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AFIT-ENC-MS-16-M-161 
Abstract 

Accurately predicting the most realistic schedule for a defense acquisition 

program is an extremely difficult challenge considering the inherent risk and 

uncertainties present in the early stages of a program. To minimize the risk of 

underestimating or overestimating a program’s schedule, the program manager requires a 

transparent, unbiased method of schedule estimation. Through the application of multiple 

regression modeling, we provide the program manager with a statistical model which 

predicts schedule duration from Program Initiation (Milestone B) to the Initial 

Operational Capability of the program’s deliverable system. Our model explains 42.9 

percent of the variation in schedule duration across the historical data from a sample of 

56 defense programs from all military services. Statistically significant predictor 

variables include whether a program is a new effort or modification to an existing 

program, the year of Milestone B start as it relates to changes in defense acquisition 

reform policy, and the amount of raw funding (adjusted for inflation) prior to Milestone 

B for a program. Our strongest predictor variable, percent of total RDT&E funding 

occurring prior to Milestone B, indicates that increased funding for pre-Milestone B 

technology risk reduction may shorten a program’s schedule duration to Initial 

Operational Capability.   
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Predicting Schedule Duration for Defense Acquisition Programs:  

Program Initiation to Initial Operational Capability   

 
I.  Introduction 

General Issue 

As of the “Implementation of Will-Cost and Should-Cost Management” policy 

memorandum in June 2011, the Air Force employs a ‘will-cost’ analysis and ‘should-

cost’ analysis to all Acquisition Category (ACAT) I, II, and III programs as a way to try 

to realize cost savings through operational efficiencies found in the defense acquisitions 

process (Implementation of Will-Cost and Should-Cost Management, Appendix B). 

However, in the Air Force, as well as the other Department of Defense (DoD) services, 

no similar analysis for schedule duration has existed as a policy for trying to optimize the 

timeliness of an acquisition.  

On 15 September, 2015 at the annual Air Force Association conference that was 

held in National Harbor, MD, Secretary of the Air Force (SECAF) Deborah Lee James 

introduced the Air Force’s newest acquisition strategy, an initiative she called ‘should-

schedule’. “The should-schedule approach will work in a similar manner to an acquisition 

management tool the service has been using called ‘should-cost’. Unlike should-cost, the 

new should-schedule strategy will focus on delivery time. We asked ourselves, ‘Can we 

develop a structure that challenges us and our industry partners to deliver [weapons 

systems] faster than the schedule determined as part of the independent cost estimate? If 

we can collectively beat the historical developmental schedules and reward behavior in 
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government and industry that speeds things up, we have a real chance to make a 

difference,” Secretary James emphasized (James, 2015). 

Secretary James and the should-schedule initiative provide for a heightened focus 

on schedule duration estimating in the cost analysis community. Many program cost 

estimates are created under the assumption of a static schedule, which can create 

extrapolated problems in the program if the estimated schedule of a program gets delayed 

or derailed. Furthermore, research by the RAND Corporation found that increases in 

schedule effort tend to be the reason for increases in the cost of acquiring a new weapons 

system due to, at a minimum, increased inflation and overhead factors (Drezner and 

Smith, 1990:1).   

Accurately establishing the most realistic schedule for a program, especially at the 

official initiation of a program, is an extremely difficult task considering the inherent risk 

and uncertainties that are present in the early stages of a program. Programs that decide to 

use an unnecessarily lengthy schedule as a program strategy run the risk of delaying the 

level of technological advancement that may be critical to national safety.  

However, accelerated program schedules increase the risks of unscheduled delays 

and expensive rework and retooling costs, especially if a problem is found later in the 

accelerated program schedule. A recurring theme of defense critics however is that most 

programs err on the side of being too lengthy and that policy reforms should be 

introduced to shorten the cycle (Drezner and Smith, 1990: iii). Secretary James’ should-

schedule initiative, along with the push for a greater focus on program scheduling 

methodology, may be the kind of policy reform Drezner and Smith were alluding to 25 

years ago. 
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Specific Issue 

Past research on schedule is relatively limited at AFIT, mostly because students in 

the Graduate Cost Analysis (GCA) program traditionally tend to focus their research 

efforts on predicting and optimizing costs, rather than schedule. Current Air Force 

practice is for cost estimators to either rely on subject matter expert (SME) opinion to 

evaluate the schedule risk levels of different program factors, or perform an analogous 

schedule estimate based on a comparable project that has been previously completed. 

These methods of “best guess” are the current standard applied to arrive at the estimated 

schedule of a program. 

As it currently stands in the Air Force, there is no quantitatively-focused method 

used for predicting schedule duration of a program that is driven by the data of past 

weapons systems. This is the first research to be conducted at AFIT that is focused on 

predicting a program’s actual schedule duration based on historical data and 

mathematical modeling. Tangentially related, Monaco (2005) looks at identifying if a 

program runs the risk of schedule delay, and then predicting the amount of schedule 

delay for that specific program after it has experienced a schedule delay; his research 

employed the use of a two-step mathematical modeling procedure. 

Scope and Limitations of Research 

The scope of this research is limited to predicting schedule duration in months for 

defense acquisition programs from program initiation, which is the start of Engineering 

and Manufacturing Development (EMD), to Initial Operational Capability (IOC). Official 

program initiation happens when the EMD phase starts, which is at Milestone B. IOC is 

the state achieved when a capability is available in its minimum usefully deployable 
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form. At IOC, capability may be fielded to a limited number of users with plans to extend 

to all intended users incrementally over a period of time. Declaration of IOC may imply 

that the capability will be further developed in the future, for example by modifications 

or upgrades to improve the system's performance, deployment of greater numbers of 

systems (perhaps of different types), or testing and training that permit wider application 

of the capability (DAU, 2015). 

 
Figure 1: Defense Acquisition Program Schedule with MS-B to IOC Depiction 

In our research, we believe that more value could be extracted in seeking to 

predict schedule duration from MS-B to IOC, instead of seeking to predict schedule 

duration from MS-B to Production and Deployment (P&D) start which is at Milestone C 

(MS-C). This is due to the fact that the start of the P&D phase is not always as clearly 

defined as the start of the MS-B in the acquisition life cycle. Common practice is to have 

both EMD and P&D run concurrent for some time in the acquisition life cycle, with the 

intent of having a system being produced while it is simultaneously being developed 

(Birchler et al., 2011). Because of this practice, decision makers have a less stringent 

proxy to beginning the P&D phase compared to EMD phase. Thus, if EMD phase is still 

going on while P&D phase begins, the concurrency between the two phases may present 

a lack of clarity in the distinction of the two phases to be able to make a sound decision 

under the program complexities at that point. Furthermore, commanders and decision 
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makers may be more concerned with the time to IOC of a weapons system, since it 

directly relates to fielding a capability earliest in support of critical mission needs (DAU, 

2015).  

