Award Number: W81XWH-10-1-0951

TITLE: Effect of Teriparatide, Vibration and the Combination on Bone Mass and Bone Architecture in Chronic Spinal Cord Injury

PRINCIPAL INVESTIGATOR: Thomas J. Schnitzer, MD, PhD

CONTRACTING ORGANIZATION: Northwestern University
Evanston, IL 60208

REPORT DATE: December 2015

TYPE OF REPORT: Final Report

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT:

☑ Approved for public release; distribution unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
1. REPORT DATE (DD-MM-YYYY)
December 2015

2. REPORT TYPE
Final Report

3. DATES COVERED (From - To)
27 Sep 2010 - 26 Sep 2015

4. TITLE AND SUBTITLE
Effect of Teriparatide, Vibration and the Combination on Bone Mass and Bone Architecture in Chronic Spinal Cord Injury

6. AUTHOR(S)
Thomas J. Schnitzer, MD, PhD

email: tjs@northwestern.edu

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Northwestern University
633 Clark St.
Evanston, IL 60208-0001

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
US Army Medical Research and Materiel Command
Fort Detrick, MD 21702-5012

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

14. ABSTRACT
Severe bone loss commonly occurs in individuals with chronic spinal cord injury who are non-weight-bearing and leads to an increased risk of lower extremity fractures. This 12 month, multi-site, double-blind, randomized, placebo-controlled study evaluates the efficacy and safety of two interventions known to be anabolic to bone, parathyroid hormone and mechanical loading (provided as teriparatide and vibration, respectively) in 60 SCI individuals with low bone mass. 56 out of 60 participants (retention rate of 93%) completed the initial treatment period (1 year); 24 of 25 participants who elected to enter a 1 year open-label extension of teriparatide therapy have recently completed. No safety issues have arisen during the course of the study. The data from the first year of treatment show no statistically significant difference among the 3 treatment groups in bone density or bone strength despite bone marker data demonstrating a metabolic response to teriparatide but not to vibration alone. Results from the second year of treatment are not yet available.

15. SUBJECT TERMS
Spinal cord injury, bone density, osteoporosis, teriparatide, vibration

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
51

19. NAME OF RESPONSIBLE PERSON

USAMRMC

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>4</td>
</tr>
<tr>
<td>2. Keywords</td>
<td>4</td>
</tr>
<tr>
<td>3. Overall Project Summary</td>
<td>4</td>
</tr>
<tr>
<td>4. Key Research Accomplishments</td>
<td>10</td>
</tr>
<tr>
<td>5. Conclusion</td>
<td>11</td>
</tr>
<tr>
<td>7. Inventions, Patents and Licenses</td>
<td>13</td>
</tr>
<tr>
<td>8. Reportable Outcomes</td>
<td>13</td>
</tr>
<tr>
<td>9. Other Achievements</td>
<td>13</td>
</tr>
<tr>
<td>10. References</td>
<td>14</td>
</tr>
<tr>
<td>11. Appendices</td>
<td>15</td>
</tr>
</tbody>
</table>
INTRODUCTION:

Acute spinal cord injury (SCI) is associated with subsequent rapid and profound bone loss, particularly in the lower extremities of individuals who are not weight-bearing.[1, 2] Bone loss continues at an accelerated rate for the next 2-5 years and then a new steady-state is reached for bone turnover with stable but markedly reduced (50%-70%) bone mass in the distal femur and proximal tibia.[3] This reduced bone mass results in a documented increase in risk for lower extremity fracture and an associated increase in morbidity and health care costs in this population.[4-6] Currently, few people with SCI are being treated, one argument being that treatment is not effective and fractures are not disabling in a non-ambulatory population. Because of the magnitude of the bone loss in chronic SCI and the fact that enhanced bone resorption is not the primary problem in maintaining bone loss in chronic SCI, the focus for increasing bone mass needs to be on anabolic agents. Parathyroid hormone, when given on an intermittent basis, is an agent that is markedly anabolic and has been shown to be effective in able-bodied individuals in increasing bone mass, bone quality and preventing fractures[7-9], but has not been studied in chronic SCI. In animal studies, PTH increases bone mass in models of disuse-mediated bone loss, a condition similar to that of SCI in man[10, 11]. Furthermore, PTH efficacy has been shown to be enhanced, in a synergistic manner, when combined with mechanical loading under these conditions[12-14]. Thus, an approach that utilizes both of these anabolic modalities in chronic SCI would provide the optimal opportunity to see an increase in bone mass. Mechanical loading in people with SCI is difficult to achieve due to their limited ability to bear weight, but application of vibrational forces to deliver mechanical loads have been shown to be an anabolic bone stimulus, effective in increasing bone mass in animals and man[15-17]. Thus, we proposed to investigate PTH, in the form of teriparatide, the commercially available product, and directed vibration to assess their ability to increase bone mass in individuals with SCI.

KEYWORDS: spinal cord injury, bone loss, bone mass, bone strength, osteoporosis, teriparatide, mechanical vibration

OVERALL PROJECT SUMMARY:

Study Aims:

AIM 1: To determine if a potent anabolic agent, PTH, provided as teriparatide, and mechanical loading, provided by means of vibration, alone or together will increase bone mass after 12 months of treatment in people with chronic SCI and lower extremity bone loss.

AIM 2: To evaluate the effects of teriparatide and vibration, individually and together, on bone microarchitectural parameters in people with chronic SCI and bone loss.

AIM 3: To evaluate the mechanism by which teriparatide and vibration, individually and together, affect bone metabolism by measuring markers of bone metabolism in patients with chronic SCI.

Study Design:

This study evaluates the ability of two interventions, parathyroid hormone and mechanical loading, separately and together, to increase bone mass in individuals with chronic SCI and low bone mass. These interventions have previously been shown to be effective in increasing bone mass and decreasing fractures in non-disabled populations of men and post-menopausal women but have not been examined in individuals with SCI. In this three-arm, modified factorial design, double-blind, placebo-controlled study, 60 people with chronic SCI received daily teriparatide and mechanical vibration. Assessment of bone mass (by DXA scanning and quantitative computed tomography and bone metabolism (by serum
bone markers) has been undertaken at baseline and at regular intervals during one year of treatment to permit evaluation of the efficacy of these interventions. A one year open-label extension was offered to all participants completing the study during which treatment with daily teriparatide and mechanical vibration occurred. The same outcome measures were assessed every 6 months during this second treatment period. Subjects completing the second year of teriparatide were given the opportunity to enroll in a final year of oral alendronate 70mg weekly with outcome measures again measured each 6 months.

Study Results: Demographics and baseline clinical data

61 participants were randomized (50 at the Northwestern/RIC site and 11 at the Hines VA site) and 60 received study intervention (49 at the Northwestern/RIC site and 11 at the Hines VA site) at two sites in this clinical study. 56 participants were able to be evaluated at 12 months (93% retention), with 4 participants lost to follow-up (see appendix B). The group was predominantly male (82%), with an even mix of Caucasian and African-Americans. Mean age was 45.7 years.

Table 1. Demographic and baseline clinical data

<table>
<thead>
<tr>
<th>Demographic Data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Age (yr, SD)</td>
<td>45.7 ± 16.7</td>
</tr>
<tr>
<td>Sex</td>
<td>49M/11F</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>48 Not Hispanic or Latino, 12 Hispanic or Latino</td>
</tr>
<tr>
<td></td>
<td>29 White, 28 Black,</td>
</tr>
<tr>
<td>Race</td>
<td>2 Native Hawaiian/Other, 1 Asian</td>
</tr>
<tr>
<td>BMI</td>
<td>24.9 ± 6.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical Descriptors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Time post-SCI (yr, SD)</td>
<td>18.9 ± 13.8</td>
</tr>
<tr>
<td>Injury Level (cervical/thoracic/lumbar)</td>
<td>19 C/39 Th/ 2 L</td>
</tr>
<tr>
<td>Motor Complete/Incomplete</td>
<td>46 Complete/14 Incomplete</td>
</tr>
</tbody>
</table>

Study Results: Changes in bone mass (DXA-determined BMD) after 12 months

After one year of treatment with teriparatide plus vibration, teriparatide alone and vibration alone, there was a statistically significant increase (p < 0.05) from baseline in the DXA-determined BMD at the lumbar spine in the groups receiving teriparatide whereas the vibration group alone showed no increase. The differences in BMD at the spine at one year between the teriparatide alone group and the teriparatide plus vibration group compared to the vibration group alone approached but did not reach statistical significance (p =0.08 for both). BMD at the spine increased in a linear manner over time (Figure 1). At the hip, there was an apparent small increase in BMD in the groups receiving teriparatide at 6 months which showed no further increase with additional treatment. The group receiving vibration alone showed a small non-significant decrease in BMD at 6 months which returned to baseline values by 12 months. At the 12 month time point, there was no significant difference between any of the groups, and no significant change from baseline in BMD (Table 2). Similar findings were observed by DXA at the knee skeletal sites (distal femur, proximal tibia).
Figure 1: BMD change (mean±SE) over time at the spine and hip

![Graph showing BMD change over time at the spine and hip.](image)

Table 2: BMD change over time at the spine and hip

<table>
<thead>
<tr>
<th></th>
<th>Δ Spine BMD</th>
<th></th>
<th>Δ Hip BMD</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 mo</td>
<td>6 mo</td>
<td>12 mo</td>
<td>3 mo</td>
</tr>
<tr>
<td>PTH</td>
<td>2.9%</td>
<td>4.0%</td>
<td>6.3%</td>
<td>0.2%</td>
</tr>
<tr>
<td>PTH+vibration</td>
<td>1.9%</td>
<td>3.1%</td>
<td>5.2%</td>
<td>1.1%</td>
</tr>
<tr>
<td>Vibration</td>
<td>0.5%</td>
<td>1.4%</td>
<td>1.6%</td>
<td>-0.3%</td>
</tr>
</tbody>
</table>

Study Results: Changes in integral, trabecular, and cortical bone mass at the knee over 12 months (CT)

CT evaluation of bone at the knee demonstrated no significant changes in integral (Figure 2), trabecular (Figure 3), or cortical (Figure 4) bone mineral content over the 12 months of treatment in any group (see Appendix C for description of methodology). There was considerable variability in the measurements but no trend for change.

Figure 2. Absolute change in integral bone mineral content over time.
Figure 3. Absolute change in trabecular bone mineral content over time.

Figure 4. Absolute change in cortical bone mineral content over time.

Study Results: Changes in DXA-determined BMD at the distal femur and proximal tibia
Measurements of BMD by DXA at the distal femur and proximal tibia (Fig. 5) showed relatively small changes over time. There was a great deal of variability in these measurements and no statistically significant difference at any time points. There may be slight suggestion of an effect by PTH+vibration, particularly after 6 months, but the variability in these measures makes it difficult to have confidence that any real differences were seen.

Figure 5: DXA BMD change (mean±SE) over time at the distal femur and proximal tibia
Study Results: Changes in serum levels of bone markers over 12 months

In the groups receiving teriparatide, there was a rapid and significant increase from baseline in the median serum levels of markers of both P1NP and CTX, markers of bone formation and resorption. In the group receiving vibration alone there was no significant change. Changes in BSAP were less marked than those seen for P1NP but were directionally similar and paralleled the differences in group changes seen with the other markers. In the groups receiving teriparatide, the increase in the bone formation marker P1NP was greatest in the first 3-6 months and then decreased by 12 months whereas the bone resorption marker CTX tended to remain elevated throughout (see Fig.6).

![Figure 6. Change in serum markers (mean±SE) of bone metabolism over time](image)

Study Results: Changes in BMD, integral and trabecular bone density and serum levels of bone markers between 12 and 24 months

The database for these data points is being cleaned and serum sample results are pending. Analyses will be completed in the coming months.
Study Results: Safety

Safety was assessed by open-ended interviews of subjects at each contact, which included all clinic visits and when contact was made by telephone. Adverse event reporting was done based on GCP guidelines. A medical monitor reviewed all adverse events and regularly scheduled data safety monitoring meetings occurred. These were scheduled for every 6 months but increased in frequency during the course of the trial due to the report of a number of fractures. Upon blinded review, the fracture incidence appeared to be similar in all 3 treatment groups. Fracture incidence declined during the remainder of the study. No other adverse events were reported at rates greater than what would be expected in this population.

KEY RESEARCH ACCOMPLISHMENTS:

- 56 participants of 60 who were originally randomized and treated were followed for the full year of treatment. Retention rate was 93%.
- Teriparatide administration at 20 ug/day for 12 months results in a significant increase in BMD measured by DXA at the spine in individuals after SCI.
- Teriparatide has no clinically or statistically significant effect on BMD measured by DXA or CT at the hip or the knee after 12 months’ treatment.
- Individuals receiving teriparatide demonstrated a biologic response to teriparatide treatment as serum levels of anabolic and catabolic bone markers, P1NP and CTX respectively, were elevated with teriparatide treatment.
- Vibration treatment has no effect alone, or with teriparatide, on bone response determined by either measurement of BMD by DXA or CT or on serum levels of bone markers.
- No safety issues were identified in any of the treatment groups.
CONCLUSION:

Teriparatide, a potent bone anabolic agent, did increase bone density at the spine in individuals after SCI. However, at other skeletal sites, particularly the hip and knee, there was no effect of treatment with teriparatide, vibration or the combination on bone density, measured by DXA or CT. These latter skeletal sites are clinically the most important as fractures are most prevalent at these areas in individuals with SCI. The fact that serum levels of bone markers responded to teriparatide treatment demonstrates that this treatment did result in a biologic effect (also evident at the spine) but that this response either was not occurring or was not detectable at other skeletal sites. Vibration alone, or in combination with teriparatide, did not result in any additional change in bone density or in serum markers of bone metabolism, supporting the fact that it was not effective in this setting.

