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ABSTRACT 

Momentum transfer from wind forcing into the ocean is complicated by the 

presence of surface waves. Wind momentum and energy are partitioned into wave 

growth, wave breaking, and wave forcing of the ocean surface layer. The purpose of this 

study was to support the ONR Coupled Boundary Layers and Air-Sea Transfer program 

by making very high spatial resolution profile measurements of the 3-D velocity field 

into the crest-trough region of wind-forced surface gravity waves, and study the low-

frequency turbulent motions below the waves. The overarching goal is to improve model 

parameterization of how momentum is imparted on the ocean via wind-driven processes. 

At the Salinas River, in California, the Bistatic Coherent Acoustic Doppler Velocity 

Profiler and Thies Clima Ultrasonic 3-D Anemometer were deployed to capture the 

above-surface and subsurface velocity fields simultaneously to explore three main 

objectives: 1) determine the wave energy decay with depth and confirm the wavenumber, 

2) determine the observed wind stress and calculate the wind stress using a bulk formula 

to identify any variations as a result of this estuarine environment, and 3) determine the 

turbulent stresses in the water column below the waves, and confirm the presence of 

Langmuir circulations and determine their advection and scaling.  



 vi

THIS PAGE INTENTIONALLY LEFT BLANK 



 vii

TABLE OF CONTENTS 

I.  INTRODUCTION..................................................................................................1 
  OCEAN TURBULENCE ..........................................................................1 A.
  FLOW UNDER SURFACE GRAVITY WAVES ...................................4 B.
  TURBULENCE UNDER WIND-FORCED SURFACE C.

GRAVITY WAVES ...................................................................................6 
1.  Triple Decomposition Method ......................................................7 
2.  Frozen Turbulence Hypothesis .....................................................8 
3.  Predicting Turbulence Cospectra in the Frequency 

Domain and as a Function of Wavenumber ..............................10 
4.  Separating Waves and Turbulence ............................................13 
5.  The Role of Langmuir Circulation .............................................14 

II.  BACKGROUND ..................................................................................................25 
  COUPLED BOUNDARY LAYERS AND AIR-SEA TRANSFER A.

PROGRAM ..............................................................................................25 
  AREAS OF STUDY .................................................................................27 B.

1.  Elkhorn Slough, California .........................................................27 
2.  Salinas River, California .............................................................30 

III.  INSTRUMENTATION .......................................................................................35 
  THIES CLIMA ULTRASONIC 3-D ANEMOMETER .......................36 A.
  BISTATIC COHERENT ACOUSTIC DOPPLER VELOCITY B.

PROFILER ...............................................................................................37 

IV.  RESULTS .............................................................................................................41 

V.  SUMMARY AND FUTURE RESEARCH ........................................................55 
  SUMMARY ..............................................................................................55 A.
  FUTURE RESEARCH ............................................................................56 B.

LIST OF REFERENCES ................................................................................................59 

INITIAL DISTRIBUTION LIST ...................................................................................61 
 



 viii

THIS PAGE INTENTIONALLY LEFT BLANK  



 ix

LIST OF FIGURES 

  Energy Spectrum Breakdown and Distribution Based  on the Figure 1.
Kolmogorov Scale .......................................................................................4 

  Example Autospectra of Vertical Velocity Fluctuations .............................6 Figure 2.

  Unsteady Frozen Turbulence Spectrum Affected by Wave Energy ..........10 Figure 3.

  The Real Time Profiler ..............................................................................15 Figure 4.

  IBM Computer Cards on the Surface.........................................................16 Figure 5.

  Langmuir Circulations and December 1982 RTP Data .............................17 Figure 6.

  Rotary Autospectra of the Vertical Shear November 9, 1983 ...................19 Figure 7.

  MILDEX Observation Data .......................................................................20 Figure 8.

  Depth versus Time Fluctuations ................................................................23 Figure 9.

  Examples of LSC Spatial and Time Scale of Variability ..........................24 Figure 10.

  Key Air -Sea Interactions ...........................................................................26 Figure 11.

  Fetch and Predominate Winds during Data Collection Effort on Figure 12.
March 24, 2015 ..........................................................................................29 

  Elevations around the Deployment Area at Elkhorn Slough, Figure 13.
California ...................................................................................................30 

  Salinas River Overview .............................................................................32 Figure 14.

  Bathymetry of Deployment Area Salinas River, California ......................33 Figure 15.

  Salinas River Survey Data Collection Setup .............................................34 Figure 16.

  Sensors Network Setup ..............................................................................35 Figure 17.

  Sensor Deployment Locations ...................................................................36 Figure 18.

  BCDVP Probe Diagram .............................................................................39 Figure 19.

  Acoustic Backscatter Power Profile Time Series ......................................39 Figure 20.

  Wind Flow at the Salinas River on June 3, 2015 .......................................42 Figure 21.

  Decay of Wave Orbital Velocity with Depth .............................................43 Figure 22.

  Drag Coefficient Curves ............................................................................45 Figure 23.

  Salinas River Upwind Cross Section .........................................................47 Figure 24.

  Eddy Correlation Wind Stress versus Bulk Formula .................................48 Figure 25.

  Time Series of Wind Data and Current Speed Profile ...............................49 Figure 26.

  Friction Velocity and Stress .......................................................................50 Figure 27.

  Mean Component Velocities after Coordinate Rotation ............................51 Figure 28.

  BCDVP Velocity Data ...............................................................................53 Figure 29.

  Wave Energy and Langmuir Energy ..........................................................54 Figure 30.



 x

THIS PAGE INTENTIONALLY LEFT BLANK 



 xi

LIST OF ACRONYMS AND ABBREVIATIONS 

3-D three dimensional 

ABL atmospheric boundary layer 

ASIT Air-Sea Interactions Tower  

BCDVP  Bistatic Coherent Acoustic Doppler Velocity Profiler 

BLT boundary layer turbulence 

CBL coupled boundary layer 

CBLAST  Coupled Boundary Layers and Air-Sea Transfer  

CBLAST-LOW  Coupled Boundary Layers and Air-Sea Transfer Experiment in 
Low Winds 

cph cycles per hour 

COAMPS Coupled Ocean-Atmosphere Mesoscale Prediction System  

DRI Department Research Initiative 

GPS Global Positioning System 

IR infrared 

LFT linear filtration technique 

LSC Langmuir supercells  

LWT linear wave theory 

MILDEX Mixed Layer Dynamics Experiment 

MVCO  Martha’s Vineyard Coastal Observatory  

NRL Naval Research Laboratory 

ONR Office of Naval Research 

OSBL ocean surface boundary layer 

rms root mean squared  

ROMS Regional Ocean Modeling System  

RTP Real Time Profiler 

SST sea surface temperature 

TDM triple decomposition method  

THIES Thies Clima Ultrasonic 3-D Anemometer  

VADCP five-beam acoustic Doppler current profiler  

VMCM Vector Measuring Current Meters 

WBL wave boundary layer  



 xii

THIS PAGE INTENTIONALLY LEFT BLANK  



 xiii

ACKNOWLEDGMENTS 

First and foremost, I would like to thank the United States Navy and the Naval 

Postgraduate School faculty and staff for the opportunity to further my education and 

acquire my master’s degree. My deepest gratitude goes to Professor Tim Stanton for the 

countless hours of analysis and discussions that helped make this thesis a reality. Without 

his hard work, expertise, and patience I would have not been effective in my research 

efforts. Additionally, I would like to thank Jim Stockel and Keith Wyckoff for the 

technical expertise and assistance they provided during my field research and for helping 

me to understand the computational analysis software. I extend my appreciation to 

Professor Timour Radko and Aileen Houston for providing additional insights during the 

thesis reviewing process, which were vital to its completion. 

I would like to acknowledge the folks at the Moonglow Dairy and Diane Kodama 

of the U.S. Fish and Wildlife service for providing access to the areas where we 

conducted our research. 

Lastly, I would like to thank my support network of friends and classmates that 

helped keep me focused on the prize and maintain a positive attitude. Most importantly, I 

would like to thank my family for the unrelenting support, patience, and encouragement 

throughout my time at the Naval Postgraduate School. Elizabeth, you especially were my 

rock and I could not have done this without you. I love you with all of my heart and I am 

eternally thankful that I have you.  

 



 xiv

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 1

I. INTRODUCTION 

As wind blows across the ocean surface an atmospheric boundary layer forms and 

momentum is transferred across the air/ocean interface, forming a turbulent boundary 

layer in the upper ocean. Part of the momentum is passed into forming waves, while part 

directly forces the ocean surface. The presence of evolving waves greatly complicates our 

understanding of the atmosphere/ocean coupling, as the large magnitude, highly 

irrotational wave motions readily mask the turbulent motions that are typically one or two 

orders of magnitude smaller, and yet transfer the wind’s momentum into the ocean 

interior. Turbulence has a large influence above the sea surface in the development of 

wind waves, while below the surface additional turbulence is caused by wave breaking 

and waves nonlinear interactions across varying scales. It is therefore important to not 

only capture the above-surface velocity fields but also those below the surface 

simultaneously in order to understand and model this wind/ocean momentum transfer.  

The purpose of this study was to make very high spatial resolution profile 

measurements of the three-dimensional (3-D) velocity field right up to the crest-trough 

region of wind-forced surface gravity waves, and study the low frequency turbulent 

motions below the waves. This furthered the understanding and modeling of how 

momentum is imparted on the ocean via wind-driven waves. 

 OCEAN TURBULENCE A.