Since we seek to predict MS-B to IOC of a program, a limitation is that we look 

to only include programs that have pre-MS-B data available. We limit our database 

further to include only unclassified programs that completed the IOC phase of an 

acquisition. For this data, we use the Selected Acquisition Report (SAR), maintained by 

the Office of the Secretary of Defense (OSD), which provides reported in-depth finance 

and schedule data for selected programs (Brown et al., 2015). We also give extra focus on 

Research Development Test & Evaluation (RDT&E) funding, as it is the funding 

deployed for both pre-MS-B and MS-B efforts. The detail and availability of the SARs 

provide the appropriate information needed to build a proprietary database necessary for 

this research. 

Research Objectives 

Our major objective is to have the mathematical model developed in this research 

to be used as a tool in the cost analysis community.  The mathematical model employed 

for this research involves a multiple regression model that provides an output value in 

months.  For the purpose of this study, the output from the multiple regression analysis 

encompasses overall time duration in months, starting at MS-B, through EMD, P&D, 

Low-Rate Initial Production (LRIP), and Initial Operational Test and Evaluation 

(IOT&E) phases, up to IOC.   

The objective of the multiple regression model we create is to have it stand as a 

predictive tool that outputs a schedule duration that decision makers can use as a realistic 
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schedule benchmark for their programs. A readily available application of said schedule 

benchmark is for decision makers to try to employ operational efficiencies in a program 

as to try to deliver a program’s capability quicker than what the data-driven benchmark 

suggests.  This creates the kind of structure that Secretary James mentioned; one which 

can challenge the Air Force and industry partners to deliver [weapons systems] faster 

than the schedule determined as part of the independent cost estimate (James, 2015).  

Research Questions 

Our research is focused on addressing two research questions. First, we seek to 

answer the research question, “Can we accurately predict what the schedule duration of a 

defense acquisition program should be, from MS-B to IOC, using a mathematical 

model?” Independent of said mathematical model, we analyze explanatory variables from 

program data in search of answering the question, “Can we show that some explanatory 

variables are stronger than others when used for predicting a future program’s schedule 

duration?”  

Summary 

Predicting the schedule duration from MS-B to IOC for programs can reduce 

program risks and help ensure intended performance capabilities are realized within a 

specific program’s cost and schedule thresholds. In our research, we identify reasons for 

schedule variance along with potential predictors of schedule variance by conducting a 

literature review in Chapter II.  The literature review provides the necessary foundation 

for our data collection and database creation in Chapter III.  We then conduct preliminary 

analysis of the data in order to create the multiple regression analysis model that seeks to 
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predict a program’s schedule to from MS-B to IOC. In Chapter IV, we build, test, and 

validate the multiple regression analysis, as well as provide a meaningful discussion of 

the results. Finally, in Chapter V, we provide conclusions to our research, and possible 

follow-on research.   
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II. Literature Review 

Chapter Overview 

Developing a major weapons system is risky and full of uncertainty.  

Requirements, politics, economics, and the system’s technological design are just a few 

of the uncertainties that create risk in this venture. This can materialize in the form of 

variance between the planned schedule duration and the actual schedule duration of a 

program. “Excessive schedules have two significant negative effects:  U.S. forces may be 

left without needed capabilities and longer schedules often mean higher costs” (Tyson et 

al., 1994:S-1).   

To begin addressing our research objectives and questions, we start by looking at 

research that can give us greater insight into the intricate details associated with 

predicting a program’s schedule duration to IOC. In this chapter, we provide an overview 

of past research conducted on defense acquisition program schedules, particularly as it 

relates to helping us identify significant characteristics necessary for our answering our 

research questions and building of a multiple regression model. For structured continuity, 

we only provide an overview of research findings on program schedules from within the 

defense acquisition environment. Based on our literature review, we create a foundation 

from which to start the methodology for predicting schedule duration to IOC, which we 

describe in Chapter III. 

Research Findings  

The time required to create a new weapons system from program initiation to IOC 

is an important element to understand in the acquisition process.  Cost and schedule 

overruns in major weapons systems are continuing problems that plague the acquisition 
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environment.  The following research studies discuss various direct and indirect findings 

associated with program schedule inaccuracies and overruns and investigates variables 

that can help predict schedule duration. 

Brown, White, Ritschel, and Seibel (2015)  

Brown et. al (2015) investigates the minimal methodology in the literature that is 

provided for estimating the S-curve’s parameter values.  Brown, White, and Gallagher 

(2002) resolve this shortcoming through regression analysis, but their methodology has 

not been widely adopted by aircraft cost analysts, as it is judged as overly broad and not 

specific to aircraft.  Instead, analysts commonly apply the 60/40 “rule of thumb” to 

aircraft development, assuming 60 percent expenditures at 50 percent schedule. 

Using a sample of 26 DoD aircraft programs, Brown et al. (2015) first tests the 

accuracy of 60/40, discovering that, as a heuristic, the 60/40 cannot account for 

differences between new start and upgrade programs. Next, they improve upon prior 

research by using program characteristics to construct an aircraft-specific methodology 

for estimating parameters. Finally, they conclude the research by comparing the accuracy 

of their Rayleigh, Weibull, and Beta S-curve models. The Weibull model explains 82 

percent of total variation in expenditures, improving the estimation of annual 

expenditures by nine percent, on average, over the baseline 60/40 model. 

For Brown et al. (2015) in particular, three pieces are relevant to our research. 

First is the acknowledgement of the 60/40 “rule of thumb” that is applied to aircraft 

development, assuming 60 percent expenditures at 50 percent schedule. This tells us that 

if such a concept is applied in the aircraft development community, then perhaps a 
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similar concept surrounding the percentage of early expenditures in a program could be 

applied to as a potential predictor of schedule.  

Second, they acknowledge that while their methodology utilizes budget and 

schedule data from the latest SAR available for each aircraft development program, they 

also acknowledge that this does not account for any cost or schedule growth which exists 

between the aircraft program’s first and latest SAR. The assumption of a static schedule 

contrasts with the “real world”, where cost and schedule estimates are rarely clairvoyant 

(Brown et al., 2015:60). This further emphasizes the need for our research on schedule 

duration.  

Finally, and most uniquely, Brown et al. (2015) finds a significant variable that is 

centered on defense acquisition reform policy. They show that programs which began 

development during 1985 or later (considered “contemporary”) expend a greater 

percentage of obligations by their schedule midpoint than the earlier pre-1985 programs. 

They hypothesize that this difference is due to the President’s Blue Ribbon Commission 

on Defense (commonly called the Packard Commission) and the subsequent acquisition 

reforms. 