The failure to detect a response to teriparatide is disappointing but not surprising, given the fact that response to PTH is known to be highly dependent on normal bone loading which was absent in these participants.[12-14] Vibration treatment was not able to substitute for normal mechanical loading in this setting. Additionally, it should be noted that teriparatide alone after 12 months may not result in a measurable increase in hip BMD, even in able-bodied osteoporotic individuals[18], and hence the effects that were seen in this study are completely consistent with a biologic response to teriparatide, but without detectable change in BMD at the hip. Changes in BMD at the knee, including both trabecular and cortical areas, were not evident but the sensitivity of the CT measurement may not have been adequate to detect small changes. What is clear is that there were no major changes – similar in magnitude to those seen at the spine – evident at the knee in these participants.

The optimal period of time to treat participants with teriparatide is not known. Teriparatide is approved for 2 years of treatment, and additional increases in BMD may occur with further use[19]. Thus, an extension study was initiated to determine whether a second year of teriparatide treatment, followed by a year of alendronate therapy, could have a greater magnitude of effect at these skeletal sites. This study is currently still active and results are not yet available.
PUBLICATIONS, ABSTRACTS AND PRESENTATIONS:

Publications (to date)

Published Abstracts

Conference Presentations

INVENTIONS, PATENTS AND LICENSES:
Nothing to report.

REPORTABLE OUTCOMES:
Nothing to report.

OTHER ACHIEVEMENTS:
Nothing to report.
REFERENCES:

APPENDICES:

Appendix A. List of personnel receiving salary
Appendix B. Reasons for Loss to Follow-Up
Appendix C. Methodology for DXA and CT acquisition and analysis and quantitation of bone markers
Appendix D. Copies of abstracts and publications
Appendix A. List of personnel receiving salary

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barkema,Danielle Deone</td>
<td>Research Project Coordinator</td>
</tr>
<tr>
<td>Chen, David</td>
<td>Co-Investigator</td>
</tr>
<tr>
<td>Edwards, W. Brent</td>
<td>Co-Investigator</td>
</tr>
<tr>
<td>Gordon,Keith Edward</td>
<td>Co-Investigator</td>
</tr>
<tr>
<td>Griffith,James W</td>
<td>Statistician</td>
</tr>
<tr>
<td>Hauber,Sara</td>
<td>Research Project Manager</td>
</tr>
<tr>
<td>Herrmann,Kristina Marie</td>
<td>Research Technologist 1</td>
</tr>
<tr>
<td>Lange,Amy Marie</td>
<td>Clinical Research Nurse</td>
</tr>
<tr>
<td>Leslie, AnJelique</td>
<td>Research Coordinator</td>
</tr>
<tr>
<td>Lipowski,Meghan Ruth</td>
<td>Research Project Coordinator</td>
</tr>
<tr>
<td>Marks,Julia Ann</td>
<td>Research Project Coordinator</td>
</tr>
<tr>
<td>McPherson,Jacob G</td>
<td>Post-Doctoral Fellow</td>
</tr>
<tr>
<td>Nigg,Narina Simonian</td>
<td>Coord Clinical Research 3</td>
</tr>
<tr>
<td>Odle, Cheryl</td>
<td>Research Coordinator</td>
</tr>
<tr>
<td>Padalabalanarayanan,Sangeetha</td>
<td>Research Project Coordinator</td>
</tr>
<tr>
<td>Parachuri, Rama</td>
<td>Co-Investigator</td>
</tr>
<tr>
<td>Roth,Elliot J</td>
<td>Clinical Monitor</td>
</tr>
<tr>
<td>Schnitzer,Thomas J</td>
<td>Principal Investigator</td>
</tr>
<tr>
<td>Stephens,Bernard Lonnelle</td>
<td>Recruitment Specialist</td>
</tr>
<tr>
<td>Troy, Karen</td>
<td>Co-Investigator</td>
</tr>
<tr>
<td>Yeasted,Renita Evonne</td>
<td>Research Project Manager</td>
</tr>
</tbody>
</table>
Appendix B. Reasons for Loss to Follow-Up

002 - Subject withdrew from study around 3 month visit due to difficulty commuting to site (lived a couple of hours away). Multiple attempts were made to schedule subject for final study visit; however, visit was never completed.

049 - Subject stopped returning phone calls after 9 month visit. Multiple attempts were made to schedule subject for final study visit; however, visit was never completed.

059 - Subject stopped study treatment around 6 month visit. Multiple attempts were made to reach the subject and schedule subject for final study visit; however, visit was never completed.

075 - Subject stopped study drug shortly after 3 month visit due to complicated health status and family matters. Multiple attempts were made to schedule subject for final study visit; however, visit was never completed.
Appendix C. Methodology for DXA and CT acquisition and analysis and quantitation of bone markers

DXA Acquisition and Analysis
The DXA scans were performed using a Hologic QDR 4500A (Hologic, Waltham, MA, USA); standard acquisition and analysis protocols were used to quantify areal bone mineral density (aBMD) of spine, femoral neck and total proximal femur regions bilaterally. For knee aBMD acquisition, a modified forearm algorithm was elected for scan acquisition, with the imaging field comprising the distal 2/3 of the femur and the proximal 1/3 of the tibia. The distal femur was divided into 2 regions for analysis, the femoral epiphysis (R1) and the metaphysis (R2) with a separate region of interest for the proximal tibia (R3) as described in a previous publication. During scans, participants were placed in a supine position and the lower limb was stabilized in full extension. When possible, duplicate scans were obtained. We performed calibrations of the machine prior to each subject visit using a spine phantom, air scans and tissue bar scans. The day-to-day coefficient of variation (CV) of the spine phantom over the testing period was 0.387% (n=315). The precision of the DXA measurements at the distal femur epiphysis, distal femur metaphysis and the proximal tibia has been previously published, with the root-mean-square (RMS) CV being 3.12%, 4.70% and 3.40%, respectively. If heterotopic ossification was visualized within the region of interest, data from that skeletal site was not utilized. Similarly, regions of interest containing metallic objects were also excluded.

CT Acquisition
Computed tomography data were acquired for the non-dominant knee (i.e., contralateral to hand dominance) of each participant using a scan length that captured the proximal most 15 cm of the tibia. The CT scans were performed using a Sensation 64 Cardiac Scanner (Siemens Medical Systems, Forchheim, Germany) with acquisition settings of 120 kVp and 200 mAs. Images were reconstructed with a slice thickness of 1 mm and an in-plane pixel resolution of 0.352 mm. All scans included a phantom in the field of view with known calcium hydroxyapatite concentrations (QRM, Moehrendorf, Germany).

QCT mineral analysis
QCT mineral analysis of the proximal tibia was performed using established protocols. Briefly, CT data were imported to Mimics (Materialise, Leuven, Belgium) where images were re-aligned so that the axial direction corresponded to the long axis of the tibia; the mediolateral axis was defined by a line passing through the medial and lateral condyles of the tibia and the anterioposterior axis was oriented orthogonally. The CT Hounsfield units were converted to calcium hydroxyapatite density ρ_{ha} using a linear relationship established with the phantom. This process can result in negative ρ_{ha} values for voxels comprised primarily of marrow fat.

Proximal tibiae were segmented from the aligned images using a ρ_{ha} threshold of 0.15 g/cm3 to identify the periosteal surface boundary. Integral volumetric bone mineral density (vBMD; g/cm3) and bone mineral content (BMC; g) were calculated for the total proximal tibia, defined as all voxels within the periosteal surface boundary. The total proximal tibia included the first 30% of segment length, as measured from the proximal end of the bone. Segment lengths were estimated from self-reported stature using the proportionality constants of Drillis and Contini as cited by Winter.

Local measures of compartmental bone were computed for epiphyseal, metaphyseal, and diaphyseal regions of the proximal tibia corresponding to 0-10%, 10-20%, and 20-30% of segment length, respectively. Cortical and trabecular compartments were identified as previously described [Edwards et al., 2013; 2014]. Local measures of cortical vBMD and BMC were computed for the epiphysis,
metaphysis and diaphysis. Local measures of trabecular vBMD and BMC were only computed for the epiphysis and metaphysis. In addition, integral and cortical bone volumes (BV; cm3) were quantified for each region and used as surrogate measures of periosteal and endosteal expansion, respectively.

Bone Markers
Serum was obtained at baseline and each subsequent visit and frozen at -70C until assessed for type 1 procollagen amino-terminal propeptide (P1NP), collagen type 1 cross-linked C-telopeptide (CTX) and bone-specific alkaline phosphatase (BSAP) by Maine Medical Research Institute, Scarborough, ME, utilizing iSIS Analyzer (Luminescence) system, Immunodiagnostic Systems, Inc, Scottsdale, AZ.

Appendix D. Copies of publications and abstracts

Publications (to date)

Published Abstracts

Bone Imaging and Fracture Risk after Spinal Cord Injury

W. Brent Edwards1 · Thomas J. Schnitzer2

Abstract Spinal cord injury (SCI) is characterized by marked bone loss and an increased risk of fracture with high complication rate. Recent research based on advanced imaging analysis, including quantitative computed tomography (QCT) and patient-specific finite element (FE) modeling, has provided new and important insights into the magnitude and temporal pattern of bone loss, as well as the associated changes to bone structure and strength, following SCI. This work has illustrated the importance of early therapeutic treatment to prevent bone loss after SCI and may someday serve as the basis for a clinical fracture risk assessment tool for the SCI population. This review provides an update on the epidemiology of fracture after SCI and discusses new findings and significant developments related to bone loss and fracture risk assessment in the SCI population based on QCT analysis and patient-specific FE modeling.

Keywords DXA · QCT · Finite element model · Disuse osteoporosis · Bone strength · Bone fracture · Spinal cord injury

Introduction

Spinal cord injury (SCI) is characterized by rapid and profound bone loss from sublesional skeletal regions [1, 2]. This bone loss is believed to result from a combination of immobilization and neurogenic factors, but metabolic, endocrine, and vascular changes after SCI have also been implicated as important mediating factors [3, 4]. The degree of motor impairment plays an important role in SCI-related bone loss. Individuals with motor complete SCI tend to lose more bone than those with motor incomplete SCI [5, 6], and upper-extremity bone loss is unaffected in paraplegics and variably affected in quadriplegics, depending on the level and severity of injury [7, 8]. The clinical consequence of bone loss after SCI is an increased risk of skeletal fracture, often associated with little to no trauma [9, 10]. The impact of these fractures have on quality of life and functional ability, and the utilization of medical resources has been well documented [11, 12].

The pathogenesis of bone loss after SCI has been described in numerous review papers, as has the efficacy of pharmaceutical and non-pharmaceutical treatments to reduce or mitigate bone loss in this population. In fact, we are aware of some 25 reviews that have discussed these topics to some degree in the past decade (for comprehensive reviews see: [3, 13–21]). Despite the fact that bone loss after SCI is a well-established and highly discussed phenomenon, little progress has been made to reduce bone loss and the incidence of fracture observed after SCI, especially when compared to advancements made in postmenopausal and age-related osteoporosis [22]. In part, this is because there is still no standard of care for the detection, prevention, or treatment of SCI-related bone loss.

New research based on advanced imaging analysis, including quantitative computed tomography (QCT) and patient-specific finite element (FE) modeling, has provided new and important insights into the magnitude and temporal pattern of
bone loss, as well as the associated changes to bone structure and strength, following SCI. This technology has illustrated the importance of early (i.e., <1 year of injury) therapeutic treatment to prevent bone loss after SCI and may someday serve as the basis for a clinical fracture risk assessment tool specific to the SCI population. In this review, we provide an update on the epidemiology of fracture after SCI and discuss new findings and significant developments related to bone loss and fracture risk assessment in the SCI population based on QCT analysis and patient-specific FE modeling.

Fragility Fracture after SCI

Bone loss following SCI is associated with an increased risk of fracture, particularly low-energy, or fragility, fractures caused by minimal to no trauma. Although many individuals with SCI are non-ambulatory, these fractures remain a serious concern threatening quality of life and functional ability. More than 50% of fracture-related hospitalizations are characterized by medical complications [11, 12] such as fracture non-union, delayed healing, and pressure ulcers from bracing and bed rest [11, 12, 23–28]. The duration of hospitalization for fracture-related admissions is seven times longer than non-fracture-related admissions with a higher rate of discharge to a second facility rather than home [11]. Together these factors result in significantly increased medical costs, loss of independence, and mortality [11, 29••, 30].

Despite the prevalence and severity of fractures after SCI, knowledge in this area is extremely lacking with data mostly coming from small cross-sectional studies and case reports. Coincident with the observed losses in bone mineral, fracture risk appears to be higher in individuals with motor complete SCI compared to those with motor incomplete SCI [11, 12, 24, 31, 32•]. Paraplegics have an increased risk of fracture relative to quadriplegics [27, 33, 34], most likely due to the increased levels of activity and independence. Although it has been estimated that as many as 50% of individuals with SCI will experience a fracture at some point in their life [18], the exact incidence rate and prevalence of fragility fracture after SCI remain unknown; a long-term prospective fracture surveillance study has never been conducted in the SCI population. Cross-sectional studies suggest a rate of fracture in the range of 1.2 to 3.4 per 100 patient years at risk [10–12, 27, 29••, 31, 35, 36], which is quite similar to the rate of non-vertebral fractures observed in postmenopausal osteoporotic women [37, 38].