Nearly 500 years ago, turbulence was first recognized by Leonardo da Vinci; 

however, it was not until the 1930s that a mathematical description of turbulence was 

first attempted by G. I. Taylor. Utilizing statistical correlations, Fourier transforms, and 

power spectra, Taylor was able to analyze homogeneous isotropic turbulence (Flierl and 

Ferrari 2007). The Taylor microscale (λ), or turbulent microscale, defined by  

	
2 2

2

' 'u u

x 
    

	,	 ሺ1.1ሻ	
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where ݑ′ is the root mean squared (rms) of the fluctuating velocity field delineates the 

boundary of the inertial subrange and the start of the dissipation subrange where the fluid 

viscosity starts to dominate, as seen in Figure 1 (Pope 2000).  

In 1941, Kolmogorov developed the K41 theory, which serves as a basis for many 

current theories of turbulence (Flierl and Ferrari 2007). K41 finds that despite smooth 

forcing and initial conditions, irregular and complex flows will develop across multiple 

scales within turbulent flows. In ensemble averaged velocity spectra of active turbulent 

boundary layers a statistical equilibrium was found where concentrated small-scale 

energy dissipation balanced large-scale energy inputs. Second, an energy spectrum	ܧሺߢሻ 

is observed over a wide range of wavenumbers that satisfies the equation  

	  
2

5/33E κ α( )  * κ  	,	 ሺ1.2ሻ	

where 1.5 ~ ߙ is the empirical constant, ϵ is the energy dissipation rate and ߢ is the radian 

wavenumber  

	 κ 2πk 		 ሺ1.3ሻ	

(Govender et al. 2004).  

This equation for ܧሺߢሻ is valid across the inertial subrange, beyond which will 

display a rapid exponential decay through the dissipation range as shown in Figure 1.  

There are six properties that best distinguish turbulence: 

1. “Turbulence is irregular and is defined as ‘An irregular condition 
of flow in which the various quantities show a random variation 
with time and space coordinates, so that statistically distinct 
average values can be discerned.’” (Hinze 1975) 

2. “Turbulence is highly diffusive, which causes rapid mixing and 
increases transfer rates of momentum scalar properties within the 
fluid.” (McPhee 2008) 

3. “Turbulence occurs at high Reynolds numbers, as instabilities from 
interactions of viscous and inertial forces manifest themselves.” 
(McPhee 2008) This means that ratios between the largest and 
smallest length scales are important in characterizing turbulence as 
seen in Figure 1. Well resolved turbulent spectra allow the 
turbulent production and dissipation scales to be identified, 
allowing the definition of turbulent Reynolds numbers (Flierl and 
Ferrari 2007). “The Reynolds number (ܴ݁) is defined as  
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U*L

Re


 , (1.4) 

 where ܷ is the characteristic velocity, ܮ is the characteristic length 
scale in the flow, and ݒ is the kinematic molecular viscosity.” 
(McPhee 2008) 

4. “Turbulence at high Reynolds numbers is a characteristic of the 
flow rather than the particular fluid.” (McPhee 2008) 

5. “Turbulence is essentially dissipative, meaning that work must be 
done to maintain viscous losses to internal energy of the flow.” 
(McPhee 2008) 

6. “Well-developed unstratified turbulence is both highly rotational 
and three dimensional.” (McPhee 2008) 

Turbulent motions are inherently unpredictable predict in space and time due to 

their nonlinear nature. It can only be forecasted for short periods using current fluid 

dynamic equations due to the strength of the nonlinearities of turbulent motions. Far from 

boundaries, well developed unstratified turbulence is isotropic and homogenous. Here 

“isotropic” means there is a statistically averaged uniform fluctuation magnitude in all 

directions, while “homogenous” refers to a lack of spatial gradients across any averaged 

quantity (Flierl and Ferrari 2007). 

A key approach to analyzing turbulence is Taylor’s (1938) frozen turbulence 

hypothesis, which relates time domain observations of turbulent motions at a fixed 

location to the spatial domain of the eddy field advecting past the sensor. The assumption 

is that the turbulent field is evolving at a timescale much longer than the advective 

timescale. The frozen turbulence hypothesis is complicated when establishing a 

relationship between turbulence in the influence of the strong, periodic, irrotational flow 

under surface gravity waves. 
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 Energy Spectrum Breakdown and Distribution Based  Figure 1. 
on the Kolmogorov Scale 

 
The energy containing portion of the spectrum, inertial subrange, and the dissipation 
portion of the spectrum are designated by region. Using eddy and turbulent length scales 

(L, l), these regions are separated by the cutoff wave number (݇௖) = 
ଵ

௅
 , the roll off wave 

number (݇௢), and the dissipation wave number (݇ௗሻ described as 
ோ௘

య
రൗ

௅
 with Re 

representing the Reynolds number. Adapted from Hossain, N., 2012: Turbulence 
modeling. Computational Mechanics. Accessed September 1, 2015. [Available online at: 
http://naimhossain.blogspot.com/2012/08/turbulence-modeling.html.]  

 FLOW UNDER SURFACE GRAVITY WAVES B.

Since this is a study of turbulence in the presence of surface gravity waves, it is 

important to review the flow field under ocean surface gravity waves. Airy theory was 

designed to provide a relationship between the local sea surface elevation and velocity or 

pressure fields under surface gravity waves. While it assumes a flat bottom, it is valid 

both inside and outside the surf zone (Guza and Thornton 1980). Early research, such as 

that conducted by Bowen in 1966 and Sampson in 1969, focused on the relationship of 

the mean water depth (h) and the deep-water wavelength of the spectral peak (L) to relate 

the sea surface elevation and velocity at a single location.  
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The use of linear wave theory (LWT) and the linear superposition of independent 

sinusoids allow an accurate equation describing the local sea surface elevation ߟሺݐሻ 

	    n n n n n
n 1 n 1

η t a cos k *x σ t ε  η
 

 

     	,	 ሺ1.5ሻ	

where ܽ௡ is the amplitude, x is the horizontal displacement, t is time,	ߝ௡ is the phase 

angle, ݇௡ is the horizontal vector wave number, and ߪ௡ is the frequency relation to k via 

linear wave theory. The relation between ߪ௡ and k is  

	 2 tann n ng k k h  ,		 ሺ1.6ሻ	

where g is gravity and h is the total water depth (Guza and Thornton 1980). From these 

equations a relationship between the sea surface elevation and velocity field can be made 

using a spectral transfer function 

	    n n
n

n 1 n

σ cosh k h z
u t η

sinh k h





 
  

 
 ,		 ሺ1.7ሻ	

where z	is the depth of interest (Guza and Thornton 1980).  

In addition to this LWT relation between η and the velocity field, researchers 

began to relate their findings by also using the Ursell number. The Ursell number (Ur) 

defines the nonlinearities associated with long period surface gravity waves via the 

equation 

	
2

a
Ur

h(kh)
 ,		 ሺ1.8ሻ	

where a is the amplitude, h is the mean water depth, and k is the wavenumber of the 

spectral peak. The amplitude a was derived from  

	 s
1/3

H
a 2

2
  ,		 ሺ1.9ሻ	

where v is the RMS value of the surface elevation. A small Ur indicates that LWT is 

applicable when long period waves are involved (Guza and Thornton 1980). 

Linear wave theory for surface gravity waves was found to be limited values of 

Ur was less than 0.3 (Madsen 1971). For higher values, despite the nonlinearity present 

Airy wave theory remained reasonably accurate based on the results from Guza and 

Thornton (1980). Additionally, they found that at higher harmonics, errors in predicting 
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the velocity field became more pronounced suggesting increased nonlinearity at higher 

frequencies.  

 TURBULENCE UNDER WIND-FORCED SURFACE GRAVITY WAVES C.

Turbulence under wind-generated waves has been studied in the lab and in the 

field only over the past few decades. This is a challenging observational and theoretical 

topic as the turbulent fluctuations are typically about two orders of magnitude smaller 

than the orbital wave velocity field.  

During field measurements collected on Lake Ontario, the turbulent kinetic 

energy and dissipation rates were found to intensify with respect to the turbulent 

boundary flow, suggesting that shear production is not the sole generator of turbulence 

below wind-driven waves. Furthermore, an additional spectral bump was noted near the 

dominant wave frequency, which indicated that turbulent fluctuations were advected by 

mean current flow and orbital wave motions (Magnaudet and Thais 1995). 

 Example Autospectra of Vertical Velocity Fluctuations Figure 2. 

 
“The dashed line is the mean spectrum from the velocity records at four ADVs, and the 
solid line is the spectrum from a single pressure sensor and assumes a linear wave 
transfer function to determine the velocity spectrum (Equation 1.24). The pressure 
spectrum at frequencies above 2 rad s-1 is dominated by white noise, causing the lack of 
agreement between the spectra at high frequency. The frequency band in which the two 
spectra overlie one another is the wave band. The thick vertical line is the wave band 
cutoff ωc used for separating below-wave-band (turbulence) motions from wave band 
motions.” Source: Gerbi, G. P., J. H. Trowbridge, J. B. Edson, A. J. Plueddemann, E. A. 
Terray, and J. J. Fredericks, 2008: Measurements of momentum and heat transfer across 
the air–sea interface. J. Phys. Oceanogr., 38, 1054–1072.  
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Evident by the findings at Lake Ontario, turbulent energy will dominate the 

spectrum to the left of the wave band cutoff frequency. The breakdown of the 

Kolmogorov scale (Figure 1) relates to the example spectrum shown in Figure 2, where 

the inertial subrange is to the right of the wave band cutoff frequency and will contain 

both wave energy and some turbulent energy, making it difficult to isolate the turbulent 

contribution to the vertical velocity field. The turbulent energy containing portions of the 

spectrum and inertial subrange are the areas of interest for Figure 2. It is important to 

note that the dissipation range as described in Figure 1 is not resolved in this data. 

