanumeric report numbers assigned by the performing organization, e.g. BRL-1234; AFWL-TR-85-4017-Vol-21-PT-2.

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES). Enter the name and address of the organization(s) financially responsible for and monitoring the work.

10. SPONSOR/MONITOR'S ACRONYM(S). Enter, if available, e.g. BRL, ARDEC, NADC.

11. SPONSOR/MONITOR'S REPORT NUMBER(S). Enter report number as assigned by the sponsoring/monitoring agency, if available, e.g. BRL-TR-829; -215.

12. DISTRIBUTION/AVAILABILITY STATEMENT. Use agency-mandated availability statements to indicate the public availability or distribution limitations of the report. If additional limitations/ restrictions or special markings are indicated, follow agency authorization procedures, e.g. RD/FRD, PROPIN, ITAR, etc. Include copyright information.

13. SUPPLEMENTARY NOTES. Enter information not included elsewhere such as: prepared in cooperation with; translation of; report supersedes; old edition number, etc.

14. ABSTRACT. A brief (approximately 200 words) factual summary of the most significant information.

15. SUBJECT TERMS. Key words or phrases identifying major concepts in the report.

16. SECURITY CLASSIFICATION. Enter security classification in accordance with security classification regulations, e.g. U, C, S, etc. If this form contains classified information, stamp classification level on the top and bottom of this page.

17. LIMITATION OF ABSTRACT. This block must be completed to assign a distribution limitation to the abstract. Enter UU (Unclassified Unlimited) or SAR (Same as Report). An entry in this block is necessary if the abstract is to be limited.
Final Progress Report

Title: Noise Propagation and Uncertainty Quantification in Hybrid Multi-Physics Models

Task: Initiation and Reaction Propagation in Energetic Materials

AFOSR award: FA9550-12-1-0185

Program Manager: Dr. Jennifer L. Jordan, Dynamic Materials and Interactions Program

PI: Prof. Daniel M. Tartakovsky, University of California, San Diego

Date of the report: 5/23/2016

1 Accomplishments supported by the grant

The following manuscripts have been co-authored by the members of our research team (D. M. Tartakovsky, J. Bakarji, K. Zamani, A. Pigarov) with financial support from AFOSR.

2 Technical accomplishments

Granular energetic materials exhibit complex chaotic behavior due to the coexistence of a wide range of energy scales without scale separation. The main challenges involved in modeling the physical processes leading to initiation of explosive reactions are (i) the lack of a general model for heterogeneous granular media under compaction and (ii) the lack of a reliable multi-scale discrete-to-continuum framework for describing diffusion-advection-reaction processes in complex particulate media. Most conventional methods for studying visco-plastic deformations of granular media under shear and compression in ideal conditions overlook the effect of spatial heterogeneity in granular structure. This heterogeneity is believed to play a major role in stress and heat localization events responsible for initiating reactions in energetic materials. In particular, it has been observed that so-called “hot-spots” emerge as a consequence of visco-plastic pore collapse, inter-granular friction, and granular compaction. The wide range in stress,
strain, and dissipation found in energetic materials magnify the multiscale behavior of the system. That is, microscopic events invariably affect the macroscopic behavior of the system and cannot be neglected, yet are also impossible to predict deterministically. Specifically, macroscopic stress boundary conditions induce heterogeneous deformations at the grain level which causes friction and grain deformations at the microscopic level. This generates thermal fluctuations and chemical reactions at the molecular level, which in turn builds up a shock wave whose power is several orders of magnitude higher than the initial conditions.

During the two years of this project we investigated two of the processes in Figure 1: multiscale diffusion / heat transfer and multiscale dynamics of granular materials.

2.1 Hybrid Discrete-Continuum Models of Heat Dissipation

Efficient coupling of continuum (deterministic or stochastic) constitutive solvers with their discrete (stochastic, particle-based) counterparts is a common challenge in hybrid and multiphysics simulations. We [Bakarji and Tartakovsky, 2016] studied interfacial, tightly coupled simulations of diffusion that combine continuum and particle-based solvers. The latter employed the reverse Brownian motion (rBm), a Monte Carlo approach that allows one to enforce inhomogeneous Dirichlet, Neumann, or Robin boundary conditions and is trivially parallelizable. In Brownian motion, a particle’s trajectory $X(t)$ evolves in time according to a stochastic differential equation $dX(t) = \sqrt{2\alpha_d} dW(t)$ where α_d is a diffusion coefficient, and $dW(t) \sim \mathcal{N}(0, dt)$ is a d-dimensional Wiener process. Our Monte Carlo simulations used the rBm implementation, in which individual trajectories of N_{MC} particles released at point x at time t satisfy $X(t - \Delta t_d) = X(t) - \sqrt{2\alpha_d} \mathcal{N}(0, \Delta t_d)$. Given an initial condition $u_{in}(x)$, and the functions $u_D(x, t)$ and $J_N(x, t)$ prescribed respectively on the Dirichlet and Neumann boundary conditions, the sample mean temperature $\hat{u}_d(x, t)$ at space-time point (x, t) is computed as a weighted sum

$$\hat{u}_d(x, t) = \frac{N_{in}}{N_{MC}} S_{in} + \frac{N_D}{N_{MC}} S_D + \frac{N_N}{N_{MC}} S_N$$

of sample averages of the initial and boundary functions, $u_{in}[X_i(0)]$, $u_D[X_i(t - T_i), t - T_i]$ and $J_N[X_i(t - T_{i,j}), t - T_{i,j}]$. Here N_{in}, N_D and N_N are the numbers of particles that reached the initial state and the boundaries, respectively; and T_i is the ith particle’s exit time.

