Learning Multisensory Representations

Robert Jacobs
UNIVERSITY OF ROCHESTER

05/23/2016
Final Report
Learning Multisensory Representations

People's everyday experiences are multisensory. For example, while eating breakfast, we both see and grasp our coffee cup. Moreover, multisensory perception is critical in some highly important situations, as when a TSA agent searches a passenger’s bag by both looking inside the bag and touching its contents or when a police officer frisks a person using both visual and tactile inspection. In brief, our research program uses experimental and computational methodologies to study how people acquire multisensory representations and how the use of these representations influences perceptual judgements and decision making. The program focuses on people’s performances in visual-haptic and visual-auditory environments. Funding from this grant supported research reported in 7 journal publications and 3 conference publications (manuscripts based on 2 of the conference publications are currently being prepared for journal submission).

Subject Terms
- multisensory perception
- visual perception
- haptic perception
- auditory perception
- perceptual learning
- perceptual decision making
INSTRUCTIONS FOR COMPLETING SF 298

1. REPORT DATE. Full publication date, including day, month, if available. Must cite at least the year and be Year 2000 compliant, e.g. 30-06-1998; xx-06-1998; xx-xx-1998.

2. REPORT TYPE. State the type of report, such as final, technical, interim, memorandum, master's thesis, progress, quarterly, research, special, group study, etc.

3. DATES COVERED. Indicate the time during which the work was performed and the report was written, e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996; May - Nov 1998; Nov 1998.

4. TITLE. Enter title and subtitle with volume number and part number, if applicable. On classified documents, enter the title classification in parentheses.

5a. CONTRACT NUMBER. Enter all contract numbers as they appear in the report, e.g. F33615-86-C-5169.

5b. GRANT NUMBER. Enter all grant numbers as they appear in the report, e.g. AFOSR-82-1234.

5c. PROGRAM ELEMENT NUMBER. Enter all program element numbers as they appear in the report, e.g. 61101A.

5d. PROJECT NUMBER. Enter all project numbers as they appear in the report, e.g. 1F665702D1257; ILIR.

5e. TASK NUMBER. Enter all task numbers as they appear in the report, e.g. 05; RF0330201; T4112.

5f. WORK UNIT NUMBER. Enter all work unit numbers as they appear in the report, e.g. 001; AFAPL30480105.

6. AUTHOR(S). Enter name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. The form of entry is the last name, first name, middle initial, and additional qualifiers separated by commas, e.g. Smith, Richard, J, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES). Self-explanatory.

8. PERFORMING ORGANIZATION REPORT NUMBER. Enter all unique alphanumeric report numbers assigned by the performing organization, e.g. BRL-1234; AFWL-TR-85-4017-Vol-21-PT-2.

9. SPONSOR/MONITOR'S ACRONYM(S). Enter, if available, e.g. BRL, ARDEC, NADC.

10. SPONSOR/MONITOR'S REPORT NUMBER(S). Enter report number as assigned by the sponsoring/monitoring agency, if available, e.g. BRL-TR-829; -215.

11. DISTRIBUTION/AVAILABILITY STATEMENT. Use agency-mandated availability statements to indicate the public availability or distribution limitations of the report. If additional limitations/ restrictions or special markings are indicated, follow agency authorization procedures, e.g. RD/FRD, PROPIN, ITAR, etc. Include copyright information.

12. DISTRIBUTION/AVAILABILITY STATEMENT. Use agency-mandated availability statements to indicate the public availability or distribution limitations of the report. If additional limitations/ restrictions or special markings are indicated, follow agency authorization procedures, e.g. RD/FRD, PROPIN, ITAR, etc. Include copyright information.

13. SUPPLEMENTARY NOTES. Enter information not included elsewhere such as: prepared in cooperation with; translation of; report supersedes; old edition number, etc.

14. ABSTRACT. A brief (approximately 200 words) factual summary of the most significant information.

15. SUBJECT TERMS. Key words or phrases identifying major concepts in the report.

16. SECURITY CLASSIFICATION. Enter security classification in accordance with security classification regulations, e.g. U, C, S, etc. If this form contains classified information, stamp classification level on the top and bottom of this page.