In order to resolve the turbulent energy, the dominant wave orbital motion in the 

vertical velocity spectra is required to be separated from turbulent velocities. Researchers 

have developed a number of methods in an attempt to resolve this issue to include the 

triple decomposition method, frozen turbulence hypothesis, and use of the turbulence 

energy cospectra as function of the frequency. Further complications arise from wave-

breaking events and the presence of Langmuir circulation components, which are defined 

in the following sections.  

1. Triple Decomposition Method  

Developed by Magnaudet and Thais (1995), the triple decomposition method 

(TDM) allows the separation of the three contributors to fluctuating motions: potential 

orbital motion, rotational orbital motion, and turbulent fluctuations. The method relies on 

an extension of the Dean (1965) method and the linear filtration technique (LFT) to 

perform its decomposition of the velocity field under waves. 

The Dean method is used to determine the potential orbital motion by using a 

Fourier expansion of an analytical stream function to describe flow under a nonlinear 

gravity wave. More importantly, this method provides an ideal fit to surface layer 

boundary conditions, especially for nonlinear waves with heights greater than 50% of the 

breaking height. An advantage of the Dean method is that it deals with waves that 

“include a uniform steady current and specified pressure distribution across the free 

surface” (Dean 1965). 
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Benilov et al. (1970) developed the LFT utilizing the concurrent measurement of 

sea surface elevation (η) and the near surface velocities to isolate the wave induced 

motions using a linear filter. The LFT’s two key assumptions were best summarized by 

Jiang et al. (1990): (1) there is a linear relation between wave-induced motions and water 

displacement, and (2) there is no correlation between wave-induced motion and 

turbulence. This method follows closely with Equation 1.8.  

In a follow-on article, Benilov et al. (1974) identifies a key parameter for 

evaluating the air flow structure over the sea during various stage of wave development. 

Defined by 

 0

*

c

u
,  (1.10)  

where ܿ௢ is the phase velocity of the main energy-containing component of the wave 

spectrum. The friction velocity (ݑ∗) is described by the equation  

	
1

2
* ( )u u w   ,		 ሺ1.11ሻ	

where 'w'u  is the covariance between the horizontal and vertical velocity components. 

Higher values (~85) for this parameter indicate attenuated wind generated waves, while 

lower values (~20) indicate developing wind-generated waves. 

Together the LFT and Dean method were utilized by Magnaudet and Thais (1995) 

to develop the TDM. The TDM uses a nonlinear method via an extension of the Dean 

method, to compute the velocity fluctuations that relate to the potential orbital motions by 

making an assumption that the motion is 2-D and nondispersive, while allowing a mean 

drift.  

2. Frozen Turbulence Hypothesis 

The previously discussed frozen turbulence hypothesis has an important role in 

the turbulence-wave relationship and produces the resulting wave number-frequency 

relation  

	 kU
d

  ,		 ሺ1.12ሻ	
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where ω is the radian frequency, Ud is the steady drift speed, and k is the radian 

wavenumber described by 

	
2

k



 ,		 ሺ1.13ሻ	

where   is the turbulent length scale. The frozen turbulence hypothesis is based on 

steady advection in boundary layer flows, making it a crucial concept when using an 

Eulerian sensor (fixed in location while the environment moves around it). This scaling 

has to be used carefully when orbital velocities from surface waves are introduced. A 

much more complicated pattern of the turbulent eddies is observed from an Eulerian 

sensor as the turbulent eddy field is carried by wave orbital motions. As a result, the 

spectral energy of the turbulence field is moved upband because of the wave orbital 

motion (Figure 3). This is a key concept in understanding how the spectrum in Figure 2 is 

changed by unsteady advection. To simplify the effects of wave motion induced by 

unsteady advection in the frequency domain, a restriction of the horizontal motion was 

reduced to a single direction, x along the wave propagation direction. In part this 

simplification led to a more streamlined means of predicting the turbulence cospectra in 

the frequency domain (Gerbi et al. 2008). 
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 Unsteady Frozen Turbulence Spectrum Affected by Wave Energy Figure 3. 

 

 
“This represents the frequency domain variance-preserving cospectra of unsteadily 
advected frozen turbulence whose wavenumber spectrum is described by the 
semitheoretical prediction of the turbulence cospectra as a function of wavenumber. The 
wave band cutoff, ωc, is shown by the vertical line at 0.38 s-1. As the wave energy 
increases, the effects of the unsteady advection shift more energy from below-wave-band 
frequencies to wave band frequencies and decrease the apparent rolloff frequency. To 
examine larger wave effects σU/Ud was used, where σU is the standard deviation of wave 
velocities and Ud is the steady drift speed.” Source: Gerbi, G. P., J. H. Trowbridge, J. B. 
Edson, A. J. Plueddemann, E. A. Terray, and J. J. Fredericks, 2008: Measurements of 
momentum and heat transfer across the air–sea interface. J. Phys. Oceanogr., 38, 1054–
1072.Source: Gerbi et al. 2008.  

3. Predicting Turbulence Cospectra in the Frequency Domain and as a 
Function of Wavenumber  

To form the cospectra between turbulent fluctuating horizontal and vertical 

velocity components of the flow each components that make up the instantaneous 
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velocities in the x, y, and z directions as denoted by u, v, and w are required is broken 

down as  

	
~

'  u u u u


   ,		 ሺ1.14ሻ	

where ũ represents the wave induced perturbations, ū is the time mean over the length of 

the ensemble, and u’ describes the turbulent perturbations. The turbulent velocities u’ and 

w’ are related to the vertical Reynold’s Stress (τ) via  

	 ( ' ) w'o u   ,		 ሺ1.15ሻ	

where ρo is the reference density and 'w'u  is the covariance. Following Gerbi et al. 2008, 

to estimate Reynolds stresses under waves from Eulerian velocity observations, a shape 

function for the modification of the cospectrum is developed:  

	
7

3'w'

1
( )

1

uw o

o

Co k k

u
A

k
k


 

  
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,		 ሺ1.16ሻ	

where k is the wave number, ok is the rolloff wave number representing the inverse of the 

turbulent eddy length scale, 

	 1
ok L 	,	 ሺ1.17ሻ	

and  
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A



   
 

.	 ሺ1.18ሻ	

The rolloff wavenumber identifies the location of the peak for the variance preserving 

spectrum. In this form the cospectra is relatively constant for small wave numbers and 

rolls off at a 
7

3k


rate for high wave numbers. In the frequency domain the cospectrum 

( )uwKo  is derived in part using Equation 1.16 
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    ,		 ሺ1.19ሻ	

where ( )c  is the temporal autocorrelation function of the wave displacement defined by 
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
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 






   ,		 ሺ1.20ሻ	

where ( )uuS  and ( )vvS   are the two-sided autospectra for the horizontal velocities and 

the radian frequency ( ) is related to the frequency ( f ) by the expression 
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2

f



 .		 ሺ1.21ሻ	

Equation 1.20 estimates wave displacements using relation between the autospectra and 

normalizing by the radian frequency result in a rapid decay due to the frequency squared 

term (Gerbi et al. 2008). 

Using Equations 1.16 through 1.21, semitheoretical spectra were generated as 

shown in Figure 3. In this figure, the effects of increased wave energy is parameterized 

by  

	 U

dU
 ,		 ሺ1.22ሻ	

where U  is the standard deviation of wave velocities and Ud is the steady drift speed. 

The widening of the spectral peak along with a spectral peak decrease with increasing 

wave orbital velocity can be seen in Figure 3, confirms that unsteady advected frozen 

turbulence has relatively more energy in the wave band and less energy below the wave 

band. Additionally, it is important to note the proximity of the cutoff wave number ( ck ) 

to the rolloff wavenumber ( 0k ),  

	
0

ck
k ,		 ሺ1.23ሻ	

noting that the cutoff wave number is a property of the wave field and the rolloff 

wavenumber is a property of the turbulence. The relation between Equation 1.22 and 1.23 

defines the magnitude of the spectral peak’s distortion. A small value for the ratio of 

cutoff wave number over the rolloff wavenumber and large values for the ratio of the 

standard deviation of wave velocities and steady drift speed will result in significant 

errors when estimating the covariance and rolloff wavenumber (Gerbi et al. 2008).  

Using the simulated spectra shown in Figure 3, Gerbi et al. (2008) found that the 

ratio of the standard deviation of wave velocities and steady drift speed yielded values 

less than or equal to 2; therefore, the steadily advected form (Equation 1.12) of the frozen 

turbulence could be used to perform the transformation from observed frequencies to 

wavenumber values.  
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Applying the frozen turbulence hypothesis and estimating the turbulence 

cospectra are important concepts when analyzing turbulence however, they can readily be 

contaminated by the large wave orbital velocities. It is therefore necessary review an 

additional method to the TDM that may prove to be a more effective method in our case 

where our observations are limited by lower wind speeds. 

4. Separating Waves and Turbulence 

Two differences between waves and turbulence are the differences in spatial and 

temporal scales associated with each, and that wave velocities near the surface are 

characteristically much larger than turbulent. The strong wave orbital motions results in 

the aliasing of some low wavenumber energy into the wave band as a result of unsteady 

advection for an Eulerian sensor (Gerbi et al. 2008).  