The cause and location of fragility fracture after SCI have been documented qualitatively, though not in significant detail. Commonly reported causes of fracture after SCI include falls from wheelchairs, transfer activities, and non-traumatic events such as stretching or rolling over in bed [10, 11, 24, 27, 32•, 39]. Fractures after SCI have also occurred during active therapy protocols designed to strengthen the musculoskeletal system [40, 41], thereby limiting the degree to which functional declines can be reversed or attenuated. Unlike individuals with primary osteoporosis, fractures after SCI most frequently occur around regions of the knee, accounting for approximately 50% of the fractures in this population (range 30–70% [5, 10, 24–26, 31, 33]). Spiral fractures are often observed around the distal femur and proximal tibia [42, 43], implicating torsional loading as the principal mode of failure. We have also observed comminuted or impacted fracture patterns at the epiphyses of the distal femur and proximal tibia coincident with compressive or bending modes of loading. Proximal femoral fractures account for approximately 10 to 20% of all fractures in this population [5, 31, 33], but they are among the most difficult to manage [11, 25, 26, 39]. These fractures typically occur after a fall from a wheelchair, or in the case of incomplete SCI, a fall from standing height or lower [44].

Duration of SCI has been shown to be a significant predictor of prevalent fracture [12, 29••, 32•, 36], simply meaning that individuals that have been injured for a longer period of time (i.e., longer exposure) are more likely to have experienced a fracture. The mean time to first fracture ranges between approximately 6 to 9 years of SCI [5, 10, 12, 27, 33], but has been reported to occur anywhere between 1 and 50 years after SCI [23, 36]. In these studies, the mean age at SCI was less than 35 years indicating that fractures after SCI occur at a much younger age when compared to individuals with primary osteoporosis. The increased incidence of fracture relative to the general population is observed after 3 years of injury [9], which corresponds well with the magnitude and temporal pattern of bone loss after SCI.

Bone Loss and Imaging after SCI

Much of what is known regarding bone loss after SCI comes from studies utilizing dual energy x-ray absorptiometry (DXA). However, DXA is limited to an areal projection or two-dimensional, measure of integral bone mineral at a region of interest. DXA cannot account for “true” changes in volumetric measures of bone mineral or changes to trabecular- and cortical-specific bone. The former limitation in areal bone mineral density (aBMD) manifests as an underestimation in changes to volumetric bone mineral density (vBMD) [45••], whereas the latter limitation is important because trabecular- and cortical-specific bone each make unique contributions to bone strength [46, 47] and respond quite differently to bone loss therapy [48, 49]. The information outlined in the section below comes from studies utilizing QCT analysis based on three-dimensional images obtained from on either peripheral or clinical computed tomography scanners.
The most dramatic declines in bone mineral after SCI are observed during the acute stages of injury (<1 year). At skeletal regions around the hip and knee, early rates of decline in integral vBMD have been reported as approximately 3.0 %/month [50, 51]. For comparison, reductions in vBMD during spaceflight are approximately 1.5 %/month [52], while those associated with normal aging are approximately 0.5–1.0 % per annum, depending on sex [53]. The rate of bone loss after SCI is greatest at the long-bone epiphyses (i.e., the proximal femur, distal femur, and proximal tibia) and progressively decreases moving towards the diaphyses [50, 51]. The epiphysial regions are rich with trabecular bone leading some to postulate that bone is lost preferentially from trabecular as opposed to cortical bone [1, 54]. This is not the case as the loss of cortical bone from epiphyseal regions is typically equal if not greater than the loss of trabecular bone [50, 51, 55, 56]. Our group has documented mean rates of bone mineral decline in trabecular- and cortical-specific bone as high as 4.4 and 5.4 %/month, respectively, at the distal femur and proximal tibia [51]. The loss of cortical bone after SCI takes place primarily through endocortical resorption with some intracortical remodeling observed years after injury; little to no periosteal resorption is ever observed [2, 50, 51, 55, 56, 57, 58]. As the trabecular architecture progressively deteriorates and the endocortical surface expands, the cancellous regions become comprised primarily of marrow fat [56, 59].

The rapid bone loss observed after SCI eventually slows down and reaches a new steady state anywhere from 2 to 8 years after injury [2, 56, 60, 61], depending on the skeletal site and relative location within the bone. The temporal pattern of bone loss is nicely described by an exponential decay curve of the form: \(y = Ae^{-bt} + C \), where \(A \) is the loss amplitude; \(b \) is the loss rate; \(C \) is the new steady state; and \(t \) is the time since SCI in years [2, 56, 58]. New steady state values at the distal femur and proximal tibia are established anywhere between 2 and 4 years after injury [2, 56, 60, 61], whereas those at the distal tibia are established anywhere between 5 and 7 years after injury [2, 60]. Both QCT and DXA studies have consistently illustrated that once the new steady state has been reached approximately 25 and 50 % of the bone mineral has been resorbed at the hip [1, 6, 7, 10, 62–65] and knee [1, 2, 5, 7, 10, 56, 63, 64], respectively.

The reason that bone loss after SCI is both spatially and temporally distinct is not entirely clear, but may be attributed to different osteoclastogenic events mediating bone loss at different locations. Recent work in a murine botulinum-toxin-induced disuse model suggests an immediate resorption response at the epiphyses caused by basal osteoclast activity, followed by a later phase of bone resorption at the diaphyses associated with osteoclastogenesis within the marrow space [66].

Bone Strength after SCI

Bone fractures are biomechanical events that occur when the applied load is greater than bone strength. When combined with the FE method, QCT images can serve as the basis for extremely accurate measures of bone strength. Specific details about the FE method and its clinical utility can be found in recent reviews of the topic in this journal [67, 68]. In short, the FE method is a computational modeling technique that can be used to explicitly simulate the structural and material behavior of bone. FE models are completely patient specific with geometric and material property information being derived directly from the QCT image itself. These models are perhaps the most accurate of all computational models currently used in biomechanics as their outputs can be directly compared to measurements from in vitro cadaveric experimentation. When the correct algorithms are applied, FE models can account for more than 90 % of the variance in bone strength with an X=\(Y \) type of relationship [69, 70].

Reductions in FE-predicted bone strength after SCI are some 2–3 times greater than the observed reductions in bone mineral [45, 71]. These changes in strength are heavily dependent on bone location and the applied mode of loading and are not necessarily correlated with changes in bone mineral [45]. During the first few months of injury, proximal femoral strength in a fall type loading scenario decreases at a rate of 7 %/month [45], which is twice the loss rate observed during spaceflight [72]. After 3.5 months of SCI, reductions in proximal femoral strength for some patients are on the order of that predicted for lifetime declines associated with aging [53]. Proximal tibial strength in torsion initially decreases at a rate of 4 %/month [71] and illustrates a similar exponential decline to that of bone mineral [56]. The new steady state for torsional strength at the proximal tibia is reached after 2 years of injury at a magnitude 70 % lower than normal [56]. The discrepancy in relative steady state values (i.e., 50 % less for bone mineral vs. 70 % less for bone strength) can be explained by the fact that bone strength is a multifactorial measure dependent not only on bone mass but also on geometry, mineral distribution, material properties, and mode of loading. Unlike basic densitometry measures, FE models are able to capture all of this information and account for their complex interaction. This makes FE-predicted bone strength an ideal outcome measure for a treatment or intervention [48, 49], specifically because it brings biomechanical relevance to any observed changes to bone.

It is important to note that even if bone mineral is restored to pre-SCI values following an initial loss, bone strength will not necessarily be fully recovered. Hypothetical treatments simulating a complete restoration of bone mineral density through pharmaceutical therapy suggest that bone strength will not be recovered if more than 10 % of the bone mineral has been lost after SCI prior to treatment [71]. Similar findings have been observed through computational simulations of age-related...
Fracture Risk Assessment after SCI

Medical professionals have reported several barriers to bone loss therapy after SCI, one of which is the lack of a clinical fracture risk assessment tool specific to the SCI population [76]. Such as tool could be used to identify individuals in need of pharmacologic treatment or to objectively identify individuals that could safely participate in active therapy. The current fracture risk assessment tools for the general public would appear inadequate for people with SCI; the locations of routine fracture do not correspond between these two groups and bone density thresholds (T-scores) and the FRAX® tool developed for able-bodied populations would classify nearly all those with SCI at high risk for major osteoporotic fracture. Consequently, whereas some studies have illustrated significantly lower aBMD values at the hip in individuals with prevalent fractures compared to those without [10, 36], other studies have not observed this trend, either before [64] or after [32*] adjusting for completeness of injury.

A limited number of DXA protocols have been proposed for measuring aBMD at the knee in individuals with SCI [32*, 77–80]. Methods based on pre-existing algorithms (e.g., spine and forearm protocols) have illustrated high reliability [78–80], which is important for assessing longitudinal changes in, or making clinical recommendations based on, aBMD measurements. Cross-sectional studies have, quite consistently, demonstrated significant differences between knee aBMD in people with SCI and a history of fracture and those without fractures [10, 64, 81], even after adjusting for completeness of injury [32*]. Some of these studies suggest the existence of a “fracture threshold” corresponding to the value of a particular bone health measure above which fragility fractures rarely occur. For example, Garland et al. reported fracture thresholds of 0.78 g/cm² at the knee in males with SCI [81]. Fracture thresholds in individuals with SCI have also been reported using knee vBMD assessed with peripheral QCT. In patients with motor complete SCI, a trabecular vBMD of 114 mg/cm³ defined fracture threshold at the distal femur, whereas 72 mg/cm³ defined fracture threshold at the proximal tibia [33]. Peripheral QCT measurements of cortical thickness and surrogate measures of bone strength (e.g., mass-weighted moments of inertia) at the tibia have also illustrated significant differences between SCI individuals with and without prevalent fragility fracture [32*, 82].

In theory, patient-specific FE modeling should provide a more accurate prediction of fracture risk in the SCI population than QCT, which in turn should be more accurate than DXA. Indeed, research has consistently illustrated that information derived from FE models is associated with a substantial improvement in fracture strength prediction compared to DXA and QCT [69, 83, 84]. Evidence from large fracture surveillance studies in able-bodied adults suggests that FE-predicted bone strength is a better predictor of both prevalent [85] and incident [86] fractures when compared to measures from DXA. In these studies, the information derived from FE models remained a significant predictor of fracture risk even after controlling for aBMD.

In a small sample of 49 adults with SCI (1 to 50 years duration), we obtained DXA and clinical QCT scans at the knee to quantify aBMD and vBMD, respectively, at the distal femur and proximal tibia [87, 88]. Torsional strength at the proximal tibia was also quantified using patient-specific FE modeling. Participants self-reported the cause, location, and time of any lower-extremity fragility fractures sustained after SCI. The ability of aBMD, vBMD, and FE-predicted strength to classify groups with and without fractures was determined using discriminant analyses. Of the 49 participants, 14 had at least one prevalent fracture of the lower-extremity. FE-predicted strength (p=0.002), vBMD (p≤0.014), but not aBMD (p≥0.195), were significant discriminants of prevalent fractures. The overall classification accuracy for torsional strength at the proximal tibia was 74 %, while that for proximal tibial vBMD and distal femoral vBMD were 71 and 63 %, respectively. On average, FE-predicted strength and vBMD measures were 39 and 33 % lower, respectively, for individuals with fractures compared to individuals without fractures.

Although the findings above suggest that measures based on advanced imaging analysis may provide the most sensitive measure of fracture risk, these technologies have several shortcomings relative to DXA. DXA benefits from its relatively low-cost, availability, ease of use, and low radiation exposure. Clinical QCT is expensive, associated with a relatively high radiation dose, and cannot account for important aspects of bone quality including changes to trabecular microarchitecture and cortical porosity. Peripheral QCT shares similar benefits to DXA in terms of cost and radiation exposure and high-resolution peripheral scanners, which have not yet been widely used in SCI research and have the capability for direct microstructural measurements [89, 90]. The most recent high-resolution peripheral scanner (XtremeCTII; Scanco Medical) has a field of view and gantry length that would theoretically allow for measurements of bone mass, architecture, and strength at the knee, the most clinically relevant site for skeletal fracture in the SCI population.
Conclusions

Bone loss is a well-established secondary complication associated with SCI that leads to an increased risk of fracture similar or greater in magnitude to that observed in postmenopausal osteoporosis. Recent research based on QCT analysis has illustrated that bone loss after SCI is marked and bone mass decreases exponentially, reaching a new steady state as early as 2 years post injury at the most clinically relevant locations for fracture. Bone loss after SCI occurs primarily through a combination of trabecular and endocortical resorption, which dominates at the epiphyseal regions of lower-extremity long bones. This specific pattern of bone loss has large mechanical consequences, with reductions in FE-predicted bone strength being some 2–3 times greater than the observed reductions in bone mineral. It is important to note that simply restoring bone mineral after an initial loss may not necessarily result in a full recovery of bone strength.

Although fractures after SCI are not typically observed until 3 or more years of injury, clinicians responsible for acute treatment should be aware that only a short therapeutic window (a matter of weeks/months) exists after SCI, during which bone-specific intervention may attenuate reductions in mechanical integrity and ultimately prevent fragility fracture in this population. This statement is further emphasized by the lack of efficacy observed for therapeutic interventions to promote bone mineral accrual in individuals with chronic SCI [91–93]. As fractures after SCI have occurred during mechanical loading interventions designed to strengthen the musculoskeletal system, the acute stages of SCI represents the safest window for active treatment, and therapists should be cognizant of the associated risk of musculoskeletal loading in people with chronic SCI. The most effective interventions may be those targeting “mechanically important” skeletal regions, perhaps through combined pharmacologic and mechanical loading therapy. Therapeutic interventions targeting skeletal deconditioning associated with SCI may become even more imperative in the future as treatments for SCI are discovered and full recovery of mobility and function becomes a reality.