Dietz, Eveleigh, Holzer, and Sarkani (2013)  

This study focuses on the pre-MS-B process in a defense acquisition. The 

researchers state that with 70 percent of a system’s life-cycle cost set at pre-MS-B, the 

most significant cost savings potential is prior to MS-B. Pre-MS-B efforts are usually 

reduced to meet tight program schedules. This article proposes a new Systems 

Engineering Concept Tool and Method (SECTM) that uses genetic algorithms to quickly 

identify optimal solutions. Both are applied to unmanned undersea vehicle design to 
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show process feasibility. The method increases the number of alternatives assessed, 

considers technology maturity risk, and incorporates systems engineering cost into the 

Analysis of Alternatives process. While not validated, the SECTM would enhance the 

likelihood of success for sufficiently resourced programs (Deitz et al.,2013). In Table 1, 

we analyze a cost estimating relationship (CER) table the researchers created relating the 

technical maturity of a program as it crosses into MS-B, and a cost multiplier associated 

with said maturity. 

Table 1: Cost Factors Associated with Technological Maturity 

 

We look to this study as rudimentary justification to collect pre-MS-B data for the 

purpose of predicting schedule, as the researchers were able to derive predictive factors 

for programs using data based on technological maturity in the pre-MS-B phase. 

Birchler, Christle, and Groo (2011)  

Birchler et al. (2011) acknowledges the idea that developing a weapons system 

while in production does increase program risk and is sometimes cited as a reason for 

cost growth. This description is known as concurrency in the defense acquisition 
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community. The researchers explore the relationship between concurrency and cost 

growth in large weapons programs (Birchler et al., 2011).  

The researchers defined concurrency as the proportion of research, development, 

and test and evaluation appropriations authorized during the same years in which 

procurement appropriations are authorized. Their results strongly indicate that 

concurrency does not necessarily predict cost growth. Using multiple regression 

techniques, the researchers found no evidence supporting this relationship. To investigate 

other relationships between cost growth and concurrency, they also used a smooth 

curving technique. These experiments showed that, although the relationship is not 

strong, low levels of concurrency can be more problematic than higher levels (Birchler et 

al., 2011).  

The findings associated with concurrency not significantly predicting cost growth 

gives us motivation to investigate concurrency for our research as it relates to predicting 

schedule duration. Perhaps a program with a planned level of concurrency could be 

statistically significant in predicting schedule duration.  

Giacomazzi III (2007) 

This research presents an empirical model of schedule growth to evaluate the 

impact of acquisition reform efforts, defense budget changes, unexpected inflation, and 

major contingency operations (war) on schedule growth of major weapon systems. A 

fixed-effects panel regression model was utilized to describe the schedule performance 

(using earned value data) of the major weapon system programs managed by the Army, 

Air Force, and Navy from 1980 to 2002. This research found that unexpected inflation 
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results in increased schedule growth. In addition, the 2000 revision of the DoD 5000 

series accounted for a reduction in schedule growth (Giacomazzi III, 2007: iv) 

Because Giacomazzi (2007) found that unexpected inflation results in increased 

schedule growth, we seek to mitigate any negative inflationary effects to our future model 

by standardizing any cost and funding information collected in the data gathering 

process. We seek to standardize said cost and funding information to the Base Year (BY) 

that our research is being conducted in, and that is in  Base Year 2016 (BY16). 

Monaco and White (2005, 2006)  

Monaco and White’s (2005, 2006) research centered on an AFIT SAR database 

built by Sipple (2002) and modified by Bielecki (2003), Moore (2003), Genest (2004), 

Lucas (2004), McDaniel (2004), and Rossetti (2004). Their modified research database 

consisted of 52 program derived from this SAR database. Towards the end of his thesis, 

Monaco (2005) noted some limitations.  

One such limitation pertained to the predictive model. Monaco needed a complete 

set of data in order for the statistical models to accurately predict the probability and 

magnitude of schedule growth within the time frame of the EMD phase of acquisition 

(defined as the interval between MS-B and MS-C). Monaco (2005) found that 

approximately 27 percent of programs that otherwise met the researcher’s criteria did not 

have a reported value for one of the four necessary 2 schedule dates, e.g. planned and 

actual dates for MS-B and MS-C. Of the programs missing the appropriate schedule 

dates, Planned MS-B, Actual MS-B, Planned MS-C, and Actual MS-C did not have 

complete data 56, 28, 72, and 56 percent of the time, respectively (Monaco, 2005:106).  
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In addition, Monaco (2005) observed the following missing schedule dates that 

showed promise as possible predictor variables: First Unit Equipped (FUE), Preliminary 

Design Review (PDR), Production Contract Award (PCA), Critical Design Review 

(CDR), EMD Contract Award, and IOC. Due to the fact that the SARs contained missing 

schedule information, Monaco could not decompose the interval between MS-B to MS-C 

in order to create predictive models within smaller time frames. In particular, the FUE 

schedule date also appeared to be very predictable but only present in 19.4 percent of the 

programs (Monaco, 2005:106). 

This is probably the closest research we have found as analogous to our scope of 

our research. Whereas Monaco (2005) focused on building models to try to predict the 

probability and magnitude of schedule growth, we feel value could also be added to a 

program by predicting statistically significant schedule duration beforehand, in that it 

could mitigate the probability and magnitude of schedule growth before it even happens. 

Gailey III (2002) 

Gailey (2002) expands the Reig (1995) study’s database from 24 to 46 programs 

that have completed MS-B and reflect 28 program characteristics (Gailey III, 2002:5).  

The results of the study stated that there appeared to be no correlation between LRIP 

quantities and the probability that the schedule will slip (Gailey III, 2002:5).  This fact 

contradicts the results of Reig (1995) that Gailey expanded on, which used a smaller 

database.   

Gailey further concluded that of the 28 program characteristics examined, 16 

exhibit scatter too extreme to provide reliable predictive power (Gailey III, 2002:11).  

Although the remaining 12 program characteristics were not discussed specifically, the 
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findings relevant to this study reiterate that the use of competition and contract type 

differentiate between a successful and unsuccessful program.  Contrary to the previous 

study, no differences were noted in MS-B success attributable to whether MS-B is 

completed, which particular contractors are the lead, or whether the program is Joint-

Service (Gailey III, 2002:9). 

Unger, Gallagher, and  White (2001) 

Unger et. al (2001) first recommends that the Weibull distribution is a better 

predictor of RDT&E expenditure profiles than the Rayleigh distribution. Unger tests the 

ability of both the Rayleigh and Weibull to predict variation and cost and schedule 

growth, finding that the Weibull outperforms the Rayleigh when fit to individual 

programs (Unger, 2001:5). The shape of the Weibull suggests a more front-loaded 

profile. However, in his findings, Unger annotates a significant limitation of his model: 

no method currently exists to estimate the Rayleigh and Weibull parameters for future 

programs. Both this study and the work by Brown et al. (2015) share the common idea 

that front-loaded funding for a program generally relates to lowering schedule growth. 