To perform the separation a wave band cutoff frequency (ωc), as seen in Figure 3, 

must be calculated as the area below this cutoff line is considered to be dominated by 

turbulent motions. To calculate the wave band cutoff the orbital vertical velocity 

spectrum is estimated from the pressure spectrum ( ppS )  

	
2

(p) 2
2 2
0

tanh ( )ww pp

k
S S k z h

 
  ,		 ሺ1.24ሻ	

where h is the water depth. Outside of the surface gravity wave frequency band, vertical 

velocity spectrum derived from velocity measurements ( wwS ) are expected to be greater 

than those of vertical velocity spectrum derived from pressure measurements 

( (p)
wwS ). Gerbi 2008 chose the wave-band-cutoff frequency to be when the condition 

	 (p) ( ) 0.3 ( )ww c ww cS S  ,		 ሺ1.25ሻ	

was met. Additionally, the cutoff frequency and Equation 1.12 can be used to compute 

the cutoff wavenumber (kc), identifying the minimum resolvable length scale for the 

below-wave band turbulence. Typically the minimum resolvable length scales are less 

than twice the measurement depth (Gerbi et al. 2008). 

Unsteady advection, a wide range of scales, complex motion paths as a result of 

wave-turbulence interactions all make it difficult enough to separate out the turbulent 
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motions. The additional effects of Langmuir circulations add further complications to the 

process. Wilczak and Tillman (1980) found turbulent eddies had longer length scales in 

the wind stress parallel direction and elongated convective plumes were present in the 

downwind direction possibly indicating the influence of Langmuir circulations. 

Therefore, Langmuir circulation is another important factor to consider when in the study 

of turbulent stresses under wind-forced waves. 

5. The Role of Langmuir Circulation  

Langmuir Cells were first discussed by Langmuir (1938), and were observed to be 

counter-rotating vortices that were aligned with the wind flow. The areas between adjacent 

cells formed a convergent region often defined by the presence of flotsam; the associated 

flow between these cells became known as Langmuir circulation. Prior to a filed study by 

Weller and Price (1988) the role of Langmuir circulation in the mixing and vertical 

redistribution within the mixed layer, and upper ocean dynamics had not been clear. Weller 

and Price (1988) indicated that Langmuir circulations were typically characterized by 

downward vertical velocities less than or equal to 5 cm s-1. Additionally, there were no 

profile measurements conducted to capture the entire upper layer’s characteristics, thus 

leading to the uncertainty of their role in vertical transfers. Momentum transfer from wind 

to the ocean had been assumed to be accomplished through a classic turbulent surface 

boundary layer extending down from the ocean surface.  

Weller and Price 1988 found compelling evidence through their observations 

conducted across three cruises onboard the Research Platform Flip that Langmuir 

circulation contributed to entrainment processes in the ocean mixed layer. Their three 

cruises took place during December 1982, May 1983, and October through November 

1983. To capture velocity profiles spanning the ocean mixed layer into the pycnocline 

between surface and 165 m they used a combination of fixed depth Vector Measuring 

Current Meters (VMCM) and a profiling Real Time Profilers (RTP) (Figure 4). Computer 

punch cards were used for surface visualization of convergence zones as seen in Figure 5. 

The velocity data collected on the December 1982 cruise allow development of a 

conceptual model of Langmuir circulation shown by Figure 6b.  Strong downward 
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motions and weaker upward motion associated with the Langmuir circulation are seen in 

the profile time series data in Figure 6a. Based on the RTP data, it was noted that the 

presence of greater velocities than previously recorded existed, up to 27 cm s-1, however 

typical vertical velocities were generally observed between .025 to .1 m s-1. The velocity 

maxima were found to be below the surface and above mixed layer median depth. The 

areas of strongest vertical shear were also found to occur at the areas of convergence and 

decrease in the area between cells.  

The velocity profiles indicated the presence of a downwind jet along the area of 

convergence. Looking at the mean downwind flow across multiple cells, they deduced 

that the vertical transport of horizontal momentum by Langmuir cells was mixed layer 

depth dependent. This meant that the downwind flow in the near surface layer was 

greater at the deeper depths (6.5 m) than at shallower depths (2 m) (Figure 6). 

 The Real Time Profiler Figure 4. 

 
“Two dual-propeller VMCM sensors mounted at right angles provided measurements of 
the three orthogonal components of velocity (with two redundant measurements of the 
vertical component). A Seabird conductivity cell and a temperature sensor are mounted 
on the top of a frame that supports a fin for orienting the instrument relative to the flow.” 
Source: Weller, R. A., and J. F Price, 1988: Langmuir circulation within the oceanic 
mixed layer. Deep-Sea Res. 35: 711–747. 
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 IBM Computer Cards on the Surface Figure 5. 

 
Photograph of computer cards ( ) on the sea surface showing the convergence zones 
between Langmuir Cells. The instruments are suspended beneath the booms as the ship 
drifts through the regions of convergent flow marked by these lines of computer cards. 
Source: Weller, R. A., and J. F Price, 1988: Langmuir circulation within the oceanic 
mixed layer. Deep-Sea Res. 35: 711–747. 
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 Langmuir Circulations and December 1982 RTP Data Figure 6. 

 
“Comparison of RTP data (a) from the December 1982 cruise (as shown in Weller et al. 
1985) with Pollard’s (1977) visualization (b) of Langmuir circulation. In (a) 30 min of 
data from the RTP are shown that were collected with the instrument parked at a depth of 
23 m. Vertical velocity data subjected to a 3-point running mean are shown on the 
forward face of the figure, and horizontal velocity data from the same depth (23 m) are 
shown on the top surface. The downwelling and downwind velocity signals were 
encountered by the RTP in convergence regions marked by computer cards” shown in 
(a). Source: Weller, R. A., and J. F Price, 1988: Langmuir circulation within the oceanic 
mixed layer. Deep-Sea Res. 35: 711–747. 
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Of the three cruises conducted on Flip by Weller and Price (1988), the data 

collection efforts conducted during the Mixed Layer Dynamics Experiment (MILDEX) 

through October and November 1983 were the most comprehensive. High levels of wind 

forcing variability revealed the presence of multiple vertical velocity scales associated 

with Langmuir circulations existed. During developing wind events, a multiplicity of 

scales was observed, and once the circulation stabilized, they became characterized by 

larger scales. The use of the computer cards on the surface identified this cycle by their 

transition from small to large spacing between lines over time with maximum spacing 

between cells three times the depth of the mixed layer. Though the Langmuir cells were 

found to be transient, gaps between measurements in the vertical profile did not allow the 

data from either study to resolve the cells well enough to fully capture their growth, 

decay and motion. In addition to scaling variability, the MILDEX data set showed that 

that Langmuir cells contributed to the energy content and the near surface shear in the 

frequency band between 2 and 10 cycles per hour (cph), as shown by the peak in the 

vertical shear energy spectrum in Figure 7. The ensemble low frequency energy peak was 

found to be a result of the long vortical flows spanning half of the mixed layer advecting 

past the Eulerian sensors. Additionally, a higher maximum vertical shear was found to 

coincide with periods of rapid increase in wind, as shown by the red boxed region in 

Figure 8. 
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 Rotary Autospectra of the Vertical Shear November 9, 1983 Figure 7. 

 
“Rotary autospectra of the vertical shear of horizontal velocity for November 9, 1983 
from five depth pairs, 2–6.5 m, 6.5–20 m, 20–35 m, 35–50 m, and 50–65 m. The top 
spectrum is at the proper location relative to the vertical axis; each spectrum below is 
shifted down an additional two decades. The solid line is the clockwise spectrum; the 
dashed line is the counter-clockwise spectrum. The 95% confidence limits are indicated.” 
The red line indicates the peaks within the mixed layer down to 35 m, beyond which 
shear is dominated by low frequency variability. Source: Weller, R. A., and J. F Price, 
1988: Langmuir circulation within the oceanic mixed layer. Deep-Sea Res. 35: 711–747. 
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 MILDEX Observation Data Figure 8. 

 
“Time series of wave height (eyeball observation), direction of the wind stress (direction 
toward), magnitude of the wind stress, and magnitude of the shear in the 2–14 cph band 
at depth pairs 2–6.5 m, 6.5–20 m, 20–35 m, and 25–50 m.” The red box shows the 
correlation between the increase in wind magnitude with a peak in the vertical shear that 
transfers down to around 35m depth. Source: Weller, R. A., and J. F Price, 1988: 
Langmuir circulation within the oceanic mixed layer. Deep-Sea Res. 35: 711–747. 

This study allowed the role of Langmuir circulation in breaking up stratification 

below the mixed layer versus the role boundary layer turbulence (BLT) to be 

investigated. Their conclusion was that Langmuir circulations maintained mixing in the 

upper mixed layer, while BLT was the mechanism that dominated entrainment at the base 

of the mixed layer since Langmuir circulations had little effect on mixing the bottom half 

to two thirds of the mixed layer (Weller and Price 1988).  

In the shallow water coastal region, Marimorino et al. (2005) noted banded 

structures that resulted from bottom sediments suspended in upwelling regions of 

Langmuir circulations in the Gulf of Mexico. The spacing between streaks was found to 

be 10 times the vertical Langmuir cell extent, which is much greater than what Weller 
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and Price found. The greater horizontal scale in shallow water resulted in LSC’s major 

impact on sediment and bioactive material transport in the shallow coastal regions. 

More recently, Gargett and Wells (2007) utilized a five-beam acoustic Doppler 

current profiler (VADCP) to study Langmuir circulation in coastal waters. The VADCP 

is a commercial Doppler current profiler with a four-beam Janus configuration transducer 

set with an additional center beam to better resolve vertical velocity profiles. It is 

important to note that the VADCP’s monostatic configuration caused the effective 

sample volume to resolve three components of velocity to equal the range, or half the 

range for solutions using the central beam, resulting in requiring uniform velocity fields 

across the 15 m beam aperture near the surface. The system setups for these observations 

were 0.4 m vertical bins with a sample interval of ~1 second.  