There is a critical need for a large prospective fracture surveillance study to examine the clinical efficacy of a fracture risk assessment tool specific to the SCI population. Fracture risk assessment may be used by medical professionals to identify individuals in need of pharmacologic treatment and help guide the safe implementation of rehabilitation protocols. Furthermore, identification of those individuals at greatest risk of fracture would allow for a more efficient and cost effective use of resources for management. Such as study should investigate the utility of DXA technology that is already clinically available. If these results are shown to be effective, these data can be rapidly disseminated to medical professionals, permitting the widespread adoption of such approaches. This work should also investigate the use of new advanced imaging and patient-specific FE modeling techniques, which should theoretically provide a more sensitive and accurate prediction of fracture risk after SCI and help validate DXA outcomes.

Compliance with Ethics Guidelines

Conflict of Interest Dr. Edwards declare they have no conflicts of interest to disclose Dr. Schnitzer reports non-financial support from Eli Lilly, non-financial support from Novartis, outside the submitted work.

Human and Animal Rights and Informed Consent All studies by Dr. Edwards and Dr. Schnitzer involving animal and/or human subjects were performed after approval by the appropriate institutional review boards. When required, written informed consent was obtained from all participants.

References

Papers of particular interest, published recently, have been highlighted as:
• Of importance
•• Of major importance

64. Biering-Sorensen F, Bahr HH, Schaad OP. Bone mineral content of the lumbar spine and lower extremities years after spinal cord lesion. Paraplegia. 1998;26:293–301.

Reduction in Torsional Stiffness and Strength at the Proximal Tibia as a Function of Time Since Spinal Cord Injury

W Brent Edwards,1 Narina Simonian,2 Karen L Troy,3 and Thomas J Schnitzer2

1Department of Physical Medicine and Rehabilitation Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
2Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
3Department of Biomedical Engineering, University of Calgary, Calgary, Canada

ABSTRACT
Spinal cord injury (SCI) is characterized by marked bone loss and a high rate of low-energy fracture around regions of the knee. Changes in the mechanical integrity of bone after SCI are poorly defined, and a better understanding may inform approaches to prevent fractures. The purpose of this study was to quantify reductions in torsional stiffness and strength at the proximal tibia as a function of time since SCI. Sixty adults with SCI ranging from 0 to 50 years of duration and a reference group of 10 able-bodied controls received a CT scan of the proximal tibia. Measures of integral bone mineral were calculated for the total proximal tibia, and localized measures of cortical and trabecular bone mineral were calculated for the epiphysis, metaphysis, and diaphysis. Torsional stiffness (K) and strength (Tult) for the total proximal tibia were quantified using validated subject-specific finite element models. Total proximal tibia measures of integral bone mineral, K, and Tult decreased exponentially (r² = 0.52 to 0.70) and reached a new steady state within 2.1 to 2.7 years after SCI. Whereas new steady-state values for integral bone mineral and K were 52% to 56% (p < 0.001) lower than the reference group, the new steady state for Tult was 69% (p < 0.001) lower than the reference group. Reductions in total proximal tibia measures occurred through a combination of trabecular and endocortical resorption, leaving a bone comprised primarily of marrow fat rather than hydroxyapatite. These findings illustrate that a short therapeutic window exists early (ie, 2 years) after SCI, during which bone-specific intervention may attenuate reductions in mechanical integrity and ultimately prevent SCI-related fragility fracture. © 2015 American Society for Bone and Mineral Research.

KEY WORDS: QCT; FINITE ELEMENT MODEL; DISUSE OSTEOPOROSIS; BONE STRENGTH; BONE FRACTURE

Introduction

Spinal cord injury (SCI) is a catastrophic, life-altering event associated with considerable physical, emotional, and financial burdens. In the United States and Canada, SCI affects some 350,000 people with an additional 16,000 new cases each year.1,2 SCI is associated with a number of secondary complications, one of which is the marked loss of bone mineral, owing, in part, to a combination of mechanical disuse and neurogenic factors.3 Bone loss after SCI is different from primary osteoporosis in that it occurs below the level of the neurological lesion with little or no loss at the spine or supraspinal regions.4–6 Lower-extremity bone loss is similar among quadriplegics and paraplegics,6,7 with the greatest loss of bone mineral being observed around regions of the knee; it is not uncommon for 50% of the distal femur and proximal tibia integral bone mineral to be resorbed during the first 2 to 3 years of injury.8–9

The long-term clinical consequence of SCI-related bone loss is an increased rate of low-energy fracture, reported to be in the range of 1.2 to 3.4 per 100 patient years at risk.6,10–13 This rate is similar to that of nonvertebral fractures occurring in postmenopausal osteoporotic women treated with placebo in antifracture efficacy trials.14,15 It has been estimated that as many as 50% of individuals with SCI will experience a fragility fracture at some point during their life.6,16 The impact these fractures have on quality of life, functional ability, and the utilization of medical resources has been well documented.17 The most commonly reported causes of fracture after SCI are falls from wheelchairs, wheelchair transfers, and rolling over in bed.6,17–19 Spiral fractures are frequently observed around the distal femur and proximal tibia,20,21 implicating torsional loading as the principal mode of failure.

In a cross-sectional study, Eser and colleagues9 used peripheral quantitative computed tomography (pQCT) to describe the time course and magnitude of bone loss after SCI at the distal epiphysis and midshaft of the femur and tibia. Depending on the parameter of interest, bone mineral decreased exponentially and reached a new steady state from 3 to 8 years postinjury.9 The mechanical consequence of this
bone loss remains unclear—bone stiffness and strength are multifactorial measures influenced by parameters such as bone size, shape, mineral distribution, and mode of loading. We have recently illustrated that reductions in bone strength during the first few months of SCI are two to three times greater than that predicted by reductions in bone mineral.\(^{12,23}\) The magnitude and temporal pattern of bone stiffness and strength loss after chronic SCI, and whether or not a new steady state is eventually reached remains unknown.

Therefore, the purpose of this study was to quantify reductions in torsional stiffness and strength at the proximal tibia as a function of time since SCI. To this end, subject-specific finite element (FE) analyses were performed on a group of 60 participants with SCI of various injury durations. Exponential decay curves were used to describe changes in FE parameters after SCI, and new steady-state values were compared to a reference group of 10 able-bodied controls. QCT mineral analyses were also performed to elucidate the source of any changes in FE parameters. It is hoped that a better understanding of changes in the mechanical integrity of bone after SCI will inform approaches for the prevention and treatment of fragility fractures in the SCI population.

Subjects and Methods

Participants

Sixty adults with SCI ranging from 0 to 50 years of injury duration were recruited for this study (Table 1). Participants were of mixed neurological impairments and injury levels, but all had motor complete SCI (ie, American Spinal Injury Association [ASIA] Impairment Scale, category A or B) with the loss of ability to ambulate independently. All individuals were 21 years of age or older (to ensure a population with closed epiphyses) and selected with no regard to sex or ethnicity. Pregnant females and patients with current or recent (within 12 months) use of drugs that affect bone metabolism (eg, bisphosphonates, PTH, selective estrogen receptor modulators [SERMs]) were excluded from participation. A reference group of 10 healthy, able-bodied adults were also recruited that closely reflected the age, sex, weight, and stature distribution of the SCI group. All necessary Institutional Review Boards approved the study and participants provided written informed consent.

CT acquisition

The CT data were acquired for the nondominant knee (ie, contralateral to hand dominance) of each participant using a scan length that captured the proximal-most 15 cm of the tibia.

Table 1. Subject Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reference group</th>
<th>SCI group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects, n</td>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td>Females, n</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>Age (years)</td>
<td>36.6 ± 13.9</td>
<td>37.5 ± 13.5</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>180.1 ± 11.2</td>
<td>176.4 ± 11.2</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>77.0 ± 12.7</td>
<td>75.3 ± 17.9</td>
</tr>
<tr>
<td>SCI duration (years)</td>
<td>N/A</td>
<td>12.4 ± 11.7; range, 0–50</td>
</tr>
</tbody>
</table>

The SCI and reference groups did not differ in terms of age (\(p = 0.852\)), height (\(p = 0.327\)), or weight (\(p = 0.714\)), as indicated by independent t tests.

SCI = spinal cord injury.

A few participants had fixation hardware, or other technical issues, at or near the nondominant knee, in which case CT data were acquired for the dominant knee. The CT scans were performed using a Sensation 64 Cardiac Scanner (Siemens Medical Systems, Forchheim, Germany) with acquisition settings of 120 kVp and 200 mAs. Images were reconstructed with a slice thickness of 1 mm and an in-plane pixel resolution of 0.352 mm. All scans included a phantom in the field of view with known calcium hydroxyapatite concentrations (QRM, Moehrendorf, Germany).

QCT mineral analysis

The QCT mineral analysis of the proximal tibia was performed using established protocols.\(^{24,25}\) Briefly, CT data were imported to Mimics (Materialise, Leuven, Belgium) where images were realigned so that the axial direction corresponded to the long axis of the tibia; the mediolateral axis was defined by a line passing through the medial and lateral condyles of the tibia and the anteroposterior axis was oriented orthogonally. The CT Hounsfield units were converted to calcium hydroxyapatite density \(\rho_{ha}\) using a linear relationship established with the phantom. This process can result in negative \(\rho_{ha}\) values for voxels comprised primarily of marrow fat.\(^{26}\)

Proximal tibias were segmented from the aligned images using a \(\rho_{ha}\) threshold of 0.15 g/cm\(^3\) to identify the periosteal surface boundary. Integral volumetric bone mineral density (vBMD; g/cm\(^3\)) and bone mineral content (BMC; g) were calculated for the total proximal tibia, defined as all voxels within the periosteal surface boundary. The total proximal tibia included the first 30% of the entire lower-limb segment length, as measured from the proximal end of the bone. Segment lengths were estimated from self-reported stature using the proportionality constants of Drillis and Contini as cited by Winter.\(^{27}\)

Local measures of compartmental bone were computed for epiphysal, metaphysal, and diaphysal regions of the proximal tibia corresponding to 0% to 10%, 10% to 20%, and 20% to 30% of segment length, respectively. Cortical and trabecular compartments were identified as described.\(^{24,25}\) Local measures of cortical vBMD and BMC were computed for the epiphysis, metaphysis, and diaphysis. Local measures of trabecular vBMD and BMC were only computed for the epiphysis and metaphysis. In addition, integral and cortical bone volumes (BV; cm\(^3\)) were quantified for each region and used as surrogate measures of periosteal and endostal expansion, respectively.

FE analysis

Subject-specific FE modeling was used to predict torsional stiffness and strength of the proximal tibia as described.\(^{23,25}\) The modeling procedures have been physically validated using cadaveric experimentation, and illustrated high coefficients of determination with in vitro torsional stiffness (\(r^2 = 0.95\)) and strength (\(r^2 = 0.91\); regression slopes and intercepts were not significantly different from 1 and 0, respectively.\(^{25}\)

Briefly, voxels making up the proximal tibia were converted to eight-node hexahedral elements with isotropic edge lengths of 1.5 mm using custom MATLAB (MathWorks, Natick, MA, USA) scripts. Elements were assigned inhomogeneous, anisotropic, nonlinear material properties based on bone apparent density \(\rho_{app}\) (ie, \(\rho_{app} = \rho_{ha}/0.626\)).\(^{28}\) Pre-yield elastic moduli were calculated for the total proximal tibia, defined as all voxels within the periosteal surface boundary. The total proximal tibia included the first 30% of the entire lower-limb segment length, as measured from the proximal end of the bone. Segment lengths were estimated from self-reported stature using the proportionality constants of Drillis and Contini as cited by Winter.\(^{27}\)
defined using a density-elasticity relationship specific to the proximal tibia:\(^\text{(29)}\)

\[E_3 = 6570 \rho_{\text{app}}^{1.37} \]

where \(E_3 \) is the axial modulus expressed in MPa, and \(\rho_{\text{app}} \) is expressed in g/cm\(^3\). A constant anisotropy was assumed where:

\[E_1 = 0.574 \cdot E_3; E_2 = 0.577 \cdot E_3; \]
\[G_{12} = 0.195 \cdot E_3; G_{23} = 0.265 \cdot E_3; \]
\[G_{31} = 0.216 \cdot E_3; \]
\[v_{12} = 0.427; v_{23} = 0.234; \text{ and } v_{31} = 0.405. \] \(^{(30)}\)

Subscripts 1 and 2 denote the mediolateral and anteroposterior directions, respectively.