We developed a number of numerical approaches for improving the accuracy of rBm in the presence of inhomogeneous Neumann boundary condition and alternative strategies for coupling the rBm solver with its continuum counterpart. Numerical experiments were used to investigate the convergence, stability, and computational efficiency of the proposed hybrid algorithm. Our analysis revealed that the use of Monte Carlo simulations based on the reverse Brownian motion (rBm) in the context of discrete-to-continuum hybrid simulations has a number of advantages. These include

1. the ability to use very large hybrid time step Δt_h without compromising accuracy,
2. the ability to compute the solution only near the boundaries to ensure the continuity of the flux in the hybrid method,
3. the ability to use the continuum domain as a deterministic source of Dirichlet, Neumann and initial boundary conditions for the rBm, and therefore

4. a controllable loss of accuracy given a flexible choice of N_{MC} at every location in the particle domain.

Our hybrid algorithm is easy to implement in any number of dimensions. Furthermore, extending the hybrid model to advection-diffusion equations is relatively straightforward.

2.2 Hybrid Discrete-Continuum Models of Compaction of Granular Materials

Given a force applied to the top of a cylinder filled with monodisperse granular medium with spherical metal beads (Figure 2), find the height of the top lid $h(t)$ as a function of time. The particles are assumed to be formed of a deformable and incompressible metal (e.g., aluminum). The pressure P on the top is assumed to be constant. It is expected that the presence of a large pore will induce more compactions, i.e., $h_{pore} < h_{hom}$. We estimated the height of the lid in the presence of a macro-pore as compared to the case without macro-pores. More specifically, we studied the effects of heterogeneity by using a local model for pore collapse in a granular medium.

![Figure 2: A physical system (left) and its hybrid model (right).](image_url)

A discrete representation of a granular material’s dynamics was based on the Carroll-Holt (CH) model, which is an axisymmetric elasto-plastic model of the collapse of an incompressible metallic shell. We used the modified CH model that introduces a restriction on the extent to which the pore can collapse, avoiding singularity at its center. While using this model, the coupling has to be done in a way that transforms the compressible shell of the actual case into an incompressible shell.
We used the non-linear viscous model of Skorokhod and Olevsky as a continuum (macroscopic) description of granular compaction. The model posits that stress (σ_{ij}) depends on strain rate ($\dot{\varepsilon}_{ij}$), and that bulk (ϕ) and shear (ψ) moduli depend on porosity (θ):

$$\sigma_{ij} = \frac{\sigma(W)}{W} \left[\phi(\theta)\dot{\varepsilon}_{ij} + \left(\phi(\theta) - \frac{1}{3}\psi(\theta) \right) \dot{\varepsilon}_{ij} \right], \quad \dot{\varepsilon} \equiv \frac{\partial \mathbf{u}_i}{\partial x_i} \quad (2)$$

where δ_{ij} is the Kronecker delta function; and

$$\phi = \phi_s (1 - \theta)^2 \quad \psi = \frac{2}{3} \psi_s \frac{(1 - \theta)^3}{\theta} \quad (3)$$

In the linear-viscous case, $\sigma(W) = \eta_0 W$; in the perfectly plastic case, $\sigma(W) = \sigma_y$, where $W = \sqrt{(1 - \theta)/[\phi(\theta)\dot{\varepsilon}^2 + \psi(\theta)\ddot{\varepsilon}^2]}$ and $\dot{\varepsilon} = \sqrt{\dot{\varepsilon}^2}$. The continuity equation reduces to $\dot{\varepsilon} = \dot{\theta}/(1 - \theta)$. These constitutive equations were then used in the Cauchy equation of motion.

These two levels of description were combined in a globally energy-conserving hybrid model, whose schematic representation is provided in Figure 3.

![Figure 3: Coupling algorithm for hybrid simulations.](image)

This hybrid model was first used to simulate compaction of a granular material with incompressible matrix. In this case, compression is only due to the macropores and the
stress distribution around the pores can be deduced by assuming the pores to be in an infinite medium (compared to the whole domain). Figure 4a shows the combined effect of multiple macropores using a superposition of Carroll-Holt models with different radii and surface stresses. This gives an idea on what to expect in the difference between a homogeneous and heterogeneous compaction.

Assuming a linear-viscous continuum model for the matrix, we explored the dependence of the height of the lid \(h(t) \) as a function of viscosity. Figure 4b shows a range of viscosity of one order of magnitude.