Joint Strike Fighter (JSF) (2000) 

Pioneered by the National Aeronautics and Space Administration (NASA) and 

adopted by the Air Force Research Laboratory (AFRL), Technology Readiness Level 

(TRL) was used to determine the readiness of technologies incorporated into a weapon or 

other type of system (Rodrigues, 2000:9). Measured on a scale of one to nine, the lower 

the level of maturity when a technology was included in a development program, the 

higher the risk that it would cause problems, such as schedule delays in the future 

(Rodrigues, 2000:8).   
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According to NASA, AFRL, and others in DoD, a level of seven enables a 

technology to be included in a development program with acceptable risk (Rodrigues, 

2000:9). TRLs were also used in prior work to assess the impact of technological 

maturity of product outcomes. A review of 23 different technologies into new product 

and weapon systems designs within DoD and the commercial sector determined that cost 

and schedule problems raise when programs start with technologies at low readiness 

levels and it conversely showed that programs met product objectives when the 

technologies were at higher levels of readiness (NASA, 2002). Perhaps TRL of a 

program could serve to potentially explain predicted schedule duration at different TRL 

levels going into MS-B. 

Cashman (1995) 

Cashman (1995), in his thesis, addresses three objectives: identifying actual 

reasons for schedule problems across large Air Force system development efforts, 

quantifying the importance of each category of reasons in terms of frequency and severity 

in order to determine the categories of reasons most and least deserving of management 

attention, and demonstrating that the reasons are not program unique but common across 

system development efforts (Cashman, 1995:34).   

Cashman used data available in Cost Performance Reports (CPRs) located within 

the Aeronautical Systems Center cost library with funding over $40M limited to the 

EMD phase specifically.  The sample consisted of 22 system development efforts that 

were ongoing or ended after 1984, described by 549 instances of schedule problems from 

1982-1994 relating to aircraft/missile, simulator, aircraft equipment, and aircraft upgrade 

(Cashman, 1995:25 and 35).   
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In order for meaningful identification of the reasons for schedule problems, and 

the quantification of those reasons, it is necessary to group data into categories.  “As each 

reason for schedule problems and associated quantitative information was extracted from 

the CPR, the reason was categorized based on its wording and the researcher’s five years 

of experience as an Air Force project manager” (Cashman, 1995:31).   

It is also noted by the researcher that reasons for schedule problems were not 

program specific but common across most development efforts.  “While all 22 

development efforts did not experience all 20 categories of reasons for schedule 

problems, no category appeared on only one effort, and on average, categories appeared 

on 9.1 efforts” (Cashman, 1995:69). 

Also noted by Drezner and Smith’s (1990) factors affecting schedules were 

technical difficulty and concept stability.  One reason for continued schedule overrun in 

the procurement of major weapons systems over the years is the low level of technical 

maturity of the system when it proceeds into the EMD phase.  Once the development 

phase begins, the government incurs a large fixed investment in the form of human 

capital, facilities, and materials.  Any changes thereafter may negatively affect schedule 

duration. 

 In Figures 2 and 3, we see the chart of reasons for schedule variance based on 

observations, as well as time duration of schedule variance in work days per category. 

We look to this accumulated information regarding schedule variance as a group of 

potential independent variables that could prove to be statistically significant in building 

our multiple regression model that seeks to predict schedule duration. 
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Figure 2: Frequency of Reasons for Schedule Variance by Category based on CPR’s 

(Cashman, 1995:61)  

 
Figure 3: Average Schedule Variance (work days) by Category based on CPR’s 

(Cashman, 1995:6) 
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Harmon and Om (1995) 

  This study is conducted by the Institute for Defense Analyses (IDA). The data 

collected consists of 22 missile programs with substantial developments from the mid-

1960s to the 1990s. The breakdown of the 22 programs is: eight surface-launched 

interceptors, seven air-launched interceptors, and seven air-launched surface-attack 

missiles (Harmon and Om, 1995: I-2). Although the focus of this study is on interceptor 

missiles, inclusion of the attack missiles is used because attack missile programs tend to 

be influenced by the same drivers and the missiles hardware also share many attributes 

(Harmon and Om, 1995:II-1).   

  The 22 programs offer a variety of types in both program and missile attributes.  

Ten of the 22 programs are modification programs based on previously developed 

missiles (Harmon and Om, 1995:II-9).  Development program schedules are decomposed 

into 4 periods: 1) Time to first guided launch as measured from development start to first 

guided launch, 2) Length of the development flight test program as measured from the 

first guided launch to the end of initial operational testing, 3) Early production time as 

measured from long-lead and full-funding release for the initial production lots to the first 

production deliveries for those lots, and 4) Program length from first launch as measured 

by the time from first guided launch to first production delivery (Harmon and Om, 

1995:I-3).     

  The data for this study encounters the same variability in the data and therefore 

uses delivery date of the first production missile to mark the end of development 

(Harmon and Om, 1995:I-3-I-4).  Although emphasis is placed on both pre-EMD and the 

EMD phase of the acquisition cycle, schedule intervals in the concept exploration phases 
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and the demonstration and validation phase prior to EMD are often highly dependent 

upon political factors and therefore not emphasized.  Pre-EMD prototype intervals on the 

other hand are an exception (Harmon and Om, 1995:II-1).  

 The researchers originally wanted to develop a single equation to estimate the 

interval of EMD defined as the period from EMD start to delivery of the first production 

missile (Harmon and Om, 1995:III-1).  “Unfortunately, the determinants of time to first 

launch and time from first launch to first production are just too different” (Harmon and 

Om, 1995:III-24).  Instead they choose the interval between first guided-launch and the 

first production delivery (Harmon and Om, 1995:III-1).   

 According to the research, time to first launch is a function of technological 

variables whereas time from first launch to first production is a function of the number of 

missiles launched in flight test, the rate at which they are launched, the overlap between 

production start and flight test, and production time (Harmon and Om, 1995:III-25).  

“Our hypothesis was that the terminal guidance system, generally the highest value item 

and most technologically difficult development item, would pace overall missile 

development” (Harmon and Om, 1995:II-9).  The one program attribute that serves most 

important in determining length of the development effort is the number of missiles 

launched during flight tests (Harmon and Om, 1995:II-9). 

Tyson, Harmon, and Utech (1994) 

  Unrelated to the four previous IDA studies, IDA performed an analysis on 20 

tactical missile and seven tactical aircraft programs with the objective to describe costs 

and schedule growth patterns associated with the acquisition of selected major systems, 

identify reasons for the growth, and develop a way to predict growth in ongoing 



21 

development and early production phases (Tyson, et al., 1994:iii).  Data used for this 

study comprises information obtained from SARs, historical memoranda to support DoD 

program reviews, and from summaries of program data (Tyson, et al., 1994:S-1).   