Material nonlinearity was modeled as bilinear elastic–plastic with a postyield modulus that was 5% of the pre-yield modulus\(^{(31)}\); yield was defined using the quadratic Hill criterion for orthotropic materials. Yield strains were assumed to be isotropic in the normal (0.675%) and shear (1.215%) directions.\(^{(32)}\) A torsional displacement was applied to surface nodes of the proximal-most 2 cm of bone and surface nodes distal to the proximal-most 13 cm of bone were constrained in translation; ie, 11 cm of bone was exposed. Torsional stiffness (\(K \)) was quantified from the linear portion of the torque-rotation curve and torsional strength (\(T_{\text{ult}} \)) was defined as the torque at which 10% of surface elements had failed.\(^{(25)}\) Element failure was defined as a maximum principal strain greater than 1.41%.\(^{(32)}\)

Curve fitting and statistical analysis
Curve fitting was performed with the Curve Fitting Toolbox in MATLAB (Natick, MA, USA) using identical procedures to those described by Eser and colleagues.\(^{(9)}\) Exponential decay curves were fitted to QCT and FE parameters as a function of time since SCI:

\[y = A \exp(-bt) + C \]

where \(A \) is the loss amplitude; \(b \), the loss rate; \(C \), the new steady-state; and \(t \) the time in years. For each parameter, the mean time period corresponding to 95% of the decrease (\(t_{95} \)) was determined:

\[t_{95} = -\ln(0.05)/b \]

Means and SDs for each parameter were then quantified only for those subjects with an SCI duration \(\geq t_{95} \); ie, subjects that had already reached the new steady state. Accounting for subject variance, the actual time to reach the new steady state (\(t_{ss} \)) was defined as the mean \(\pm 0.5 \text{SD} \) of the data for those subjects with an SCI duration \(\geq t_{95} \): \[t_{ss} = \ln(0.5 \times \text{SD} / A)/b. \]

The QCT and FE parameters for subjects with an SCI duration \(\geq t_{ss} \) were compared to the reference group of 10 able-bodied adults using independent samples \(t \) tests. The \(t \) tests were performed in Microsoft Excel (Redmond, WA, USA) with the criterion alpha-level set to 0.05.

Results

Reductions in total proximal tibia measures of integral bone mineral (ie, vBMD and BMC), \(K \), and \(T_{\text{ult}} \) were well-described using exponential decay curves as a function of time since SCI (\(r^2 = 0.52 \) to 0.70; Fig. 1). New steady-state values were

![Fig. 1. Changes in total proximal tibia measures of integral bone mineral (BMC and vBMD) and FE predicted K and Tult as a function of time since SCI. The solid line illustrates the line of best fit for an exponential decay curve (equation and \(r^2 \) also shown). The dashed line illustrates the mean value for the reference group of 10 ambulatory controls. FE = finite element; K = torsional stiffness; Tult = torsional strength.](image_url)
established within 2.1 to 2.7 years after SCI, depending on the parameter (Table 2). Although new steady-state values for integral bone mineral and K were 52% to 56% (p < 0.001) lower than the reference group, the new steady state for Tult was 69% (p < 0.001) lower than the reference group (Table 2). In general, the location of element failure went from being distributed across the total proximal tibia to being more localized toward the epiphysis, as bones went from strong to weak (Fig. 2).

Local measures of cortical and trabecular bone mineral decreased exponentially (r² = 0.45 to 0.70; Figs 3, 4) and reached a new steady state within 1.6 to 2.6 years after SCI, depending on the parameter (Table 3). All local measures of bone mineral after steady state were significantly lower than the reference group (p < 0.001); however, reductions in cortical vBMD were comparatively small. Negative mean values after steady state were observed for metaphyseal trabecular bone mineral, indicating a bone comprised primarily of marrow fat rather than hydroxyapatite.

Local measures of integral BV did not illustrate reductions after SCI (Table 3, Fig. 5). On the other hand, changes in local measure of cortical BV decreased exponentially (r² = 0.35 to 0.70) and reached a new steady state within 1.6 to 2.6 years after SCI (Table 3, Fig. 5). New steady-state values for cortical BV were 34% to 76% lower than the reference group, with relative differences decreasing in magnitude moving from the epiphysis toward the diaphysis.

Discussion

Bone loss after SCI and its clinical sequelae of fracture is a serious complication. The purpose of this study was to quantify reductions in torsional stiffness K and strength Tult at the proximal tibia as a function of time since SCI. The findings from this study illustrated that changes in K and Tult decreased exponentially and reached a new steady state within 2.1 to 2.2 years after SCI. Relative to a reference group of healthy able-bodied controls, the new steady state for K was similar in magnitude to that of integral bone mineral (ie, 52% to 56% lower than the reference group). However, the new steady state for Tult was established at a value 69% lower than the reference group. The observed changes in K and Tult were the result of localized resorption from both trabecular and cortical bone mineral compartments.

This study underscores the considerable influence that changes in bone mineral can have on bone mechanical integrity. The FE parameters based on clinical CT data that were investigated herein are dependent on multiple parameters including bone structure, mineral distribution, material properties, and mode of loading. It is interesting to note that new steady-state values relative to the reference group were similar among K and integral bone mineral, but substantially lower for Tult. We observed a similar phenomenon following 3 to 5 months of acute SCI, in which relative reductions in K and integral bone

Table 2. Mean ± SD for Total QCT and FE Parameters of the Proximal Tibia for the Reference Group and SCI Group

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reference group (n = 10)</th>
<th>SCI group ≥tss (n = 42)</th>
<th>Difference (%)</th>
<th>t test (p)</th>
<th>tss (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integral BMC (g)</td>
<td>65.0 ± 19.1</td>
<td>29.2 ± 9.5</td>
<td>-55.1</td>
<td><0.001</td>
<td>2.3</td>
</tr>
<tr>
<td>Integral vBMD (g/cm³)</td>
<td>0.31 ± 0.05</td>
<td>0.15 ± 0.04</td>
<td>-51.6</td>
<td><0.001</td>
<td>2.7</td>
</tr>
<tr>
<td>K (Nm/deg)</td>
<td>44.2 ± 18.3</td>
<td>19.4 ± 7.2</td>
<td>-56.1</td>
<td><0.001</td>
<td>2.1</td>
</tr>
<tr>
<td>Tult (Nm)</td>
<td>184.7 ± 61.7</td>
<td>57.1 ± 23.9</td>
<td>-69.1</td>
<td><0.001</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Includes only subjects with an injury duration ≥tss.

FE = finite element; SCI = spinal cord injury; tss = time to reach the new steady state; K = torsional stiffness; Tult = torsional strength.

Fig. 2. Anteromedial views of representative FE models illustrating maximum principal strain and contours of surface element failure (ie, εmax > 1.41%). The FE predicted Tult corresponded to the torque at which 10% of the surface elements had failed. In general, the location of element failure went from being distributed across the total proximal tibia to being more localized toward the epiphysis, as bones went from strong to weak. FE = finite element; εmax = maximum principal strain; Tult = torsional strength.
mineral were similar in magnitude, whereas relative reductions in Tult were approximately two times greater. This discrepancy was explained by the fact that SCI-related bone loss had a larger influence on the post-yield rather than the pre-yield mechanical behavior in our models. Whether or not this is a true phenomenon can only be determined through cadaveric experimentation, but this would require a large number of specimens from individuals with SCI. We are aware of only one mechanical examination of cadaveric materials from the SCI population, for which the sample size was four.

In this study, we limited our FE models to torsional loading because spiral fracture patterns are common in the SCI population and this procedure has been validated using cadaveric experimentation. More work is needed to determine if similar reductions in strength as a function of time since SCI would be observed under different modes of loading (e.g., compression or bending). Nevertheless, the larger change in Tult relative to other total proximal tibia measures suggests that FE models are able to capture information that is not readily obtained with simple measures of bone mineral. Indeed, evidence from large fracture surveillance studies in able-bodied adults suggests that FE-predicted strength is a better predictor of both prevalent and incident fractures when compared to DXA. In these studies, the information derived from FE models remained a significant predictor of fracture risk even after controlling for DXA assessed areal BMD. There is a critical need for a large, perhaps multisite, fracture surveillance study to examine the clinical efficacy of FE models as a fracture risk assessment tool for the SCI population. It would be valuable for such a study to precisely document and report the exact type and location of fracture, as our FE models suggest, at least for pure torsional loading, that fractures at the proximal tibia in chronic SCI (i.e., after new steady state) would be localized to the epiphysis.

The observed reductions in total proximal tibia measures can be attributed to substantial resorption from both trabecular and cortical bone compartments. In terms of absolute bone mineral, the loss of trabecular BMC was greatest at the epiphysis and lowest at the metaphysis. Cortical BMC illustrated the opposite trend with absolute losses being lowest at the epiphysis and increasing in magnitude moving toward the diaphysis. In this regard, the greatest amount of trabecular and cortical bone

Fig. 3. Changes in local measures of Ct.BMC and Ct.vBMD at the proximal tibia epiphysis, metaphysis, and diaphysis as a function of time since SCI. The solid line illustrates the line of best fit for an exponential decay curve (equation and r² also shown). The dashed line illustrates the mean value for the reference group of 10 ambulatory controls. Ct = cortical; BMC = bone mineral content; vBMD = volumetric bone mineral density; Epi = epiphysis; Met = metaphysis; Dia = diaphysis.
resorption took place at regions having the highest initial trabecular and cortical BMC. Whereas measures of integral BV did not illustrate significant losses after SCI, cortical BV decreased exponentially to a new steady state that was 34% to 76% lower than the reference group, depending on location. In accordance with previous literature on mechanical disuse and bone loss,(9,24,36–38) these data suggest that cortical bone was lost primarily through endosteal rather than periosteal resorption, with some intracortical remodeling as indicated by small reductions in cortical vBMD.

Fragility fractures after SCI are not observed until approximately 3 years of injury, (6) corresponding nicely with our

![Graph showing changes in local measures of Tb.BMC and Tb.vBMD at the proximal tibia epiphysis and metaphysis as a function of time since SCI.](image)

Fig. 4. Changes in local measures of Tb.BMC and Tb.vBMD at the proximal tibia epiphysis and metaphysis as a function of time since SCI. The solid line illustrates the line of best fit for an exponential decay curve (equation and r^2 also shown). The dashed line illustrates the mean value for the reference group of 10 ambulatory controls. Tb = trabecular; BMC = bone mineral content; vBMD = volumetric bone mineral density; Epi = epiphysis; Met = metaphysis.

Table 3. Mean ± SD for Local QCT Parameters of the Proximal Tibia for the Reference Group and SCI Group

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reference group ($n = 10$)</th>
<th>SCI group $\geq t_{ss}$ (n)</th>
<th>Difference (%)</th>
<th>t test (p)</th>
<th>t_{ss} (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epiphysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integral BV (cm3)</td>
<td>111.0 ± 19.1</td>
<td>106.6 ± 19.1 (60)</td>
<td>−4.0</td>
<td>0.501</td>
<td>n/a</td>
</tr>
<tr>
<td>Cortical BV (cm3)</td>
<td>12.5 ± 4.1</td>
<td>3.0 ± 1.7 (42)</td>
<td>−76.0</td>
<td><0.001</td>
<td>2.6</td>
</tr>
<tr>
<td>Cortical BMC (g)</td>
<td>6.5 ± 2.4</td>
<td>1.4 ± 0.8 (42)</td>
<td>−78.5</td>
<td><0.001</td>
<td>2.6</td>
</tr>
<tr>
<td>Cortical vBMD (g/cm3)</td>
<td>0.51 ± 0.02</td>
<td>0.45 ± 0.03 (42)</td>
<td>−11.8</td>
<td><0.001</td>
<td>1.6</td>
</tr>
<tr>
<td>Trabecular BMC (g)</td>
<td>9.1 ± 3.4</td>
<td>0.9 ± 1.8 (42)</td>
<td>−90.1</td>
<td><0.001</td>
<td>2.1</td>
</tr>
<tr>
<td>Trabecular vBMD (g/cm3)</td>
<td>0.14 ± 0.04</td>
<td>0.02 ± 0.04 (43)</td>
<td>−85.7</td>
<td><0.001</td>
<td>2.0</td>
</tr>
<tr>
<td>Metaphysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integral BV (cm3)</td>
<td>61.9 ± 14.8</td>
<td>56.4 ± 11.4 (60)</td>
<td>−8.9</td>
<td>0.173</td>
<td>n/a</td>
</tr>
<tr>
<td>Cortical BV (cm3)</td>
<td>19.4 ± 4.3</td>
<td>11.5 ± 3.1 (42)</td>
<td>−40.7</td>
<td><0.001</td>
<td>2.0</td>
</tr>
<tr>
<td>Cortical BMC (g)</td>
<td>15.1 ± 4.0</td>
<td>7.7 ± 2.5 (42)</td>
<td>−49.0</td>
<td><0.001</td>
<td>2.5</td>
</tr>
<tr>
<td>Cortical vBMD (g/cm3)</td>
<td>0.77 ± 0.05</td>
<td>0.66 ± 0.06 (42)</td>
<td>−14.3</td>
<td><0.001</td>
<td>2.6</td>
</tr>
<tr>
<td>Trabecular BMC (g)</td>
<td>4.7 ± 3.9</td>
<td>−0.3 ± 1.3 (42)</td>
<td>−106.4</td>
<td><0.001</td>
<td>2.4</td>
</tr>
<tr>
<td>Trabecular vBMD (g/cm3)</td>
<td>0.13 ± 0.08</td>
<td>−0.01 ± 0.04 (42)</td>
<td>−107.7</td>
<td><0.001</td>
<td>2.5</td>
</tr>
<tr>
<td>Diaphysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integral BV (cm3)</td>
<td>38.2 ± 8.3</td>
<td>36.4 ± 7.5 (60)</td>
<td>−4.7</td>
<td>0.495</td>
<td>n/a</td>
</tr>
<tr>
<td>Cortical BV (cm3)</td>
<td>21.4 ± 5.5</td>
<td>14.1 ± 4.0 (44)</td>
<td>−34.1</td>
<td><0.001</td>
<td>1.6</td>
</tr>
<tr>
<td>Cortical BMC (g)</td>
<td>19.7 ± 5.7</td>
<td>11.5 ± 3.5 (42)</td>
<td>−41.6</td>
<td><0.001</td>
<td>2.2</td>
</tr>
<tr>
<td>Cortical vBMD (g/cm3)</td>
<td>0.91 ± 0.05</td>
<td>0.81 ± 0.06 (42)</td>
<td>−11.0</td>
<td><0.001</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Includes only subjects with an injury duration $\geq t_{ss}$.