Gargett and Wells (2007) deployed the VADCP on a shallow continental shelf 

location where the Langmuir cells would cover the full extent of the water column. Cells 

of this type became known as Langmuir supercells (LSC). Their study identified the 

presence of Langmuir circulation using qualities identified by previous studies: 

1. “Downwind jets are situated under downwelling regions” (Gargett and 
Wells 2007, p. 57). 

2. “Downwelling regions are narrower than upwelling regions” (Gargett and 
Wells 2007, p. 57). 

3. “Vertical asymmetry of the crosswind flow is also referred to as surface 
intensification” (Gargett and Wells 2007, p. 57). 

4. “Correct phasing of crosswind is relative to vertical velocities, given the 
direction of crosswind advection past a fixed instrument” (Gargett and 
Wells 2007, p. 57). 

5. “Maximum vertical velocity is in the upper half of the water column 
“(Gargett and Wells 2007, p. 57). 

In Figure 9 the velocity profile time series from the VADCP show the strong 

downwind jet in panel (c) and the strong downward velocity in panel (b) during the LSC 

event marked by the black line. The concurrence of these velocity components identifies 

this area to be the converging downwelling region between Langmuir cells. Panel (e) is a 

schematic of the circulations associated with the LSC event showing a strong downwind 
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jet denoted by the circle with the x in the downwelling region. Additionally, a zoomed in 

section of Figure 9 shows two very different scale features. A large feature, found to be 

an LSC event denoted by L and a shorter period event described by area S. Event L was 

found to be modulated by the shorter period variability event like the one described by S 

(Figure 10). This provides evidence of two distinct scales of variability acting with the 

Langmuir cells (Gargett and Wells 2007) 
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 Depth versus Time Fluctuations Figure 9. 

 

“An example of depth/time fluctuations of the (a) crosswind velocity u2′, (b) vertical 
velocity u3′ (c) downwind velocity u1′, and (d) vertical beam backscatter amplitude A5 
for a record (43.025) within the LSC episode. The sampling period is 9.6 s: the total 
record length is∼2.3 h. As described in § 4.2.2, the fluctuating velocity field is that left 
after a linear least-squares fit at each bin has removed a slowly varying “mean” velocity 
associated with a combined wind and tidally forced flow. The vertical line draws 
attention to synchronous features mentioned in the text.  (e) Features of the cellular 
velocity structure observed during episodes of LSC: drawn for record 43.025 which has 
crosswind mean flow U2 >0.” Positive values represent the crosswind component in the 
x2 direction seen in panel (e), upward vertical velocity, and in the downwind direction for 
downwind velocities. Source: Gargett, A., and J. R.Wells, 2007: Langmuir turbulence in 
shallow water. Part 1. Observations. J. Fluid Mech. 576, 27–61. 
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 Examples of LSC Spatial and Time Scale of Variability Figure 10. 

 
“Using the same axis as Figure 9, this illustrates an enlarged portion of record 43.024 
showing the existence of two distinctly different space/time scales of variability, clearly 
visible in both velocity and backscatter fields, during periods of LSC. The longer period 
(∼8–17 min) features (L), identified here as LSC, are modulated by shorter period (∼1–
1.5min) variability (S).” Source: Gargett, A., and J. R.Wells, 2007: Langmuir turbulence 
in shallow water. Part 1. Observations. J. Fluid Mech. 576, 27–61.  
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II. BACKGROUND 

 COUPLED BOUNDARY LAYERS AND AIR-SEA TRANSFER A.
PROGRAM 

In an effort to investigate coupled ocean-atmosphere processes the Coupled 

Boundary Layers and Air-Sea Transfer (CBLAST) Department Research Initiative (DRI) 

was created by the Office of Naval Research (ONR). The main goal of the CBLAST 

program was to improve parameterizations of momentum fluxes across the air-sea 

interface in an effort to develop fully coupled two way models that capture the surface 

boundary conditions, thus improving shorter time scaled weather forecasts (Figure 11). 

Coupling across the air-sea interface plays a vital role in larger scale storms such as 

hurricanes, which depend greatly on heat, mass, and momentum exchanges between the 

ocean and atmosphere to determine their intensity. To ensure both extremes were well 

observed they developed CBLAST-LOW and CBLAST-Hurricane projects (Edson et al. 

2007).  

This thesis’s research is directed at the CBLAST-LOW objectives which focuses 

on the coupled boundary layer (CBL) processes associated with the low wind conditions. 

The observations ranged from those with insignificant wind stress dominated by buoyant 

forcing to those where wave breaking and Langmuir circulation were important factors in 

the exchange process (Edson et al. 2007). The research conducted in the current thesis 

experiment concentrated on the range influenced by wave breaking and Langmuir 

circulation in an effort to capture turbulent stresses, shear, and kinetic energy dissipation 

rates below wind driven surface gravity waves. 
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 Key Air -Sea Interactions Figure 11. 

 
“Key physical processes governing air-sea exchange across the coupled boundary layer.” 
Source: Edson J., T. Crawford, J. Crescenti, T. Farrar, J. French, et al. 2007: The coupled 
boundary layers and air-sea transfer experiment in low winds (CBLAST-Low). Bull. Am. 
Meteorol. Soc. 88,342–56. 

In line with the CBLAST-LOW’s main goal to improve parametrization for the 

Naval Research Laboratory’s (NRL) Coupled Ocean-Atmosphere Mesoscale Prediction 

System (COAMPS) and the Regional Ocean Modeling System (ROMS) at low wind 

conditions, the summer months in this region with winds typically southwesterly at 2–6 

meters per second (Edson et al. 2007) were selected. Sub-grid scale processes including 

momentum transfer in the presence of waves remain problems in models such as ROMS 

and COAMPS. For example, the influence of Langmuir circulations and intermittent 

turbulence resulting from wave breaking is important and rarely accounted for in most 

flux-profile relations utilized in models (Edson et al. 2007).  

During CBLAST an upward looking Bistatic Coherent Doppler Velocity Profiler 

(BCDVP) developed in the Ocean Turbulence group at Naval Postgraduate School (NPS) 
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(Stanton 2001) was used for the first time near Martha’s Vineyard providing 1-cm 

vertical resolution profiles of the three component velocity field upwards into the wave 

crest–trough region. The BCDVP’s purpose was to capture the effects of intermittent 

wave breaking, Langmuir circulation, and turbulence generated by shear and convective 

instabilities associated with wind generated waves. For this reason the BCDVP will serve 

as one of the keystone instruments used at the Salinas River and Elkhorn Slough in 

California for this thesis research on momentum transfer caused by wind generated waves 

at the air-sea interface. 

Using the foundations set forth by the initial efforts of CBLAST, this thesis will 

again utilize the BCDVP to attempt to observe the influence of Langmuir circulations and 

effects of wind stress on the momentum transfer across the air-sea interface (Figure 11). 

The production of wind generated surface gravity waves should generate resolvable 

turbulence granted the winds reach a sufficient sustained velocity across the maximum 

fetch possible at either of the designated research locations. 

 AREAS OF STUDY B.

Initially there were two areas that we deployed our sensors in an effort to collect 

the necessary data to conduct our analysis of the Ocean surface boundary layer (OSBL) 

and atmospheric boundary layer (ABL). California’s Elkhorn Slough and Salinas River 

were the selected sites for our research. Both sites were in the local area, provided 

adequate depth, had the potential to provide adequate wave fetch distances, and strong 

enough wind speeds to facilitate wave breaking. Their orientation took advantage of the 

commonly occurring west-northwesterly summer sea breeze. 

1. Elkhorn Slough, California 

Elkhorn Slough, California, is located north of Monterey, California at 

approximately 36.825 ̊ N, 121.757 ̊ W. Accessed via the Moonglow Dairy, this is a tidally 

influenced saltwater estuary that connects with the Moss Landing Harbor. It has a 

predominant east-west orientation with a bend that provided an extended northwest-

southeast fetch that aligns with the characteristically observed west-northwesterly sea 

breeze associated with this area. Though this site proved to be affected by minimal swell 
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(Figure 13), it did not to provide the adequate fetch for the observed wind speeds to 

produce breaking waves (Figure 12) and had strong tidal elevation changes and tidal 

currents. The data collected during the March 24, 2015, deployment yielded had wind 

forcing significantly less than was needed to study wind/wave conditions approaching 

wave breaking. The tidal elevation range coupled with the limited BCDV profiling range 

reduced the usefulness of this site, so a site on a blocked branch of the Salinas River was 

investigated. 
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 Fetch and Predominate Winds during Data Collection Figure 12. 
Effort on March 24, 2015 

 
Portrayal of the fetch associated with the average wind direction and speed during the 
time the sensor was deployed. Note the clusters of buildings just off the slough; these 
belong to the Moonglow Dairy. The insets show conditions during the sensor deployment 
and a visual representation of the fetch distance during a site survey. The slough’s 
predominantly east-west orientation provides a limited fetch for the waves to build 
(maximum possible fetch around 850m from the bend in the slough) before reaching the 

deployment site ( ). Map created in Google Earth, October 12, 2015, 
http://www.google.com/earth/. 
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 Elevations around the Deployment Area at Elkhorn Slough, California  Figure 13. 

 
Elkhorn Slough, California, with transects overlain onto Google earth to illustrate the 
variations in elevation between high and low tides compared to when the data was 
collected. Map created in Google Earth, October 12, 2015, http://www.google.com/earth/. 