  The study finds that programs take from 50 to 137 months from Milestone II to 

IOC with only two of the twenty tactical missile programs finishing on time and the 

highest development schedule growth exceeding its plan by 180 percent (Tyson et al., 

1994:S-2). Only two programs complete under budget with two other programs 

exceeding their cost two-fold (Tyson et al., 1994:S-2).  

 The researchers examine the characteristics of programs with the highest and 

lowest schedule and cost growth. The results are located in Table 1 and Table 2. (Tyson 

et al., 1994:S-3 and S-4).  The researchers state that keys to preventing schedule growth 

in development are technical realism and a willingness to make tradeoffs and the keys to 

preventing overall cost growth are correctly estimating the degree of technical difficulty 

in the programs and maintaining the planned production schedule (Tyson et al., 1994:S-

2). The growth for aircraft is less dispersed than missile programs for multiple reasons.  

In particular, they note this reason is due to the increased management scrutiny aircraft 

programs incur and a protection from schedule stretch (Tyson et al., 1994:S-2).  

Another finding from this research is that the major determinant of development 

schedule growth is an increase in quantity; the need to produce more items for testing 

than planned (Tyson et al., 1994:S-5 and S-6). Contrary to the 1990 RAND study, the 

researchers in this study find a relationship between cost growth and schedule growth in 

both development and production (Tyson et al., 1994:S-6; and Drezner and Smith, 

1990:45).   
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Table 2: Programs with High and Low Schedule Growth in Development  
(Tyson et al., 1994:S-3) 

     
Program % Growth Characteristics 

Low Growth    
TOW 2 0% Follow-on system 
Sidewinder AIM-9M 1% Follow-on system to fulfill goals of AIM-9L 
  Learned from unrealistic estimate of prior system 
MLRS 6% Urgent program 
  Competitive prototype 
  Requirements/schedule tradeoff made in favor of schedule 
High Growth    
Phoenix AIM-54A 94% Problems resolved in development, not allowed to spill over into production 
  Testing delays 
  Delays in aircraft platform 
Maverick AGM-65D/G 98% Funding cut slowed development, allowed technology to catch up 
  Prototype 
  Vigorous testing program 
AMRAAM 129% Prototype showed infeasibility of approach 
  High concurrency, urgent program 
  Rushed testing 
Sidewinder AIM-9L 148% Urgent program, with fly-before-buy strategy 
  Technical problems, with increased development quantity 
Sparrow AIM-7F 180% Joint service program, with technical disagreements 
  Underestimation of technical difficulty (vacuum tube to solid state) 
    Vigorous testing program 

 
Table 3: Programs with Low and High Cost Growth in Total Program  

(Tyson et al., 1994:S-4) 
     

Program % Growth Characteristics 
Low Growth    
MLRS -10% Competitive prototype 
  Requirement lowered because of time urgency 
  Multiyear procurement, low stretch 
Maverick AGM-65A 1% Total package procurement with low concurrency 
  Vigorous testing program 
  Low stretch  
TOW 2 -4% Urgent modification program 
  Foreign Military Sales 
  Low stretch 
Sidewinder AIM-9M 10% Learned from schedule problems in AIM-9L program 
  Urgent program, took its lumps in development 
  Low stretch  
High Growth   
AMRAAM 84% Prototype showed infeasibility of approach 
  High concurrency, rushed testing 
  Stretched program, dual sourcing 
Phoenix AIM-54C 89% High concurrency  
  Dual-sourced for technical reasons 
  Five year qualifying for two years of competition  
  Needed funding for next generation 
Sparrow AIM-7M 100% Competitive prototype, low cost growth in development 
  Needed funding for next generation 
Sidewinder AIM-9L 123% Crash program 
  Dual-sourced for technical reasons  
  Production stretch 
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Fitcher, Arnold, and Allen (1992) 

Fitcher et al. (1992) presents a historical perspective of DoD programs schedule 

performance based on 35 Army, 46 Navy, and 24 Air Force programs from the December 

1991 SARs. The purpose of the study is to provide a point estimate and range for the 

expected schedule duration of future programs by creating probability distributions of 

past schedule durations within certain intervals.  The intervals are: 1) Milestone I – 

Milestone II, 2) Milestone II - Milestone III, 3) Program start to First flight, 4) Program 

start to First unit equipped, and 5) Program start IOC.  The program interval that most 

closely relates to our research is the interval from Milestone II to Milestone III.   

Although this study in no way tries to predict the schedule duration of a specific 

interval based on predictor variables, it does provide an ability to check the realism of 

schedules proposed by the program managers.  The probability distributions are 

compared by service and by intervals to give a range of values as “Most likely” and 

schedule expectations considered overly optimistic or pessimistic (Fitcher et al., 1992:2).  

Results from this study show that no marked difference exists among the data from each 

service and based on the Kolmogorov-Smirnov Goodness-of-Fit test with an alpha of 

0.05, all data could be fit to both the normal and the Beta distributions (Fitcher et al., 

1992:9).   

Also noted, based on the Analysis of Variance (ANOVA) results, is that the only 

significant difference among the Services (given an alpha level of 0.05) is a longer than 

average time for Air Force programs compared to the Army and Navy between Milestone 

II and Milestone III.  Service type could prove to be a productive independent variable 

for our research. 
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Drezner and Smith (1990) 

The results by Drezner and Smith (1990) show the average time to complete a 

program increases by two years when comparing the timeframes of the 1950s and 60s to 

the 1970s and 80s.  This equates to one year for Phase I and one year for Phase II at a 

confidence level of 99 and 95 percent, respectively (Drezner and Smith, 1990:9 and 11).  

However, the authors note that the year the program started fails to capture 90 percent of 

schedule variance (adj R2 = 0.10) (Drezner and Smith, 1990:9).  The results of the study 

also show the variability of the schedule duration increasing (Drezner and Smith, 1990: 

vi).  Although knowing the duration and variability of schedule is important, 

understanding what factors make up the duration and affect the variability are imperative.   

The researchers of the 1990 RAND study identified 16 potential factors that 

influence the original schedule and/or subsequent deviations; we list them in Figure 1.  

Based on statistical analysis of ten programs, the results of the study suggest the 

following influences on the original schedule estimate: 1) competition and prototyping 

lengthens schedule and 2) concurrency and adequate funding shortens schedule (Drezner 

and Smith, 1990:30).  Results also suggest the following influences on schedule slips: 1) 

unstable funding, 2) technical difficulty, 3) external guidance, and 4) external events 

(Drezner and Smith, 1990:33).  Two commonly held hypotheses that prove inconclusive 

is that longer planning phases incur less slippage, and that cost and schedule growth are 

interrelated (Drezner and Smith, 1990:40 and 45).  However, the authors state, “Our 

inability to establish these relationships may be due in part to the small database 

available” (Drezner and Smith, 1990: viii).  This study provides a good foundation from 
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which to proceed forward, but the relatively small data set limits our ability to gain clarity 

on variables that would be most influential in predicting development schedule. 