SCI = spinal cord injury; t_{ss} = time to reach the new steady state.
measured time to reach a new steady state (ie, 1.7 to 2.7 years) when the proximal tibia is weakest. Previous research using DXA has reported new steady-state values of 1 to 3 years at the femoral neck and distal tibial epiphysis as well as a continuous decline beyond 10 years at the tibial diaphysis. On the other hand, previous research using pQCT has reported new steady-state values of 2.9 to 4.1 years at the distal femoral epiphysis, and 4.8 to 6.8 years at the distal tibial epiphysis. Although some of the discrepancy among these studies may be attributed to different densitometric techniques, the more likely explanation is that bone resorption following disuse is spatially and temporally distinct, even within individual bones.

This study is limited by the cross-sectional design and heterogeneous sample used to characterize the magnitude and time course of bone mineral and strength loss after SCI. The cross-sectional analysis allowed us to estimate changes to bone that would occur up to an SCI duration of 50 years, which would be difficult, if not impossible, to quantify longitudinally. Although our sample was of mixed age, neurological impairment, and injury level, it should be emphasized that bone loss after SCI does not appear to depend on age, and all participants were motor complete SCI (ie, ASIA Impairment Score A or B). Inherent to our curve-fitting analysis was the assumption that bone mineral and strength decreased exponentially and eventually reached a new steady state. These assumptions have been verified in a relatively small (ie, n = 8), short-term (ie, up to 4 years) longitudinal study, but a key limitation of the exponential decay curve is that gradual changes to bone after steady state (eg, that associated with normal aging) were not quantified. On the other hand, any gradual changes after steady state would be considered negligible relative to the rapid and profound losses in bone observed during the first 2 years of SCI.

There are, of course, limitations associated with our estimations of torsional stiffness and strength. Clinical CT-based FE models cannot account for changes to bone microstructure (eg, trabecular architecture, tissue mineralization, collagen cross-linking, remodeling space), and as such the predicted reductions in K and Tult as a function of time since SCI are likely conservative. As mentioned earlier, it is unclear if similar reductions in strength as a function of time since SCI would be observed under compressive or bending modes of loading. Pending the verification and validation of FE modeling procedures to predict compressive/bending strength at the...
proximal tibia, we can only speculate that changes would be similar in magnitude based on our previous work illustrating comparable changes between QCT indices of torsional and compressive strength at the distal femur and proximal tibia after acute SCI. \[42,43\]

Conclusion

The results from this study illustrate that torsional stiffness and strength at the proximal tibia decrease exponentially and reach a new steady state within 2.2 years of SCI. Although the time to reach steady state was similar among total proximal tibia measures of integral bone mineral and strength, steady-state values for strength were considerably lower than bone mineral when expressed relative to an able-bodied reference group (ie, 69% versus 55% lower). Despite these rapid and profound losses to bone strength, there is currently no standard of care for SCI-related bone loss. It should be recognized that only a short therapeutic window exists after SCI, during which bone-specific intervention may attenuate reductions in mechanical integrity and ultimately prevent fragility fracture in this population. Because fractures after SCI have occurred during mechanical loading interventions designed to strengthen the musculoskeletal system,\[42,43\] the acute stages of SCI represents the safest window for active treatment, and therapists should be cognizant of the associated risk of musculoskeletal loading in people with chronic SCI.

Disclosures

WBE: Grant support: National Institutes of Health; Department of Defense; Investigator-initiated grant support: Merck & Co, Inc. KLT: Grant support: National Institutes of Health; Department of Defense; Investigator-initiated grant support: Merck & Co, Inc. TJS: Grant support: National Institutes of Health; Department of Defense; Department of Education; Industry-sponsored grant support: Eli Lilly & Co; Amgen, Inc.; Investigator-initiated grant support: Merck & Co, Inc; Zars Pharma, Inc. All authors state that they have no conflicts of interest.

Acknowledgments

This work was supported by grants from the National Institutes of Health (NIAMS, F32 AR061964 to WBE) and the Department of Defense (CDMRP, SC090010 to TJS). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the funding agencies.

Authors’ roles: Study design: WBE, KLT, and TJS. Study conduct: WBE, NS, and TJS. Data collection: WBE, NS, and TJS. Data analysis: WBE. Data interpretation: WBE. Drafting manuscript: WBE. Revising manuscript content: NS, KLT, and TJS. Approving final version of manuscript: WBE, NS, KLT, and TJS. WBE takes responsibility for the integrity of the data analysis.

References

DUAL ENERGY X-RAY ABSORPTIOEMETRY OF THE KNEE IN SPINAL CORD INJURY: METHODOLOGY AND CORRELATION WITH QUANTITATIVE COMPUTED TOMOGRAPHY

JG McPherson1, WB Edwards2, A Prasad3, KL Troy4, JW Griffith5 and TJ Schnitzer1

INTRODUCTION

Spinal cord injury (SCI) has a major impact on systems that regulate bone metabolism,1 and frequently leads to enhanced bone resorption and accelerated loss of bone mineral density (BMD).1–4 Such a decrease in BMD compromises bone strength and predisposes individuals with SCI to fractures, even under minimally loaded conditions.5,6 Although hip and spine BMD—known predictors of individuals with SCI to fractures, even under minimally loaded conditions.5,6 Although hip and spine BMD—known predictors of overall fracture risk in post-menopausal women—have been used as general monitors of bone loss post SCI,7,8 the distal femur and proximal tibia are the most common sites of fracture in this population.9,10 Indeed, bone loss at these locations is markedly greater than that at the hip and/or spine, rendering the knee a more sensitive and clinically relevant region in which to assess bone loss following SCI.11,12

Despite its potential clinical impact, quantification of BMD in skeletal regions surrounding the knee has yet to become routine practice. In part, this may stem from methodological issues surrounding the two most common means of BMD assessment, quantitative computed tomography (QCT) and dual energy X-ray absorptiometry (DXA). QCT provides a three-dimensional, or volumetric, measure of BMD (vBMD) that is largely free from artifacts that are potentially introduced by changes in limb position and/or ectopic bone formation as a consequence of heterotopic ossification. However, lingering concerns over the high costs and radiation exposure have limited the use of QCT to the research setting rather than in the clinic for routine BMD assessments in this population. DXA provides an alternative measure of BMD, but no widely accepted standardized protocol exists for computing knee BMD using DXA. In addition, its two-dimensional, or areal, measure of BMD (aBMD) may be subject to more artifacts from limb repositioning and/or ectopic new bone formation. Nevertheless, its widespread availability, low cost and minimal radiation exposure make DXA an appealing option. As a result, the development and validation of a DXA-based knee protocol would greatly facilitate
routine assessment and monitoring of knee BMD in both clinical and research settings.

A modest but growing body of research indicates that existing DXA acquisition algorithms intended for measurements of aBMD at other skeletal regions are capable of providing reliable estimates of distal femur and proximal tibia aBMD.13–15 However, this finding has yet to be systematically investigated in individuals with SCI, where optimal limb positioning may be difficult to achieve and heterotopic ossification may be present. Consequently, the primary goal of this study was to establish the precision and intra-/inter-rater reliability of a standard DXA acquisition algorithm for assessment of distal femur and proximal tibia aBMD in both acute and chronic SCI populations. In addition, we quantified the correlation between DXA-based aBMD and QCT-based vBMD estimates in these cohorts, given that QCT is generally considered to be a more robust technique for BMD analysis.

MATERIALS AND METHODS

Study participants

Forty-six individuals with SCI were included in this study; all were recruited from the inpatient and outpatient populations at the Rehabilitation Institute of Chicago. Twelve of these individuals were recruited for an observational study of bone loss beginning acutely post SCI (acute cohort), whereas the remaining thirty-four individuals were screened for a longitudinal study evaluating interventions to increase BMD (chronic cohort; ClinicalTrials.gov identifier: NCT01225055) in chronic SCI. All participants were medically stable and non-ambulatory with an ASIA level of A, B or C at the time of study entry. Pregnant females and/or individuals with current or recent (within 12 months) use of drugs that affect bone metabolism were excluded from participation.

DXA acquisition and analysis

DXA scans were obtained using a Hologic QDR4500A instrument that was calibrated daily (Hologic, Inc., Bedford, MA, USA). A modified forearm algorithm was elected for scan acquisition,13 with the imaging field comprising the distal two-third of the femur and the proximal one-third of the tibia (Figure 1). During scans, participants were placed in a supine position and the lower limb was stabilized in full extension. When possible, both knees were imaged, with duplicate scans per knee. The lower limb was repositioned and restabilized between adjacent scans on each knee.

Two individuals independently analyzed all DXA images, using the Hologic APEX software (Hologic, Inc.) to quantify aBMD. Three skeletal regions were analyzed that permitted direct comparison to a previously described QCT protocol: two regions of interest (ROIs) corresponding to the first 0–10% and 10–20% of the femur as measured from the distal end (R1, R2, respectively), and one region corresponded the first 0–10% of the tibia as measured from the proximal end (R3; Figure 1). These regions anatomically correspond to the distal femoral epiphysis, distal femoral metaphysis and proximal tibial epiphysis.

QCT acquisition and analysis

Participants also received a QCT scan within 2 weeks of their corresponding DXA scans. All computed tomography images were acquired on the non-dominant knee using a Sensation 64 Cardiac scanner (Siemens Medical Systems, Forchheim, Germany; 120 kVp, 280 mAs, pixel resolution 0.352 mm, slice thickness 1 mm). Each scan was 30 cm in length and captured approximately 15 cm each of the distal femur and proximal tibia. All computed tomography scans included a phantom—placed on the side of, or underneath, the subjects’ knee—with known calcium hydroxyapatite concentration (QRM, Moehrendorf, Germany). The phantom allowed conversion of computed tomography Hounsfield units into hydroxyapatite equivalent density for the calculation of vBMD. A single researcher performed all QCT analyses, using regions identical to those described for the DXA protocol; the reliability of this QCT analysis has been previously reported.3

Statistical analysis

Precision for each region of the DXA protocol was calculated using the short-term methodology recommended by International Society of Clinical Densitometry, defined as the root-mean-square standard deviation (RMS-SD), root-mean-square coefficient of variation (RMS-CV) and the least significant change.15 Inter-rater reliability for each region of the DXA protocol was determined using intra-class correlation coefficients (Model type: two-way random, absolute agreement). In total, 42 pairs of knee scans (84 unique images) were used for precision and reliability analyses. The relationship between DXA-based aBMD and QCT-derived vBMD was calculated using Pearson’s product-moment correlation on knees that had both DXA and QCT scans; duplicate single-rater aBMD values from DXA scans were averaged and correlated with QCT vBMD measurements. In total, 46 DXA-QCT image pairs were used for correlational analyses. SPSS Statistics software was used for all statistical calculations (SPSS, Armonk, NY, USA). Unless reported otherwise, data are reported as mean ± standard deviation, and considered significant at the $\alpha = 0.05$ level.

Statement of ethics. We certify that all applicable institutional and governmental regulations concerning the ethical use of human volunteers were followed during the course of this research. All studies were approved by the Northwestern University Institutional Review Board and all subjects provided written informed consent before participation.
RESULTS

General
Demographics and clinical information of the participants are provided in Table 1. The average age of acute SCI participants at the time of initial scan was 28.2 ± 13.0 years; the chronic SCI cohort averaged 41.9 ± 12.2 years. The mean time post-injury was 2.1 ± 0.7 months for the acute population and 196.9 ± 111.4 months for participants with chronic SCI. Mean DXA-based aBMD for acute and chronic SCI is presented in Table 2, with results from each rater displayed separately. Expectedly, mean aBMD levels in the acute SCI cohort were significantly greater than those of the chronic SCI population at each ROI.

Precision of the knee DXA protocol
A total of 42 pairs of DXA knee images were available for evaluation. The RMS-SD (g cm⁻²), RMS-CV (%) and least significant change (%) of aBMD estimates are displayed in Table 3; data are parsed by rater, and presented separately for the acute and chronic subgroups, as well as the overall cohort. In the acute SCI group, RMS-CV values averaged 1.70%, 1.39% and 1.66% for the distal femur epiphysis, distal femur metaphysis and proximal tibia epiphysis, respectively; corresponding values for the chronic SCI cohort are: 3.12, 4.70 and 3.40%.

Reliability and reproducibility of the knee DXA measurements
Intra-class correlation coefficients were used to quantify the intra- and inter-rater reliability of DXA-based BMD assessments at each knee region. Reliability estimates were comparable in the acute and chronic SCI groups, with all intra-class correlation coefficients exceeding 0.97 (Table 4).

Correlation of QCT and DXA scans
Pearson product–moment correlations were used to quantify the strength of linear relationships between DXA-based aBMD and QCT-derived vBMD estimates for each knee region across the total cohort of study participants, and linear regression analysis was used to quantify the mapping between aBMD and vBMD at each site (Figure 2). Significant linear relationships between aBMD and vBMD were found at all ROIs.