2. Salinas River, California 

The area of the Salinas River chosen to deploy our sensors was located on the 

Salinas River National Wildlife Refuge located at approximately 36.738 ̊ N, 121.794 ̊ W 

(Figure 14). For access to the river a permit from the U.S. Fish and Wildlife Services was 

required to conduct research. The river’s northwest-southeast orientation provided an 

ideal fetch for capturing the commonly observed summer northwesterly sea breeze. A 

survey of the deployment area using a high resolution acoustic depth sounder yielded 

ideal depths for deploying the BCDVP with a maximum depth around 2.2 meters (Figure 

15). Figure 14 shows a time when the river is closed off from the ocean. Tidal and swell 
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influences on the river are nonexistent in the summer conditions chosen for these 

observations.  

The initial site visit to the Salinas River included the quick look at the bathymetry 

using an altimeter in conjunction with a Global Positioning System (GPS) receiver and a 

visual look at any other influential factors such as the algae growth state. Depth survey 

results from a digital altimeter/GPS instrumented kayak (Figure 15) identified a suitable 

BCDVP deployment location of 36 ̊ 44.290′ N, 121 ̊ 47.638 W (Figure 16) characterized 

by an average depth of approximately 1.6 meters. A visual review of the orientation with 

regard to the dominant wind direction, river width, bank steepness, and algae growth state 

further supported it as a favorable data collection site.  

This survey showed that the Salinas River was a favorable site, however it is 

important to note the presence of surface algae growth that typically covers the surface 

during the late summer months. The presence of surface algae is critical as it dampens out 

surface wind waves reducing the ability to have well characterized fetch-limited waves. 

For the May sensor deployment it did not create any issues however, however by August 

most of the river’s surface was covered by algae. Since the river does not flow in the 

summer months due to lack of inflow to raise its levels high enough to overflow into the 

ocean, the algae patches tend to float in response to wind forcing until the fall and winter 

months when sufficient rain and lower temperatures reduce the algae levels (Figure 15). 

Despite its susceptibility to algal influence, the Salinas River proved to be a favorable 

location to conduct a study of the below wave turbulent structures associated with wind 

generated surface gravity waves. 
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 Salinas River Overview Figure 14. 

 
Google earth image of the portion of the Salinas River that is part of the Salinas River 
National Wildlife Refuge. The river’s predominantly northwest-southeast orientation 
provides an extended fetch for wind waves to build (Maximum possible fetch around 

1,520 m from the mouth of the river to the deployment site ). Map created in Google 
Earth, October 12, 2015, http://www.google.com/earth/. 
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 Bathymetry of Deployment Area Salinas River, California Figure 15. 

Salinas River, California, with transects overlain onto Google earth to illustrate the 
various depths in meters at the proposed deployment site. The x-axis and y-axis are in 
meters to aid with scaling for the visualization of transects. Note the significant 
difference in surface algal growth between May and September 2015. Map created 
in Google Earth, October 12, 2015, http://www.google.com/earth/. 
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 Salinas River Survey Data Collection Setup Figure 16. 

 
The sensor setup on the survey kayak used to collect the data displayed in Figure 15. The 
sensor depth was accounted for during depth calculations and was 0.1778 meters below 
the surface. Based on the BCDVP’s setup, a deployment site was chosen with an ideal 

depth around 1.6 meters (  ). Map created in Google Earth, October 12, 2015, 
http://www.google.com/earth/. 
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III. INSTRUMENTATION

Key sensors used for data collection were assembled and tested both in the Ocean 

Turbulence Lab at NPS and in the field prior to its deployment at the Salinas River. 

Sensors used in our data collection efforts were the Thies Clima Ultrasonic 3-D 

Anemometer (THIES) and the BCDVP outfitted with an additional camera and laser. 

Both of these sensors are designed to resolve small scale turbulent velocities embedded in 

flow fields.  

 Sensors Network Setup Figure 17. 

The sensor network diagram shows the components of the various systems used to 
conduct the experiment and their relation to raw data output. Source: Thies Clima 
Corporation. Ultrasonic Anemometer 3D. Accessed on Oct 7, 2015. [Available online 
at:http://www.thiesclima.com/ultrasonic_anemometer_3d_e.html].  
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 Sensor Deployment Locations Figure 18. 

 
The THIES was deployed on the shore 1.02 m from the waterline on the bank. The 
BCDVP was deployed 14.25 m from shore in approximately 1.6 meters of water. The 

BCDVP deployment location is denoted by the . Map created in Google Earth, 
October 12, 2015, http://www.google.com/earth/. 

 THIES CLIMA ULTRASONIC 3-D ANEMOMETER A.

The THIES measures the 3D wind velocity at a 100 Hz sample rate across an 

approximate 0.3 m sample volume oriented to magnetic north using a magnetic compass 

and a pointer attached to the support tower shown in Figure 17. To transfer from degrees 

magnetic to true north a declination for the area of 13.42′ E was applied.  

The three component wind field data is collected by the THIES using three pairs 

of ultrasonic probes and transferred to the laptop via a serial connection at a 57600 baud 

rate. The THIES was set up on the bank of the Salinas River at a horizontal distance of 

1.0 meters from edge of river. To minimize the influence the influence of the 0.91 m high 

river bank on the wind field the THIES was located in a relatively open area and the 
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support mast was fully extended to 3 meters. The total vertical distance from the 

waterline to the center of the THIES was 3.91 meters. The THIES was placed 

approximately 26.25 meters downwind and 15.27 m in the crosswind direction from the 

BCDVP to attempt to capture an accurate wind field as it passes over the BCDVP (Figure 

18). Unfortunately, the predominant wind during the observation period aligned 

dominantly with the river bank. As a result, the upwind brush and other foliage and steep 

river bank strongly influenced the wind stress by and will be explained further in the 

discussion section. During the experiment on June 3, 2015, the THIES was set up and 

operated collecting data over a period of approximately 2 hours and 40 minutes 

concurrently with the BCDVP (Figure 17). The system was powered by a small generator 

and transferred the raw data collected by the ultrasonic probes to the laptop via a serial 

connection. Upon completion the raw data was transferred and analyzed using software 

written in MATLAB. Further discussion on the analysis of the THIES data collected will 

be covered in the data analysis section. 

 BISTATIC COHERENT ACOUSTIC DOPPLER VELOCITY PROFILER   B.

The Bistatic Coherent Acoustic Doppler Velocity Profiler (BCDVP) is the key 

sensor used for this experiment and an earlier version was previously used in CBLAST 

experiments at Martha’s Vineyard. Using a bistatic transducer configuration, the BCDVP 

has the ability to sample 3D velocity profiles with 2–3cm diameter by 1cm high sample 

volumes over a 1.2m range above the instrument. Coherent processing allows the 

Doppler velocities to be logged at up to 40Hz. During this data collection effort, the 

BCDVP collected data at a sample frequency of 18.974 Hz resulting in a 0.0527s period 

between samples. The center beam is vertical while each of the three outer transducers is 

separated by 120 degrees. The BCDVP’s configuration provides a much small effective 

sample volume than commercially available Janus-configuration ADCP’s. The 

orientation of the system described by Figure 19 allows for the arrangement of the system 

in an upwind-downwind direction by aligning the wind axis with transducer 1.  

The BCDVP was mounted to a tripod raising the transmitter transducer of the 

sensor to a height 0.84 meters above the sea bed. This meant the maximum effective 
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depth to measure the below wave crest-trough region would be 1.84 meters. A survey of 

the deployment site (Figure 18) yielded an area with a near flat bottom and approximately 

1.6 meter depth. The bed at the deployment location (Figure 18) was composed of a very 

fine mud. As a result a 0.2 meter buffer for maximum deployable depth was used to avoid 

deploying the BCDVP in an area where sinking could potentially put the top bin out of 

range of the surface. A bubble level and an extendable leg were used during the 

deployment to ensure the system was stable and level along the bottom. 

The Doppler processing electronics for each transducer uses 14 bit analog to 

digital converter to digitize the 1.2 MHz acoustic frequency from the four transducers, 

and digitally down-convert the received frequencies to baseband, where they are 

processed by digital signal processors to produce Doppler frequency measurements from 

each transducer channel at 40 Hz. The data stream is transferred from the BCDVP to the 

data collection laptop via an Ethernet connection. Linux data logging software running on 

a lap top computer breaks up the time-tagged data stream 2-hour time-tagged files.  

Both the THIES and BCDVP required power from a small generator fed through 

a power supply to provide the correct DC voltage to each of these systems. The BCDVP 

was supplemented by a fixed camera and laser (Figure 17) used to illuminate and capture 

bubble and particle patterns in the water column above it. On the June 3, 2015, 

deployment, there was minimal suspended sediment and particles as seen in the 

backscatter data (Figure 20) that would enable the camera and laser to produce usable 

data. This low particulate load in the water column meant that reflective reverberation of 

the ensonifying transducer pulses caused by reflections off the bottom and surface caused 

levels of unusable velocity data within the profile, as shown by the bands highlighted in 

Figure 20. The reflective reverberation limited the useable bins of the data set to bins 58–

74 which represents the surface layer down to 0.16 m. Fortunately, the amount of 

interference from drifting objects such as algae and sea grass were minimal in this depth 

range. This surface layer will be the focus area for any BCDVP data analysis. 
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 BCDVP Probe Diagram Figure 19. 

 
The numbers identify to the probes to set up a reference frame for orientation purposes 
where transducer 1 is aligned with the instrument coordinate system’s y-axis. The system 
is made up of three transducer arms spaced 120 ̊ apart with receivers, a 
transmitter/receiver, and a pressure sensor as indicated. 