Factors Affecting Schedule 

  
Factors Affecting Original Plan 
1.  Competition 
2.  Concurrency (overlap of effort between development and production phase) 
3.  Funding adequacy 
4.  Inclusion of prototype phase 
5.  If the program's phases were contracted separately 
6.  Service priority                                                        (Drezner and Smith, 1990: 21-22) 
  
Factors Affecting Program Deviation 
1.  Contractor performance 
2.  External events 
3.  Funding stability 
4.  Major requirements stability 
5.  Program manager turnover                                     (Drezner and Smith, 1990: 23-24) 
  
Factors Affecting Original Plan and/or Program Deviation 
1.  External guidance 
2.  Single service or joint management 
3.  Program complexity 
4.  Technical Difficulty 

5.  Concept stability (System specification maturity)         (Drezner and Smith, 1990: 23) 

Figure 4: Drezner and Smith’s Sixteen Schedule Factors 

Harmon, Ward, and Palmer (1989) 

Harmon et al. (1989) attempt to provide methods for assessing the reasonableness 

of proposed acquisition schedules.  This particular study, consisting of data collected 

from nine tactical aircraft programs, performs analyses on schedule intervals and 

provides a schedule assessment tool that spans the period from Full Scale Development 

(FSD) (now referred to as EMD) start through full-rate production (Harmon et al., 

1989:1).    
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The programs chosen with development occurring from the early 1970s to early 

1980s are based on the newness of the program, its importance in historical perspective, 

and the expected availability of data (Harmon et al., 1989:17).   Development program 

schedules are decomposed into 5 periods: 1) Length of pre-FSD activity, 2) Period from 

FSD start to first flight, 3) Length of the development flight test program, 4) Early 

production time, and 5) Total FSD program length (as defined by the period from FSD 

start to the delivery of the 24th production aircraft) (Harmon et al., 1989:2).  Although 

the researchers refer to these periods as “intervals” they are not mutually exclusive in that 

certain intervals overlap.   

The data is collected from the Office of the Secretary of Defense, military 

services, contractors, and third parties (studies and databases at IDA, RAND, etc).  They 

obtain cost and technical data from government sources and prime contractors while 

schedule data is obtained from SARs, contractors, and the services sources (Harmon et 

al., 1989:17-18).    

The program attributes prove to play an important role in explaining variations in 

interval length.  Under the program attribute of the prime contractor, it is estimated that 

McDonnell Aircraft programs require 15 percent more time than the other four contractor 

types (Harmon et al, 1989:47).  The data also shows that prototype programs require 11 

percent less time than programs that do not develop prototypes (Harmon et al, 1989:47). 

The schedule driver data collected in Figure 5 may be further explored in the building of 

our model. It should be noted however, not all of these drivers are applicable to our 

model, since information such as the weight of a completed prototype of low-rate 

production unit will not be available pre-MS-B. 
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Candidate Schedule Drivers for Tactical Aircraft 
Program Characteristics 
1.  Military Service 
2.  Prime Contractor 
3.  Whether the system was prototyped 
4.  If the acquisition strategy included contractor teaming 
5.  If there was separate engine development 
6.  Number of EMD aircraft built 
Aircraft Characteristics 
1.  Empty weight (lbs.) 
2.  Combat weight (lbs.) 
3.  Maximum speed (knots)  
4.  Thrust to weight ratio at combat weight 
5.  Mission radius 
6.  The percentages of titanium and composites used in the airframe structure 

(Harmon et al, 1989:19)

Figure 5: Harmon, Ward, and Palmer Schedule Drivers for Tactical Aircraft 

Harmon and Ward (1989) 

The approach used in this study in many ways parallels that used for the previous 

study.  The data consists of fourteen air-launched missile programs (seven air-to-air and 

seven air-to-surface systems) that involve substantial developments from the mid-1960s 

to the late 1980s. Development program schedules are decomposed into 4 periods: 1) 

Time to first guided launch as measured from FSD start to first guided launch, 2) Length 

of the development flight test program as measured from the first guided launch to the 

end of initial operational testing, 3) Early production time as measured from long-lead 

and full-funding release for the initial production lots to the first production deliveries for 

those lots, and 4) Program length from first launch as measured by the time from first 

guided launch to first production delivery.   

In the previous study of tactical aircraft, the end of development is stated as the 

time when 24 aircraft are delivered.  Using this methodology for missiles leads to 

inconsistencies across programs because production rates associated with different types 
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of missiles vary widely.  The researchers decide to use delivery date of the first 

production missile to mark the end of development (Harmon and Ward, 1989:3). 

The data is collected from military services, prime contractors, and third parties 

(studies and databases at IDA, RAND, etc) with schedule and missiles characteristic data 

obtained from SARs, numerous government sources, (Harmon and Ward, 1989:8). 

Collected schedule drivers in Figure 6 may be further explored for the purpose of our 

research. 

Candidate Schedule Drivers for Air-Launched Missiles 
Program Characteristics 
1.  Military Service 
2.  Prime Contractor 
3.  Whether the system was prototyped 
4.  If the system was new or a modification 
5.  Number of prototype missiles  
6.  Number of prototype launches 
7.  Number of development missiles 
8.  Number of development launches 
Missile Characteristics 
1.  Primary targets 
2.  Guidance type 
3.  Length (ft.)  
4.  Diameter (in.)  
5.  Total weight (lbs.) 
6.  Guidance weight 
7.  Missile Cross-Section (in.2) 
8.  Guidance weight/Cross Section 
9.  Range (nautical miles) 
10.  Mach speed 
11.  Total Impulse (lbs. * sec.) 

(Harmon and Ward, 1989:9-10)

 Figure 6: Harmon and Ward Schedule Drivers for Air-Launched Missiles 

  The researchers originally wanted to develop a single equation to predict the 

interval of FSD defined as the period from FSD start to delivery of the first production 

missile (Harmon and Ward, 1989:23).  Due to the fact that the determinants of time to 

first launch and time from first launch to first production are vastly different, the 
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researchers choose the interval between first guided-launch and the first production 

delivery (Harmon and Ward, 1989:36).   

According to the research, time to first launch is a function of technological 

variables whereas time from first launch to first production is a function of the number of 

missiles launched in flight test, the rate at which they are launched, the overlap between 

production start and flight test, and production time (Harmon and Ward, 1989:36).   

The researchers believe that the most important determinant of overall 

development program length is length of the flight test program.  Being that flight test 

duration is determined by the number of test missiles launched and the rate at which test 

launches are accomplished, it is no surprise that the one program attribute that served 

most important in determining length of the development effort was the number of 

missiles launched during flight tests (Harmon and Ward, 1989:13). 

Tyson, Nelson, Om, and Palmer (1989)  

This study conducted by the IDA examines schedule variances and their causes.  