DISCUSSION
This study quantified the precision and reliability of a DXA-based knee aBMD assessment protocol and the correlation between DXA-based aBMD and QCT-derived vBMD in both acute and chronic SCI populations. Across the knee ROIs analyzed in this investigation, the mean aBMD in individuals with acute SCI was approximately twice as high as the mean aBMD in individuals with chronic SCI (1.042 vs

| Table 1 Demographic and clinical data of study participants |
|---------------------------------|------------------|
| **Acute SCI** | **Chronic SCI** |
| Time post injury (months) | 2.1 ± 0.7 | 196.9 ± 111.4 |
| Age at injury (years) | 28.2 ± 13.0 | 41.9 ± 12.2 |
| Injury level distribution (%) |
Cervical	66.7	26.5
Thoracic	33.3	70.6
Lumbar	0	2.9
Gender distribution (%)		
F	33.3	21.6
M	66.7	79.4
Body mass index	24.1 ± 4.99	24.1 ± 5.98

Abbreviations: F, female; M, male; SCI, spinal cord injury.

| Table 2 DXA-based mean bone mineral density for each knee region |
|---------------------------------|------------------|
| **Acute SCI (g cm⁻²)** | **Chronic SCI (g cm⁻²)** |
| Distal femur epiphysis |
| Rater 1 | 1.255 ± 0.133 | 0.605 ± 0.183 |
| Rater 2 | 1.255 ± 0.133 | 0.607 ± 0.181 |
| Distal femur metaphysis |
| Rater 1 | 0.927 ± 0.098 | 0.458 ± 0.175 |
| Rater 2 | 0.927 ± 0.098 | 0.462 ± 0.173 |
| Proximal tibia epiphysis |
| Rater 1 | 0.944 ± 0.144 | 0.458 ± 0.131 |
| Rater 2 | 0.944 ± 0.144 | 0.457 ± 0.130 |

Abbreviations: DXA, dual energy X-ray absorptiometry; SCI, spinal cord injury.
0.508 g cm\(^{-2}\)). Measurements of aBMD also appeared to be more precise in the acute SCI cohort, with RMS-CV estimates of 1.70%, 1.39% and 1.66% for the distal femur epiphysis, distal femur metaphysis and proximal tibia epiphysis, respectively, compared with 3.12%, 4.70% and 3.40% in chronic SCI. However, the higher RMS-CV values in chronic SCI are largely attributable to this population’s lower overall mean BMD rather than a systematic increase in RMS-SD. Indeed, for a similar absolute difference in aBMD, populations with lower mean aBMD will have higher RMS-CV estimates than those with higher mean aBMD, based on how RMS-CV is calculated. As such, if precision estimates—in particular, our estimates of least significant change—are expressed in units of aBMD (g cm\(^{-2}\)) rather than as a percentage of mean aBMD, similar results are found for both the acute and chronic cohorts: 0.059, 0.036 and 0.043 g cm\(^{-2}\) for the acute subgroup and 0.049, 0.055 and 0.041 g cm\(^{-2}\) in participants with chronic SCI.

Although few studies specifically designed to quantify the precision and reliability of DXA-based knee aBMD protocols exist in the literature, our estimates of these parameters are consistent with the available data. For example, Bakkum and colleagues have recently reported least significant knee BMD changes ranging from 0.047 to 0.077 g cm\(^{-2}\) when using the existing Hologic DXA forearm acquisition algorithm.\(^{15}\) Given that these estimates were derived from able-bodied individuals—a population markedly less prone to heterotopic ossification and repositioning difficulties than the SCI population tested here—it is particularly noteworthy that our precision and reliability estimates were comparable. In another investigation, Morse and colleagues reported RMS-CV values that were lower at the distal femur (3.01%) than the proximal tibia (5.91%) in a cohort of individuals with chronic SCI,\(^{14}\) corresponding to least significant aBMD changes of 0.069 and 0.083 g cm\(^{-2}\). Unlike the findings of Morse and colleagues, however, our estimates of precision and reliability were comparable at the distal femur and proximal tibia, potentially reflective of the different skeletal ROI used in the two studies and/or the consistency with which those ROI could be delineated. As a final comparison, estimates of least significant aBMD changes in post-menopausal women—another population where bone loss is prevalent—range from approximately 0.020 to 0.050 g cm\(^{-2}\) at the traditional scanning sites of the hip and spine.\(^{17,18}\)

Because the anatomical ROIs used in our DXA protocol were derived from a previously described QCT protocol,\(^3\) we were able to quantify the strength and direction of a linear relationship between DXA-based aBMD measurements and their QCT-derived vBMD counterparts at each site (Figure 2). Importantly, the inclusion of individuals whose bone loss varied from negligible to severe (that is, acute SCI to chronic SCI) enabled these correlations to be examined over the full physiological range of knee BMDs, thus avoiding the well-known restriction of range problem in correlational analyses.\(^{19}\)

Our results revealed a significant, positive correlation between DXA-based aBMD and QCT-derived vBMD at each ROI, although

Table 4 Estimates of intra- and inter-rater reliability in acute, chronic and overall SCI cohorts

<table>
<thead>
<tr>
<th></th>
<th>Acute SCI</th>
<th>Chronic SCI</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ICC</td>
<td>ICC</td>
<td>ICC</td>
</tr>
<tr>
<td>Distal femur epiphysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inter-rater</td>
<td>0.992</td>
<td>0.991</td>
<td>0.999</td>
</tr>
<tr>
<td>Intra-rater (R1)</td>
<td>0.988</td>
<td>0.990</td>
<td>0.998</td>
</tr>
<tr>
<td>Intra-rater (R2)</td>
<td>0.988</td>
<td>0.986</td>
<td>0.996</td>
</tr>
<tr>
<td>Distal femur metaphysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inter-rater</td>
<td>0.994</td>
<td>0.983</td>
<td>0.999</td>
</tr>
<tr>
<td>Intra-rater (R1)</td>
<td>0.992</td>
<td>0.975</td>
<td>0.998</td>
</tr>
<tr>
<td>Intra-rater (R2)</td>
<td>0.992</td>
<td>0.987</td>
<td>0.996</td>
</tr>
<tr>
<td>Proximal tibia epiphysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inter-rater</td>
<td>0.996</td>
<td>0.991</td>
<td>0.998</td>
</tr>
<tr>
<td>Intra-rater (R1)</td>
<td>0.994</td>
<td>0.985</td>
<td>0.997</td>
</tr>
<tr>
<td>Intra-rater (R2)</td>
<td>0.994</td>
<td>0.993</td>
<td>0.997</td>
</tr>
</tbody>
</table>

Abbreviations: ICC, intra-class correlation coefficient; SCI, spinal cord injury.

Figure 2 The relationship between QCT-derived vBMD vs DXA-based aBMD at each knee region. (a) Distal femur epiphysis; (b) distal femur metaphysis; (c) proximal tibia epiphysis. All panels: vertical axis reflects QCT-derived volumetric BMD (g cm\(^{-3}\)); horizontal axis reflects DXA-based areal BMD (g cm\(^{-2}\)); open circles: individual QCT-DXA pairs; bold line: linear regression fit of vBMD and aBMD.
slope of linear regression fits to these data varied slightly across sites. The difference in regression fits may be partly attributable to different proportions of cortical and trabecular bone at these sites. Nevertheless, the overall strength of each fit suggests that DXA-based aBMD and QCT-derived vBMD are linearly related and exhibit constant sensitivity over the relevant physiological operating range.

The primary limitation of this investigation is a potential underestimate of the effects of limb repositioning on precision and reliability. Although participants were repositioned between subsequent scans, a full dismount from the DXA table was not performed. Because changes in limb position and thus the imaging field can impact DXA-based aBMD estimates, it is possible that our performance metrics would have been lower had we more extensively repositioned each participant. In addition, although our estimates of short-term precision and reliability are highly clinically relevant, care should be taken when attempting to generalize these findings to situations in which long-term precision and reliability are more applicable. Finally, it should be reiterated that this study was performed using a Hologic Delphi DXA system, and consequently the absolute aBMD values reported herein will likely differ from aBMD measures computed using a GE Healthcare Lunar DXA system. Importantly, however, our protocol used Hologic Apex analysis software, which has comparable precision and reliability to GE Lunar Prodigy software.\(^{20}\)

Despite the potential clinical importance of monitoring knee BMD post SCI and the ubiquity of DXA-based aBMD measurements at the hip and spine, DXA-based assessments of knee aBMD have yet to become standard clinical practice. Given that this lag is driven in part by the lack of commercially available DXA knee acquisition algorithms, a critical first step is to validate knee aBMD assessment protocols that use existing DXA acquisition algorithms as their basis. We believe that the protocol described herein mirrors what would be encountered in a typical clinic visit, and adequately reflects the challenges inherent to DXA-based knee aBMD assessments, particularly in individuals with SCI. In light of these challenges, it is important to again note that our estimates of precision and reliability were comparable at all knee regions. This consistency may allow clinicians to selectively choose which region(s) to analyze for each patient, potentially mitigating the impact of some postural or bony obstruction artifacts.

In summary, our results indicate that DXA is sufficiently precise and reliable to be used as the basis for routine monitoring of knee BMD post SCI. However, future work that systematically characterizes the sensitivity of DXA-based knee aBMD measurements to changes in limb position, ROI definitions and ectopic bone formation over short- and long-time scales will be essential to the design and interpretation of bone health interventions post SCI. And finally, as has been done previously for the hip and spine, determining the ability of DXA-based knee aBMD to predict fractures and subsequent recovery will be essential to establishing the full clinical utility of the technique.
Bone Mineral Density Assessed by QCT, But Not DXA, Discriminates SCI Patients with Prevalent Fragility Fractures

Introduction: Spinal cord injury (SCI) is characterized by marked bone loss and a high risk of fragility fracture around the knee. The objective of this study was to determine if BMD assessed by QCT and DXA can discriminate prevalent fracture after SCI.

Methods: Forty-nine adults with SCI (1 to 50 years duration) received DXA and QCT scans at the knee. DXA and QCT scans were used to quantify areal BMD (aBMD) and volumetric BMD (vBMD), respectively, at the distal femur and proximal tibia. Participants self-reported the cause, location, and time of any lower-extremity fragility fractures sustained after SCI. The ability aBMD and vBMD to classify groups with and without fractures was determined using discriminant analyses.

Results: Of the 49 participants, 14 had at least one prevalent fracture of the lower-extremity. The mean duration of SCI prior to first fragility fracture was 15.8 yrs (range 3-38 yrs). QCT measures of vBMD \((p \leq 0.014)\), but not DXA measures of aBMD \((p \geq 0.195)\), were significant discriminants of prevalent fractures. The overall classification accuracy for distal femoral vBMD and proximal tibial vBMD were 63.3%, and 71.4%, respectively. On average, vBMD measures were approximately 33.0% lower for individuals with fractures compared to individuals without fractures.

Conclusions: Fractures following SCI are a serious concern, but there is no validated fracture risk assessment tool specific to the SCI population. These results suggest that measurements obtained from QCT may provide a better assessment of fracture risk than those from DXA, but results should be confirmed in a larger sample.
Discriminants of Prevalent Fragility Fractures in Chronic Spinal Cord Injury

W. Brent Edwards, Karen L. Troy, Thomas J. Schnitzer

Spinal cord injury (SCI) is characterized by marked bone loss at regions below the neurological lesion. Within the first 2 to 3 years of SCI, some 50% of the bone mineral at the distal femur and proximal tibia is resorbed. The clinical consequence of this bone loss is a high incidence of low-energy fractures, most commonly observed at regions of the knee. Our purpose in this study was to identify and quantify clinical and bone-specific parameters that would discriminate prevalent fracture in chronic SCI.

Forty-two adults with SCI from 2.8 to 50.0 yrs of duration were recruited as part of a larger prospective intervention trial. Prior to treatment, computed tomography data were acquired for the proximal most 15cm of the non-dominant tibia. Bone mineral content (BMC) and volumetric bone mineral density (vBMD) were determined. Proximal tibia torsional strength (T_{ult}) was quantified using validated patient-specific finite element modeling procedures. The cause, location, and time of any lower-extremity fragility fractures that had occurred after SCI, and prior to treatment, were verified through medical records. The ability of SCI level and severity, BMC, vBMD, and T_{ult} to classify groups with and without fractures was determined using discriminant analyses.

Of the 42 participants, 14 had at least one prevalent fracture of the lower-extremity. The mean duration of SCI prior to first fracture was 15.8 yrs (range 3-38 yrs). SCI level and severity were not significant discriminants of individuals with and without prevalent fractures. The overall independent classification accuracy for T_{ult}, BMC, and vBMD were 71.4%, 69.0%, and 61.9%, respectively. On average, T_{ult} values were 33% lower for individuals with fractures compared to individuals without fractures (Figure 1). BMC and vBMD values were 25% and 17% lower for individuals with fractures compared to individuals without fractures.

In summary, measures of bone mineral and strength, but not SCI level or severity, were significant discriminators of prevalent lower-extremity fragility fractures in individuals with chronic SCI. These preliminary findings suggest a critical need for the assessment of bone mineral and strength after SCI, which is currently not the standard of care for this population. Recruitment for our prospective intervention trial is still ongoing, and we anticipate that larger numbers of participants will allow us to more accurately predict individuals at high risk for fracture after SCI.

![Figure 1](image.png)

Figure 1. Mean (\pm95% CI) T_{ult} for the no fracture and prevalent fracture groups.
Increased marrow adipose tissue following Spinal Cord Injury

* Tiffiny Butler, Worcester Polytechnic Institute, US; Thomas Schnitzer, Northwestern University, UNITED STATES; William Edwards, University of Calgary, CA; Karen Troy, Worcester Polytechnic Institute, US

Spinal cord injury (SCI) all but eliminates loading from the paralyzed regions, resulting in rapid loss of both bone and muscle mass. Suboptimal loading from decreased muscle mass may alter the muscle-bone crosstalk resulting in increased medullary adiposity and decreased bone mass. Marrow adipose tissue (MAT) negatively regulates bone formation and may play a synergistic endocrine related role in the loss of bone following SCI. However, the exact function of MAT and its effect on other diseases is not well understood.