2.3 Fluctuating Macroscopic Models

Inspired by fluctuating Navier-Stokes equations of hydrodynamics, we explored ways to model unresolved micro-scales, e.g., heterogeneity due to macropores, as a random source in the Cauchy equation of motion,

\[
\rho \frac{Du}{Dt} = \nabla \cdot \sigma + I p f(x, t)
\]

where \(\rho \) is the density, \(u \) is the velocity at point \(x \) and time \(t \), and the stress tensor \(\sigma \) is related to the strain rate \(\dot{\epsilon} \) by a constitutive law, e.g., by the Skorokhod-Olevsky relation (2).

The (possibly random) indicator function \(I p(x) \) for a macropore region \(\Omega_p(t) \) is defined as \(I_p = 1 \) if \(x \in \Omega_p \) and = 0 otherwise. The macropore region \(\Omega_p(t) \) is a multi-connected domain comprising multiple macropores, which can be randomly distributed throughout the material. The random source vector \(f(x, t) \) is treated as zero-mean white noise, \(\mathbb{E}[f(x, t)] = 0, \mathbb{E}[f_i(x, t) f_j(y, \tau)] = v_i^2 \delta(x - y) \delta(t - \tau) \) where \(v_i^2 \) is the variance of the \(i \)th component of the noise and \(\delta(\cdot) \) is the Dirac delta function. Figure 5 exhibits an average velocity distribution within the granular material undergoing slow compaction, for the case of a single macropore and given noise strength \(v_i^2 \).

![Figure 5: Average velocity distribution within the granular material undergoing compaction.](image)

Our still elusive goal is to relate the variance \(v_i^2 \) to material properties, e.g., grain-size distribution, via the fluctuation-dissipation theorem.
1. Report Type
Final Report

Primary Contact E-mail
Contact email if there is a problem with the report.
dmt@ucsd.edu

Primary Contact Phone Number
Contact phone number if there is a problem with the report
858-534-1375

Organization / Institution name
University of California, San Diego

Grant/Contract Title
The full title of the funded effort.
Noise Propagation and Uncertainty Quantification in Hybrid Multiphysics Models

Grant/Contract Number
AFOSR assigned control number. It must begin with "FA9550" or "F49620" or "FA2386".
FA9550-12-1-0185

Principal Investigator Name
The full name of the principal investigator on the grant or contract.
Daniel M. Tartakovsky

Program Manager
The AFOSR Program Manager currently assigned to the award
Jennifer Jordan

Reporting Period Start Date
06/01/2014

Reporting Period End Date
05/31/2016

Abstract
Granular energetic materials exhibit complex chaotic behavior due to the coexistence of a wide range of energy scales without scale separation. The main challenges involved in modeling the physical processes leading to initiation of explosive reactions are (i) the lack of a general model for heterogeneous granular media under compaction and (ii) the lack of a reliable multiscale discrete-to-continuum framework for describing diffusion-advection-reaction processes in heterogeneous particulate media. This heterogeneity plays a major role in stress and heat localization, which is responsible for initiating reactions in energetic materials. In particular, hot-spots emerge as a consequence of visco-plastic pore collapse, inter-granular friction, and granular compaction. We developed a number of computation tools for stochastic analysis of granular materials dynamics. These include a continuum-discrete model of heat dissipation/diffusion and a continuum-discrete model of compaction of a granular material with macro-pores. We have also proposed a class of randomly fluctuating macroscopic equations of motion for granular materials and powders.

Distribution Statement
This is block 12 on the SF298 form.
Distribution A - Approved for Public Release

Explanation for Distribution Statement
If this is not approved for public release, please provide a short explanation. E.g., contains proprietary information.

SF298 Form
Please attach your SF298 form. A blank SF298 can be found here. Please do not password protect or secure the PDF. The maximum file size for an SF298 is 50MB.

SF298.pdf

Upload the Report Document. File must be a PDF. Please do not password protect or secure the PDF. The maximum file size for the Report Document is 50MB.

progress2016final.pdf

Upload a Report Document, if any. The maximum file size for the Report Document is 50MB.

Archival Publications (published) during reporting period:

18. New discoveries, inventions, or patent disclosures:
Do you have any discoveries, inventions, or patent disclosures to report for this period?

Please describe and include any notable dates

Do you plan to pursue a claim for personal or organizational intellectual property?

Changes in research objectives (if any):

None

Change in AFOSR Program Manager, if any:

None

Extensions granted or milestones slipped, if any:

None

AFOSR LRIR Number

LRIR Title

Reporting Period

Laboratory Task Manager

Program Officer

Research Objectives

Technical Summary

Funding Summary by Cost Category (by FY, $K)

<table>
<thead>
<tr>
<th></th>
<th>Starting FY</th>
<th>FY+1</th>
<th>FY+2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment/Facilities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Report Document

Report Document - Text Analysis

Report Document - Text Analysis

Appendix Documents

2. Thank You

E-mail user

May 26, 2016 16:02:13 Success: Email Sent to: dmt@ucsd.edu