The database consists of nine tactical aircraft, nine electronic aircraft, five helicopters, 

eight other aircraft, 16 air-launched tactical munitions, 18 surface-launched tactical 

munitions, 10 electronic systems, 10 strategic missiles, and four satellites.  The database 

is divided into four periods: 1960s, early 1970s, late 1970s, and 1980s to compare 

schedule growth between different timeframes.  The results of schedule slippage within 

the development phase are as follows: 1960s = 46 percent, early 1970s = 24%, late 1970s 

= 37%, and 1980s = 21% (Tyson et al., 1989:IV-2).  The results of schedule slippage 

within the production phase are as follows: 1960s = 64%, early 1970s = 84%, late 1970s 

= 69%, and 1980s = 7% (Tyson et al., 1989:IV-2).   
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The main focus of their study was to determine the effect, if any, on schedule 

overruns, from: 1) prototyping, 2) competition, 3) multi-year procurement, 4) design-to 

cost, 5) sole-source procurement and fixed-price development, and 6) contract incentives, 

variables investigated in previous findings that we have documented.  Use of prototyping 

shows a reduction in the development phase and the overall schedule by 11 and 15 

percent, respectively (Tyson et al., 1989:VIII-6 – VIII-7). Competitive programs produce 

43 percent more design-schedule growth and 39 percent more production schedule 

growth, compared to non-competitive programs (Tyson et al., 1989:VII-7).  Programs 

utilizing multiyear-procurement experience seven percent less production schedule 

growth (Tyson et al., 1989:VI-8). Design-to-cost exhibited development schedule growth 

of 12 percent and production schedule growth of two percent (Tyson et al., 1989:IX-11).  

Production schedule growth is reduced by 27 percent when sole-source procurement is 

used (Tyson et al., 1989:X-7). Under a fixed-price contract strategy, development 

schedule growth showed a reduction of six percent (Tyson et al., 1989:X-13). It should be 

noted that no comparison was made between contract incentives and schedules, as that 

could have been a separate catalyst.   

Chapter Summary 

  In this chapter, we review a multitude of studies that examined various datasets 

while performing a plethora of statistical procedures all in the pursuit of explaining and 

predicting schedule duration and variance.  It is from these studies that we identify the 

characteristics that drive acquisition schedules and derive our own list of predictor 

variables. The accumulation of these predictor variables found throughout the literature 

review give us a strong foundation from which we can purposefully collect data and 
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explain our methodology in predicting schedule duration to IOC for defense acquisition 

programs. 

Although the studies reviewed in this chapter differ in the number of programs, 

the source of data, and methodologies used, they prove beneficial in providing insight 

into the methodology and predictor variables needed for our research.  From past studies, 

we identified many reasons of schedule growth, schedule variance, and schedule 

estimating relationships that we wish to investigate as they may be applicable to creating 

our database and building our regression model. However, it must be noted that not all of 

the identified variables and relationships may be available in the form of SAR data, thus 

we now begin the process to manage what information we do have available to us in the 

SAR. Furthermore, we now develop a foundation from which to begin the methodology 

for predicting most schedule duration to IOC for defense acquisition programs. The 

following chapter seeks to addresses the methodology in detail.  
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III. Methodology 

Chapter Overview 

This chapter explains the procedures we use to conduct our research.  First, we 

discuss the data source to include its limitations and the process to select and compile the 

data. Second, define our response variable as it relates to our research question and 

objectives. Next, we discuss our search for predictor variables, and define candidate 

predictor variables. We then discuss using preliminary data analysis for the model.  

Lastly, we discuss the application of a multiple regression analysis, which serves as the 

statistical cornerstone for predicting a realistic schedule duration for a given acquisitions 

program. 

Database 

As mentioned in the previous chapter, Monaco and White (2005, 2006) used a 

database that had been built and modified over the years by students at AFIT. Because 

this database is at least 11 years old at this point, we create and employ an entirely new 

database. The database we utilize for our research is a database originally built by the 

RAND Corporation for the Air Force Cost Analysis Agency (AFCAA). The SAR 

database is populated with SAR data on approximately 330 defense acquisition programs. 

The said SAR database, which is built electronically using separate Microsoft® Excel 

sheets per program, is in the format of large portfolios of programs grouped by service. 

The information housed in this major database includes, but is not limited to, vital cost 

and schedule data necessary for our study.  

The database consists of program SARs dating back to the 1950’s.  Our research 

seeks to use all programs that contain SAR data that is relevant, applicable, and available 
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for our multiple regression model. Programs included in the study will contain Air Force, 

Army, Navy, and Marine Corps. programs. With respect to program type limitations, a 

U.S. Government Accountability Office (GAO) study on space programs that was 

presented before the U.S. Senate on 11 May, 2011 states:  

“Despite decades of significant investment, most of the Department of Defense's 
(DoD) large space acquisition programs have collectively experienced billions of 
dollars in cost increases, stretched schedules, and increased technical risks. 
Significant schedule delays of as much as 9 years have resulted in potential 
capability gaps in missile warning, military communications, and weather 
monitoring. These problems persist, with other space acquisition programs still 
facing challenges in meeting their targets and aligning the delivery of assets with 
appropriate ground and user systems.” (GAO, 2011)  
 

Because of the GAO’s contemporary findings on extreme cost and schedule growth in 

space programs despite significant investment to try to mitigate said growth, we choose 

to exclude space programs from our database to try to preserve the accuracy of our model 

as it will relate to all other program types. 

The SAR database includes program information of all programs, regardless of 

whether the program was terminated or not.  We choose to only include programs that 

completed IOC. We do this because a cost estimator develops schedule durations based 

on the idea that the program will be successful and complete IOC. Using successful 

program data is important because we seek to create regression models that emulate 

successful programs, which in turn may provide the cost estimator a tool to create a 

successful development schedule based on past successful program data. 

For our study criteria, we consider any program with a “MS-II” labeling to be 

synonymous with “MS-B” based on each of their respective definitions (Harmon 
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2012:11). Also, we only include programs that complete the EMD phase up to reported 

IOC. U.S. Code: Title 10: Section 2432 states:  

“The requirements of this section with respect to a major defense acquisition 
program shall cease to apply after 90 percent of the items to be delivered to the 
United States under the program (shown as the total quantity of items to be 
purchased under the program in the most recent Selected Acquisition Report) 
have been delivered or 90 percent of planned expenditures under the program 
have been made.” (US Code, 2004) 
 

 When a program meets the above criteria, one last SAR report based on the 

estimate is submitted.  This SAR is the one we use to populate our database.  It is 

necessary to wait until a program completes the EMD phase all the way through to the 

IOC phase to ensure we capture the actual completion date.  This determines the amount 

of schedule duration we use as our dependent variable in model creation.   