17. LIMITATION OF ABSTRACT. This block must be completed to assign a distribution limitation to the abstract. Enter UU (Unclassified Unlimited) or SAR (Same as Report). An entry in this block is necessary if the abstract is to be limited.
People’s everyday experiences are multisensory. For example, while eating breakfast, we both see and grasp our coffee cup. Moreover, multisensory perception is critical in some highly important situations, as when a TSA agent searches a passenger’s bag by both looking inside the bag and touching its contents or when a police officer frisks a person using both visual and tactile inspection.

In brief, our research program uses experimental and computational methodologies to study how people acquire multisensory representations and how the use of these representations influences perceptual judgements and decision making. The program focuses on people’s performances in visual-haptic and visual-auditory environments. People are extraordinarily good at learning information via one sensory modality but applying the acquired knowledge when environments are perceived via a different modality, a phenomenon known as cross-modal transfer. To date, artificial intelligence systems are relatively poor at cross-modal transfer when environments are defined in a realistic manner.

People learn modality-independent, conceptual representations from modality-specific sensory signals. We hypothesize that any system that accomplishes this feat will include three components: (i) a representational language for characterizing modality-independent representations, (ii) a set of sensory-specific forward models for mapping from modality-independent representations to sensory signals, and (iii) an inference algorithm for inverting forward models—that is, an algorithm for using sensory signals to infer modality-independent representations. We have instantiated this hypothesis in computational systems in which the modality-independent representations are based on a probabilistic approach (distributed representations over latent variables) and in systems in which these representations are based on a probabilistic/symbolic hybrid approach (probabilistic grammars). We have also collected experimental data from people, and used our computational models to account for the experimental findings.

Funding from this grant supported research reported in 7 journal publications and 3 conference publications (manuscripts based on 2 of the conference publications are currently being prepared for journal submission).

Publications funded by this grant:

DISTRIBUTION A: Distribution approved for public release.
Abstract
People's everyday experiences are multisensory. For example, while eating breakfast, we both see and grasp our coffee cup. Moreover, multisensory perception is critical in some highly important situations, as when a TSA agent searches a passenger's bag by both looking inside the bag and touching its contents or when a police officer frisks a person using both visual and tactile inspection.

In brief, our research program uses experimental and computational methodologies to study how people acquire multisensory representations and how the use of these representations influences perceptual judgements and decision making. The program focuses on people's performances in visual-haptic and visual-auditory environments.

Funding from this grant supported research reported in 7 journal publications and 3 conference publications (manuscripts based on 2 of the conference publications are currently being prepared for journal submission).

Distribution Statement
This is block 12 on the SF298 form.

DISTRIBUTION A: Distribution approved for public release.
Explanation for Distribution Statement
If this is not approved for public release, please provide a short explanation. E.g., contains proprietary information.

SF298 Form
Please attach your SF298 form. A blank SF298 can be found here. Please do not password protect or secure the PDF.
The maximum file size for an SF298 is 50MB.

Upload the Report Document. File must be a PDF. Please do not password protect or secure the PDF. The maximum file size for the Report Document is 50MB.

Upload a Report Document, if any. The maximum file size for the Report Document is 50MB.

Archival Publications (published) during reporting period:
See final report.

Changes in research objectives (if any):

Change in AFOSR Program Manager, if any:

Extensions granted or milestones slipped, if any:

AFOSR LRIR Number

LRIR Title

Reporting Period

Laboratory Task Manager

Program Officer

Research Objectives

Technical Summary

Funding Summary by Cost Category (by FY, $K)

<table>
<thead>
<tr>
<th></th>
<th>Starting FY</th>
<th>FY+1</th>
<th>FY+2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment/Facilities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Report Document

Report Document - Text Analysis

Report Document - Text Analysis

Appendix Documents

2. Thank You

E-mail user

May 16, 2016 13:34:14 Success: Email Sent to: robbie@bcs.rochester.edu

DISTRIBUTION A: Distribution approved for public release.