 Acoustic Backscatter Power Profile Time Series Figure 20. 

 
A plot of the BCDVP backscatter data across the period of the data subset highlighting 
the bands of reflective reverberation and identifying the depths of focus for this data 
analysis. The logarithmic scale indicates the strength of the return where nine is the 
strongest and four represents a medium nearly free of scatterers.  
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IV. RESULTS 

On June 3, 2015, the BCDVP and THIES were deployed at the Salinas River site 

(Figure 18) recording approximately 2 hours and 40 minutes of data. Of the data 

collected, only about 10 minutes of it yielded usable results, as wind forcing dropped 

significantly soon after the instrument deployment. With wind speeds sustained around 6 

m s-1 from 309̊ T (Figure 21) the forcing across the surface limited the range of 

turbulence that could be observed. The limited fetch wave heights associated with the low 

observed winds did not allow large enough waves to be generated to resolve the surface 

elevation (η) from either the surface return backscatter or the 1m deep pressure 

transducer. The low wind speed and low fetch also did not allow wave breaking to occur. 

The TDM and LWT calculations rely heavily on resolvable η to be able to separate out 

the various components of motion. Based on the low wind forcing conditions experienced 

on June 3, 2015, a smaller subset of analysis tools than discussed in section 2 were 

applicable to this data set. The poor conditions were a result of a spring/summer season 

characterized by unusually low magnitude sea breeze events, greatly limiting the capture 

of a strong wind0forced data set. As a result poor conditions and the influence of the 

previously discussed reflective reverberation bands the ability for in-depth analysis of the 

main objectives is greatly limited. Therefore, a set of modified objectives were 

developed. First, determine the wave energy decay with depth and use it to confirm the 

value of the dominant wavenumber (k). Second, the observed wind stress was compared 

to stresses within the upper water column, immediately below the waves. Lastly, the 

presence and characteristics of Langmuir circulations was investigated and compared 

with previous observations.  

Using the high spatial resolution data of the BCDVP a verification of the wave 

energy decay with depth was made using the vertical profile of the vertical velocity 

power spectrum. This decay rate was compared with the power spectral peak frequency 

Shown in the left panel of Figure 22, which was identified as 1.4 Hz. Using linear wave 

theory, the spectral peak estimated wavelength was 0.78 m, corresponding to a 

wavenumber of 8.0 m^-1. It is important to note that the calculated wavelength not only 
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identifies the observed waves as surface gravity waves, but when compared with depth, 

were found to be deep water waves. Based on linear wave theory for these surface gravity 

waves the expected decay with depth should follow an e-kz trend. Using a logarithmic 

plot, Figure 22 the fit line shown here clearly illustrates a fairly consistent fit with the -kz 

relation for the observed data. The average deviation from the fit line was approximately 

0.05 and the largest deviation was found just below the surface with a magnitude of 

approximately 0.25 m s-1. 

 Wind Flow at the Salinas River on June 3, 2015 Figure 21. 

 
Winds were predominantly from the northwest as expected based on the characteristic sea 
breeze of this area. The winds shifted towards the west-northwest direction by the end of 
the observation period as the sea breeze became more coast perpendicular. Map created 
in Google Earth, November 5, 2015, http://www.google.com/earth/. 
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 Decay of Wave Orbital Velocity with Depth Figure 22. 

 
Using the power spectrum for the vertical velocity the decay with depth shows the 
spectral peak corresponding to the wave energy occurs around 1.14 Hz and the wave 
velocity decay with depth shows a good fit as expected based on LWT. Each spectrum 
color represents a different depth decreasing by 0.01 m down to 0.16 m. The blue line 
indicates the location of peak energy for each spectrum as depth decreases. The fit line in 
this logarithmic plot defining the -kz relation associated with the wave velocity decay 
with depth. 

For the remainder of this analysis, the focus will be on a data subset from yearday 

154.8683 to 154.8758 that translates to approximately 10 minutes of data. An initial look 

at the wind field data collected by the THIES (Figure 26) illustrates minimal variability in 

the wind direction and forcing for this period. However, analysis of the wind stress 

showed a significant difference between the wind stresses derived from a direct eddy-

correlation stress calculation from the 100 Hz THIES data and the values found using a 

bulk formula method. First, a direct calculation of the total wind stress (τ) was conducted 

by expanding Equation 1.15 to include the cross-wind stress component 'w'v ,  

 
2 2

 'w' w* ' 'air u v   ,  (1.26) 
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where 1.23air   
3

kg

m
 is the density of air, 'w'u  and 'w'v are the covariances (Gerbi et al. 

2008). The direct calculation yielded values with a mean wind stress of 0.430 N m-2 

(Figure 25). Next, the bulk formula method was carried out using the equation 

 2  air dC U  ,  (1.27) 

where 1.23air 
3

kg

m
 is the density of air, U is the wind speed and 0.0018dC  is the 

drag coefficient (Smith 1988). The drag coefficient was derived from the curves in Figure 

23 using the mean observed wind (5.6 m s-1) and estimated open water fetch (565 m). The 

drag coefficient curves (Figure 23) are based on fetch (x) and fetch limited wave growth 

function ( *x ) as a function of wind speed. The fetch limited wave growth function ( *x ) 

(Figure 23) is calculated using  

 * 2

xg
x

U
   (1.28) 

where U is the wind speed (m s-1) and g is the acceleration due to gravity  

( 29.8g m s ), and x is the fetch (Hwang 2005).   
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 Drag Coefficient Curves Figure 23. 

 

Drag coefficient curves based on fetch (x) and fetch limited wave growth function ( *x ) 

based on mean wind speed and fetch. Based on the observed average wind speed of 5.6 m 
s-1 and using the fetch x = 565 m (Figure21), a Cd value of 0.0018 was found. Source: 
Hwang, P. A., 2005: Temporal and spatial variation of the drag coefficient of a 
developing sea under steady wind forcing, J. Geophys. Res., 110, C07024, 
doi:10.1029/2005JC002912.  
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Using the bulk formula method resulted in a mean wind stress value of 0.0718 N 

m-2 (Figure 25 and 26). The variation between the two values is on the order of six times 

greater for the directly calculated wind stress Figure 25. To further investigate a second 

look at the upwind path was conducted focusing on its relation to the river bank and any 

potential obstructions. Figure 24 shows a height cross section of the river bank 

highlighting the downwind and upwind views from the THIES deployment site. With the 

wind nearly parallel to the shoreline and the THIES’s deployment location 1.02 m inland 

from the waterline it became clear that the influence upwind of the upstream vegetation a 

strong effect on turbulence levels, and the resulting surface tresses of the wind field. 

Though the tall vegetation in the upwind direction and the truck were greater than 20 

meters away from the THIES (Figure 24), the predominant wind direction was aligned 

with the bank and therefore captured more of the overland wind stress field rather than 

providing an accurate estimate of the open water wind stress field over the BCVDP 

deployment site. The bulk formula method was chosen to estimate the surface stresses 

over the BCDV. Using the bulk wind stress values shown in Figure 26, the observed 

values were found to be on average slightly less than those found over the open ocean by 

both Weller and Price (1988) (Figure 8) and the 0.10 N m-2 seen by Gargett and Wells 

(2007) as expected for the very small amplitude wind waves associated with the fetch and 

mean wind speed for the Salinas River data set.  
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 Salinas River Upwind Cross Section Figure 24. 

 
A look at a cross section of the Salinas River bank where the THIES was deployed, note 
the heights of various obstructions upwind that contributed to a higher drag coefficient 
and therefore a higher wind stress. The shoreline parallel distance (26.25 m) between the 
BCDVP and the THIES is shown. 

  



 48

 Eddy Correlation Wind Stress versus Bulk Formula Figure 25. 

 
A clear depiction of the influence of vegetation and topography on the wind stress values. 
For this reason the wind stress will call upon the bulk formula method for this data 
analysis. Note the calculated wind stress is a series of 2 minute averages across the data 
subset to clearly show the magnitude difference between the two plots.  

Subsurface stresses and friction velocities were calculated to allow for a comparison of 

stresses across the air-sea boundary. First, to aid in this Figure 26 provides a summary of 

all the above surface components including the bulk formula derived wind stresses, wind 

direction, wind speed, and the current velocity data. Next, to derive the values for the 

friction velocity (u*), an expanded version of Equation 1.11 is used to account for the 

v'w' crosswind stress component yielding the equation  

	
2 2 .25* ( 'w' 'w' )u u v  ,		 ሺ1.29ሻ	

where 'w'u  and v'w'  are the ensemble averaged covariances of the horizontal velocity 

fluctuating components and vertical velocity fluctuations. The subsurface stress profiles 

were created using Equation 1.26 substituting rho air for rho water (Figure 27). The 

calculated values (Figure 27) show a fairly uniform momentum flux is occurring in the 
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near surface layer, with mean stress values of 0.09 N m-2 close to the estimated wind 

surface stress value of 0.072 N m-2. It is important to note the presence of an anomaly 

highlighted by the red box in Figure 27. The cause of this rapid increase in the friction 

velocity and stress values is not known. It is possible that this increase at 0.1 m depth is 

the result of Langmuir circulations that have cell velocity maxima near this depth. From 

the water column stress profile in Figure 27, a comparison to the above surface wind 

stress estimate shown in Figure 26 yields a mean wind stress value of 0.072 N m-2 and a 

mean water column stress value of 0.075 N m-2, a close agreement of momentum transfer 

across the boundary. The difference between the bulk parameterized wind stress and the 

stresses in the water column is well within the error bounds of the bulk wind stress 

estimates. Additionally, a small stress deficit is expected in the bulk stress estimate as a 

result of local wind wave generation. The high vertical resolution BCDVP observations 

allow the structure of the low frequency turbulent motions to be investigated.  