Our purpose was to determine factors related to tibial MAT accumulation following spinal cord injury in acute and chronic SCI subjects. We previously exploited clinical CT data to quantify visceral and intermuscular adipose tissue in the torso. Here, we established a similar technique to quantify MAT using quantitative CT. Computed tomography (CT) data of the proximal 15 mm of the non-dominant tibia were acquired on 49 subjects with acute (13 subjects) and chronic (36 subjects) SCI (41 male), age 22-65 years, duration of injury of 0–42.5 years. A calibration phantom with known hydroxyapatite concentrations was included in each scan and was used to establish a linear relationship between Hounsfield units (Hu) and tissue mineral density. Quantitative image analysis was performed to determine integral BMD (g/cm3) and MAT volume, defined as voxels within the periosteal envelope having Hu [-205 to -50]. Pearson’s correlations were used to determine relationships between MAT volume (cm³) and: BMD, duration of injury (years), age (years) and body mass (kg).

MAT volume was 31.1±23.9 cm³ for all subjects combined, 8.7±6.9 cm³ for acute subjects and 38.3± 22.9 cm³ for chronic subjects. MAT showed an inverse relationship with BMD (r= -0.734, p<0.001) and increased with duration of SCI (r =0.51, p<0.001; Figure 1) but not with age (r=0.13, p=0.42) or body mass (r= -0.02, p=0.89).

Although few studies have investigated changes in long bone MAT in individuals with SCI, others have linked increased marrow adiposity with decreased bone mineral density and cortical bone area. MAT and osteoblasts share common precursors, and low magnitude mechanical vibration has been shown to inhibit adipogenesis in mice. Similarly, resistance exercises and whole body vibration have been shown to prevent increases in vertebral marrow fat during prolonged bed rest. Further study of MAT in SCI patients may lead to improved understanding of the role MAT plays in bone health.

* Presenting Author(s): Tiffiny Butler, Worcester Polytechnic Institute, US

ATTACHMENTS

Figure 1: (a) MAT volume versus duration of spinal cord injury. (b) MAT volume versus integral BMD
Reduction in Proximal Tibia Compartmental Bone Mineral as a Function of Time since Spinal Cord Injury

W. Brent Edwards, Narina Simonian, Karen L. Troy, Thomas J. Schnitzer

Spinal cord injury (SCI) is characterized by marked bone loss at regions below the neurological lesion and a high rate of low-energy fracture. The greatest reductions in bone and highest incidence of fractures are observed around the knee. The temporal pattern of bone loss after SCI is poorly defined and a better understanding may inform approaches to prevent fractures. Our purpose was to quantify reductions to cortical and trabecular specific bone mineral at the epiphysis, metaphysis, and diaphysis of the proximal tibia as a function of time since SCI.

Sixty adults with SCI from 0 to 50 years of duration received computed tomography scans of the non-dominant proximal tibia. Cortical (Ct) and trabecular (Tb) volumetric bone mineral density (vBMD) and bone mineral content (BMC) were calculated for the epiphysis and metaphysis; Ct.vBMD and Ct. BMC were computed for the diaphysis. Exponential decay curves were used to describe changes in bone mineral as a function of time since SCI: y = Aexp(-bt)+C, where A is the loss amplitude; b, the loss rate; C, the new steady-state; and t the time in years. Measures of bone mineral after steady-state were compared to a reference group of 10 able-bodied adults.

Reductions in bone mineral with time since SCI were well described using exponential decay curves with r² ranging from 0.45-0.70. New steady-state values were established within 1.6 to 2.6 years after SCI, depending on the parameter (Table 1). All measures of bone mineral after steady-state were significantly lower than the reference group. Percent differences in Ct.vBMD were substantially smaller than all other parameters suggesting that cortical bone was lost primarily through endocortical rather than intracortical resorption. Negative mean values at the metaphysis were observed for Tb.vBMD and Tb.BMC in individuals with SCI, which indicates a proximal tibia comprised primarily of marrow fat rather than hydroxyapatite.

In summary, cortical and trabecular bone mineral decreased exponentially and reached a new steady state soon (2-3 years) after SCI. Although, percent changes in Tb.BMC were larger than that of Ct.BMC, absolute magnitudes of bone loss were similar amongst these compartments, which would lead to substantial reductions in fracture strength. Therefore, a therapeutic window exists early after SCI during which bone-specific intervention exists to aid in the prevention of SCI-related fragility fracture.

Funding: NIH-F32AR061964; US DOD -SC090010
Table 1. Means and standard deviations for bone parameters of the reference group and the SCI group (including only subjects with an injury duration ≥ time at steady-state (t_{ss})).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Region</th>
<th>Reference group</th>
<th>SCI group after t_{ss}</th>
<th>Difference (%)</th>
<th>t-test (p value)</th>
<th>t_{ss} (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ct.vBMD (g/cm3)</td>
<td>Epiphysis</td>
<td>0.51±0.02</td>
<td>0.45±0.03</td>
<td>-13</td>
<td><0.001</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>Metaphysis</td>
<td>0.77±0.05</td>
<td>0.66±0.06</td>
<td>-15</td>
<td><0.001</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>Diaphysis</td>
<td>0.91±0.05</td>
<td>0.81±0.06</td>
<td>-11</td>
<td><0.001</td>
<td>2.4</td>
</tr>
<tr>
<td>Tb.vBMD (g/cm3)</td>
<td>Epiphysis</td>
<td>0.14±0.04</td>
<td>0.02±0.04</td>
<td>-88</td>
<td><0.001</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Metaphysis</td>
<td>0.13±0.08</td>
<td>-0.01±0.04</td>
<td>-106</td>
<td><0.001</td>
<td>2.5</td>
</tr>
<tr>
<td>Ct.BMC (g)</td>
<td>Epiphysis</td>
<td>6.5±2.4</td>
<td>1.4±0.8</td>
<td>-79</td>
<td><0.001</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>Metaphysis</td>
<td>15.1±4.0</td>
<td>7.7±2.5</td>
<td>-49</td>
<td><0.001</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>Diaphysis</td>
<td>19.7±5.7</td>
<td>11.5±3.5</td>
<td>-42</td>
<td><0.001</td>
<td>2.2</td>
</tr>
<tr>
<td>Tb.BMC (g)</td>
<td>Epiphysis</td>
<td>9.1±3.4</td>
<td>0.9±1.8</td>
<td>-90</td>
<td><0.001</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>Metaphysis</td>
<td>4.7±3.9</td>
<td>-0.3±1.3</td>
<td>-105</td>
<td><0.001</td>
<td>2.4</td>
</tr>
</tbody>
</table>
Correlation of DXA and QCT Imaging at the Knee in Adults with Spinal Cord Injury

Apoorv Prasad, M.D.¹; W. Brent Edwards, Ph.D.²; Julia Marks, B.A.³; Karen L. Troy, Ph.D.⁴; Thomas J. Schnitzer, M.D., Ph.D.³

¹Lincoln Hospital, New York, NY; ²University of Calgary, Calgary, Canada; ³Northwestern University Feinberg School of Medicine, Chicago, IL; ⁴Worcester Polytechnic Institute, Worcester, MA.

Objective: To define and characterize a methodology for DXA imaging of bone at the distal femur and proximal tibia in individuals with spinal cord injury (SCI) and to correlate this methodology with QCT imaging

Design/Method: 52 individuals with either acute (11) or chronic (41) SCI participating in 2 studies of bone health had baseline DXA (Hologic QDR4500A) and QCT (Siemens Sensation 64) measurements of bone at the distal femur and proximal tibia. Three skeletal regions anatomically corresponding to the distal femur epiphysis, distal femur metaphysis and proximal tibia epiphysis were identified and analyzed by both DXA using a forearm algorithm and QCT using previously validated methodology. The precision, inter-rater reliability, RMS-SD and RMS-CV calculations for the DXA protocol were performed using the methodology recommended by ISCD. The BMD measurement by QCT and DXA were correlated using the Pearson’s correlation analysis for each region.

Results: The average age (SD) of the chronic SCI population was considerably greater than the acute population (42.0±13.1 yr vs. 29.0±13.3 yr) and also had significantly lower BMD at all skeletal sites (e.g., 0.612±0.173 gm/cm² vs 1.237± 0.154 gm/cm² distal femoral epiphysis; p<0.01). There was high inter-rater reliability (r>0.99) at all skeletal sites. Regarding precision, the RMS-CV ranged from 1.6%-3.2% at knee skeletal sites in chronic SCI individuals and 2.0%-2.3% in those with acute injury. A strong, positive correlation was found between the BMD values of integral and trabecular bone compartments measured by QCT and the BMD values measured by DXA for all the three regions of the knee (r ≥0.74, p< 0.01).

Conclusion: A new methodology for DXA measurement of bone at the knee for SCI individuals has been characterized; data obtained correlates strongly with QCT measurements at the same skeletal sites.

Support: DOD W81XWH-10-1-0951; Merck Inc.
Changes in Fracture Strength as a Function of Time since Spinal Cord Injury

W. Brent Edwards, Thomas J. Schnitzer, Karen L. Troy

Spinal cord injury (SCI) is characterized by marked bone loss at regions below the neurological lesion. The clinical consequence of this bone loss is a rate of low-energy fracture similar to that of post-menopausal osteoporotic women. The greatest reductions in bone are observed around regions of the knee. Within the first 2 to 3 years of SCI, some 50% of the bone mineral at the distal femur and proximal tibia is resorbed. Unfortunately, the mechanical consequence of this bone loss remains unclear. Therefore, our purpose was to quantify changes in fracture strength at the proximal tibia as a function of time since SCI.

Fifty one adults with SCI and a reference group of 5 able-bodied adults participated in this study. Computed tomography (CT) data were acquired for the proximal most 15cm of the non-dominant tibia. All CT images included a calibration phantom to convert CT attenuation to bone equivalent density. Bone mineral content (BMC) and volumetric bone mineral density (vBMD) were determined. Fracture strength of the proximal tibia loaded in torsion was quantified using validated patient-specific finite element modeling procedures. Exponential decay curves were used to describe changes in bone parameters and fracture strength as a function of time since SCI: $y = A \exp(-bt) + C$, where A is the loss amplitude; b, the loss rate; C, the new steady state; and t the time in years.

Reductions in BMC ($r^2 = 0.60$), vBMD ($r^2 = 0.71$), and fracture strength ($r^2 = 0.63$) with time since SCI were well described using exponential relationships. New steady state values in bone mineral and fracture strength were met within 2.0 – 2.4 years after SCI, depending on the parameter (Figure 1). Whereas, new steady state values for bone parameters were approximately 47% lower than the reference group, the new steady state value for fracture strength was approximately 63% lower than the reference group.

In summary, fracture strength of the proximal tibia decreased exponentially and reached a new steady state following SCI. Although the time to reach steady state was similar amongst bone parameters and fracture strength, steady state values for fracture strength were considerably lower than bone parameters when expressed relative to an able-bodied reference group. These data provide a more in-depth understanding of the mechanical consequence of bone loss after SCI, which ultimately may help in the prevention of SCI-related fragility fracture.
DXA vs QCT Imaging of the Knee in People with Spinal Cord Injury

Apoorv Prasad, Northwestern University, William Edwards, University of Calgary, CA, Kristine Herrmann, Northwestern University, Danielle Barkema, Northwestern University, Narina Simonian, Northwestern University, Renita Yeasted, Northwestern University, Karen Troy, Worcester Polytechnic Institute, US, * Thomas Schnitzer, Northwestern University, UNITED STATES

Purpose: Bone loss is a common consequence of spinal cord injury (SCI) and is associated with a marked increase in fractures, particularly at sites around the knee. DXA measurement of the distal femur has been advocated to assess bone status though comparison with QCT has not been reported. This study was undertaken to compare DXA measurement to QCT imaging at the distal femur and proximal tibia.

Methods: A convenience sample of 31 individuals with SCI was studied; 11 were evaluated within 4 months of acute injury and the remainder had their injury for > 2yrs. Imaging of the knee by both QCT and DXA (Hologic QDR4500A) was accomplished within a 2 week timeframe in each individual. DXA of the knee was performed in duplicate. QCT data were analyzed to evaluate integral, trabecular and cortical BMD of three regions of the knees—distal femoral epiphysis, distal femoral metaphysis and proximal tibial epiphysis—per Drillis and Contini anthropometric proportionality constants (1966). DXA analysis utilized forearm software and a similar anatomic approach as the QCT analysis, with duplicate values for each region averaged. Correlation coefficients (Pearsons’ r) were calculated using SPSS to evaluate correlations between site-specific DXA and QCT values.

Results: The study population was 67.7% male, average age 36.4±13.6 yr, duration of SCI 11.4±12.6 yr. There was excellent correlation between DXA and QCT trabecular and integral BMD measurements at the femoral epiphysis, femoral metaphysis and tibial epiphysis (r>0.9, p<0.001 for all), but weaker correlation between DXA and QCT cortical BMD values (Table 1).

Conclusions: A strong correlation exists between the DXA BMD and the integral and trabecular, but not the cortical, QCT values of the knee in all regions. QCT alone provides information regarding cortical bone status, important in assessing bone strength and fracture risk in SCI populations.

Disclosures: None

* Presenting Author(s): Thomas Schnitzer, Northwestern University, UNITED STATES

ATTACHMENTS

<table>
<thead>
<tr>
<th>Table 1. Pearson’s r for Regions of the Knee: DXA vs QCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>Femoral epiphysis</td>
</tr>
<tr>
<td>Femoral metaphysis</td>
</tr>
<tr>
<td>Tibial epiphysis</td>
</tr>
</tbody>
</table>

* Table 1