 Time Series of Wind Data and Current Speed Profile  Figure 26. 

 
The time series for the data subset showing: a) current speed (color bar indicates flow in 
meters per second), b) wind speed, c) wind direction, and d) calculated wind stress using 
the bulk formula based on a Cd of 0.0018. The mean wind speed is 5.6 m s-1 (b), the mean 
wind direction is 308.9 ̊T (c) and the mean wind stress is 0.0718N m-2 (d). Positive 
current speed is in the downwind direction.  
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 Friction Velocity and Stress Figure 27. 

 
a) Friction velocity u* and b) stress values align well with the findings by Weller and 
Price (1988) shown in Figure 8. The expected momentum decay with depth is not fully 
captured here as only a 0.17 m depth range yielded usable data. Note the anomaly in the 
data subset for which the cause is unknown. 

The period selected for analysis coincides with relatively stronger winds along the 

river yielding the greatest fetch and strongest wind forcing for the observed conditions on 

June 3, 2015. To help identify key structures associated with Langmuir circulation such 

as the presence of a downwind jet, upwelling, and downwelling patterns, the BCDV 3D 

current vector profile coordinate system was rotated to align with the mean wind 

direction. Additionally, this facilitates a comparison of the wind forcing with the upper 

ocean current profiles. Figure 28 shows the results of this rotation and shows a strongly 

sheared, weak downwind current flow and relatively large crosswind flow. 
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 Mean Component Velocities after Coordinate Rotation Figure 28. 

 
The mean velocities across the depths of interest shown in Figure 20 after the rotation of 
the coordinate system of the instrument to orient the +v component in the downwind 
direction. The trend shows a decay in surface current velocity with depth as expected. 

To quantify the presence of Langmuir cells, a 2 minute section of the BCDVP 

velocity profile time series is used. It is important to note that the current velocity profile 

derived from the horizontal components of the BCDVP data identifies the dominant near-

surface mean flow to be in the downwind direction (Figure 26 and 28). As previously 

discussed, weak wind forcing, negligible wave breaking, and the lack of suspended 

scatterers present during the period of observation limited the use of the BCDVP 

backscatter data to identify features of the Langmuir circulation cells. As a result the 

backscatter profile was unable to provide any quantifiable evidence that captured the 

transport of bottom sediment, surface particles, or bubbles typically associated with 

Langmuir circulations in shallow water. This prevented any comparison with the 

previously discussed findings of Marimorino et al. (2005) and Gargett and Wells (2007) 

regarding sediment transport associated with Langmuir circulations.  
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Horizontal velocity time series seen in Figure 29 identify areas of upwelling and 

downwelling in addition to the vertical, downwind/upwind, and crosswind velocities. The 

magnitudes of the vertical velocities associated with the down welling, ~0.04 m s-1, are 

significantly greater than the ~0.020 m s-1 velocities associated with the areas of 

upwelling. The presence of a downwind jet is readily apparent in Figure 29 and is 

highlighted by a black polygon. As described by Wilczak and Tillman (1980), the 

downwind jet is located in the area of convergence between two successive downwelling 

cells and is characterized by a region of much stronger flow in the downwind direction as 

illustrated in Figure 6.  

The time scale of the observed Langmuir event described in Figure 29 was on the 

order of approximately 85 s. Since the Langmuir cells were advecting in the crosswind 

direction at a rate of approximately 0.1 m s-1 derived from the crosswind velocity profile 

(Figure 29b), the length scale for the upwelling and downwelling parts of the cell 

highlighted by the green and red boxes in Figure 29 reflect a horizontal width associated 

with downwelling (~ 1.5 m) to be smaller than the upwelling region (~ 2.4 m). This is 

consistent with the previously discussed results of Weller and Price (1988) (Figure 6) and 

Gargett and Wells (2007), that show the downwelling portion being stronger and 

narrower than the wider and weaker regions of upwelling.  

Despite the small scale of this Langmuir event, a peak was presented in the power 

spectrum of vertical velocity (Figure 30) in the low frequency energy containing portion 

of the energy density spectrum typically associated with Langmuir circulation. The 

energy associated with Langmuir circulation tends to remain fairly constant down from 

the surface and increased slightly increases with depth, consistent with the influence of 

the downwelling and upwelling parts of the cells advecting past the BCDV.  
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 BCDVP Velocity Data  Figure 29. 

 
Time series graph of a 2-minute snippet of BCDVP data displaying a) vertical velocity, 
b) crosswind velocity, c) downwind/upwind velocity, and d) upwelling and downwelling 
regions. Evidence shown of Langmuir cells based on the regions of upwelling, 
downwelling, and the downwind jet located in the convergence zone recalling Figure 6. 
Color bar shows flow in meters per second where positive is upward (a), downwind (b) or 
crosswind to the right of the downwind flow (c). 
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 Wave Energy and Langmuir Energy Figure 30. 

 
The spectrum shows the peak wave energy focused around 1.1 Hz and the Langmuir 
energy peak focused around 0.15 Hz. 
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V. SUMMARY AND FUTURE RESEARCH 

 SUMMARY A.

In an effort to further understand the role of Langmuir circulation and wave 

breaking, a set of instruments were deployed to measure surface wind forcing and the 

detailed upper ocean response in a short fetch coastal location. The data subset collected 

at the Salinas River on June 3, 2015, identified key turbulent energy containing features 

such as Langmuir circulations. Limited by less than climatological wind conditions the 

initial objective to make very high spatial resolution profile measurements of the 3-D 

velocity field right up to the crest-trough region of wind-forced surface gravity waves, 

and study the low frequency turbulent motions below the waves needed to be modified. 

Therefore, the following three modified objectives were developed and met. First, an 

analysis of the wave velocity decay with depth confirmed the wavenumbers (k) depth (z) 

relation with the observed data yielding a near fit to the -kz plotted line in logarithmic 

space (Figure 22). Second, the observed eddy correlation wind stress and estimated wind 

stress using a bulk formula identified a large departure from the expected values for these 

wind-fetch conditions. This identified a larger drag coefficient (Figure 25) caused was by 

vegetation and other obstructions in the upwind path of the wind turbulence sensor since 

the winds were nearly parallel to the bank (Figures 21 and 24) and the wind sensor was 

inshore from the ocean profile instrumentation. Lastly the presence of Langmuir 

circulations were confirmed, and their temporal and spatial scales were quantified The 

downwind jet, scale of downwelling and upwelling cells, peak energy values, and overall 

scale of a Langmuir event were estimated for the data subset (Figures 29 and 30). The 

Langmuir events identified in this analysis meet the five criteria described by Gargett and 

Wells (2007), and were readily apparent during the data analysis. The location of the 

Langmuir circulation peak energy (Figure 30) within the turbulent containing portion of 

the vertical velocity frequency spectrum indicates their role in contributing to the 

turbulent stresses within the water column. The very high spatial resolution of the 

BCDVP was capable of capturing the small scale Langmuir event seen in Figure 29. This 

provides a future opportunity to investigate in depth the processes associated with small 
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scale circulations such as this one and the ones described by Gargett and Wells (2007) 

(Figure 10). Despite the limited data set for this thesis, the high resolution data provided 

by the BCDVP still enabled the turbulent structure below wind forced surface gravity 

waves to be resolved and analyzed.  

Despite the BCDVP’s and THIES’s ability to produce high resolution data 

capable of resolving wave and turbulent processes, , the environmental conditions present 

during this experiment were not sufficient enough to produce data capable of supporting 

any new findings. Given the limited fetch required for this research, the absence of the 

higher wind velocities typically experienced during the summer sea breeze events 

resulted in only a marginal data set. It is important to note that the data did identify and 

confirm the presence of key structures associated with momentum transfer and Langmuir 

circulations. The findings discussed in this thesis shows the need for future field research 

and is an indicator as to how effective it could be at improving model parameterization of 

momentum transfer processes across the air-sea boundary especially those associated 

with wind driven processes.  

 FUTURE RESEARCH B.

The non-tidal and non-swell affected Salinas River can still serve as a useful 

location to study turbulence associated with wind generated surface gravity waves but it 

must be during a during higher wind event and a time where it is free of algae. To 

effectively employ these systems in order to further the research of turbulence associated 

with surface gravity waves a site with sufficient wind forcing (> 10 m s-1) across a 

sufficient fetch (>1 km) free from obstructions such as surface algae, bordering 

topography, and vegetation is required. The ability to conduct repeat measurements is 

important to ensure the data collected is of sufficient length to cover a range of conditions 

including strong forcing spanning 10 m s-1 to ensure saturated wave breaking conditions. 

An important addition to the BCDVP and THIES sensors would be temperature and 

salinity measurements below the surface to reveal water column stratification under light 

wind forcing conditions. Additionally, the THIES needs to be deployed over the water in 

a manner that limits the influence of topography and vegetation, preferably just 
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downwind of the BCDV profile location. Additionally, the utilization of the BCDVP may 

be more effective deployed in deeper water using an arm system to limit the bottom 

generated reflective reverberation effects seen in the data. Ideally the arm system would 

originate from below to limit its effects on the flow field. 

With some of the improved methods described in this thesis, future research could 

produce a large usable data set capable of meeting the CBLAST goal of providing “the 

detailed analysis of closure models across air-sea interface and their potential use in 

further assisting with identifying turbulent motions generated by both micro-breaking and 

full breaking waves in the presence of surface gravity waves” (Edson et al. 2007). 
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