 Furthermore, because we seek to predict schedule duration from the beginning of 

MS-B to IOC, a major focus of our research database is to include SARs that contain pre-

MS-B data. This is significant in that defense acquisition programs are officially initiated 

at MS-B, and data collection for programs is highly scrutinized at MS-B and beyond. 

Unfortunately, program data (funding, schedule, etc.) on a program before it is officially 

initiated at MS-B is not always as highly scrutinized because it is not officially a program 

at that point in time, and therefore pre-MS-B data is not always as readily available as 

post-MS-B data.  

All the aforementioned characteristics of a program’s SAR serves as strict data 

entry criteria for creation of our research database. SARs that had all of the 

characteristics except one was not considered due to the fact that incomplete data on a 
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program would not be of use in analyzing that data, nor would incomplete data be useful 

in the multiple regression model we seek to build.  

With respect to the SAR database, an iterative process of criteria (Figure 3) was 

applied to all of the programs in the database as to filter for only programs we could use 

for our study.  

Table 4: Process of Database Filtering 

 

This filtering process helped us get to the sample size of 56 programs we use for our 

research. First, we seek to filter out all space programs, as previously mentioned. Second, 

we seek to use only programs that give us both MS-B and IOC dates, as this will be our 

response variable. Next we look for RDT&E funding data as it relates to a percentage of 

total RDT&E funds allocation at MS-B. This idea comes from Brown et al. (2015) and 

Unger (2001) who found that front-loading a program’s RDT&E funding has a 

correlation to lessened schedule growth.  In order for a percentage to be calculated, there 

needs to be at least one year prior to MS-B of RDT&E funding data. This criteria filtered 

out the most programs simply due to the fact that many of the final SARs in the database 

only showed funding data at MS-B and thereafter. Finally, the last criteria also relates 

back to the Brown et al. (2015) and Unger (2001) findings in that calculating RDT&E 

funds percentage allocated at MS-B can best be captured from clearly defined MS-A 

start, finish, and funding data. 
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Selected Acquisition Report (SAR) Data 

The SAR contains an array of major defense acquisition program data from all 

military services.  At a minimum, this data includes schedule, cost, budget, and 

performance characteristics of defense programs. Although the criteria for a program to 

be classified as ACAT I change over time, the programs within the SAR consistently 

represent programs of high interest to the government.  The SAR data can include both 

classified and unclassified information.  For security reasons, we only include 

unclassified information in our database.   

As seen in the literature review, SAR data is commonly used to conduct research 

on both schedule and cost growth.  Even though the government has made improvements 

in both quality and consistency of information within SAR data, there are still many 

weaknesses with respect to data collection and reporting that get manifested in missing or 

incomplete data (Hough, 1992:v).  Inconsistencies exist due to the fact that guidelines 

change over time, and specific details vary from program to program leading to 

complications with interprogram comparisons (Hough, 1992:4).  Even with the traditional 

limitations associated with SAR data, it still remains a logical source of data for our 

research due to the wide range of information it has on programs that are of high interest 

to the government.    

Response Variable 

This research utilizes a multiple regression approach to predicting program 

schedule duration. We express the multiple regression response as time duration in 

months for our modeling database, although the predicted response more than likely will 

have remaining time expressed as a decimal of a month. Therefore for usage of the 
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model, we suggest rounding the predicted response to a whole number. The overall time 

duration in months starts at EMD, through the Production and Deployment, LRIP, and 

IOT&E phases, and concludes at IOC. 

For our multiple regression model conducted in JMP®, our response variable is as 

follows: 

 MS-B to IOC (Months) [Regression Output] 
o This variable states the actual time it took from MS-B to IOC for a 

given program. This data is unavailable to the cost estimator at the 
time they are developing a cost estimate. 

 
The accuracy of the “MS-B to IOC (Months)” response variable will be dependent on the 

strength of the predictor variables associated to it in the multiple regression model. 

Search for Predictors of Schedule Duration 

Our past studies discussed in Chapter II identify possible predictor variables as 

they relate to our research. To be of value in the application of cost estimating, it is 

imperative the explanatory (independent) variables are both understandable and available 

to the cost estimator when the program office begins the schedule estimate as part of the 

cost estimate.   

A variable that is predictive yet confusing, or unavailable to the estimator, is 

essentially worthless if it cannot be communicated to an audience, or understood by 

another user.  For this reason, we create models consisting of clearly defined variables 

that the cost estimator is confident in. This produces a model that has utility and is easily 

defendable. In the search for predictors, we do not mandate a causal relationship to the 

response variable, but the independent variable must exhibit some logical link to the 

response variable that the cost estimator can easily understand. Furthermore, along with 
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the cost estimator being able to understand the independent variable, the data associated 

with the independent variable should accessible in common reporting standards.  

Predictor Variables 

The candidate explanatory variables used in the multiple regression model to 

predict schedule duration come exclusively from the SAR database. With strict data entry 

criteria applied to creating our research database, the predictor variables found have some 

logical link to the program, and should be readily available to the cost estimator on a 

given SAR deliverable. Our final regression model, described next in Chapter IV, only 

includes those predictor variables that prove statistically significant at α=0.05 level of 

significance.  Next, we list and describe the predictor variables considered for inclusion 

in the multiple regression model.  

All of these were found across all 56 programs of our modified SAR database: 

[Note: only relevant categorical variables are listed here if that particular type of program 

was in the database. Since there are no ships in our research database, there is no 

explanatory variable listed as Ship. The same can be said for Tank, etc.] 

 MS-A to MS-B Duration (Months) – Continuous Variable 
o This variable indicates the total time it took in months for a program to 

complete MS-A to MS-B according to the last SAR date. In this 
variable we are only concerned with actual schedule duration data 
available to the cost estimator at the time of Milestone B/EMD start. 

 
 Quantity Expected at MS-B – Continuous Variable  

o This variable indicates the estimate of total quantity of weapons 
systems that were expected to be produced at MS-B at the time of the 
last SAR date. 

 
 RDT&E $ (M) at MS-B Start (BY16) – Continuous Variable 

o This variable is based on simply raw total RDT&E dollars (in 
millions) that were allocated to the program before, and up to the start 



39 

of MS-B. The dollars were all standardized into the current base year 
at the time of this research (BY16). 

 
 
 

 % of RDT&E Funding at MS-B Start (BY16) – Continuous Variable 
o This variable is based on the percent of available RDT&E dollars 

allocated to the program before, and up to the start of MS-B. While 
this variable is based on a percentage, the dollars that this % was 
derived from were all standardized into the current base year at the 
time of this research (BY16). 

 
 Modification – Binary Variable 

o This variable is concerned with programs whose existence serves as a 
modification to a pre-existing weapons system. If a weapons system is 
a modification, it does not necessarily mean it will not have pre-MS-B 
data associated with it. Every program is different, and therefore it 
cannot be assumed that a modification will automatically start at MS-
B. 

 
 Prototype – Binary Variable 

o This variable includes is concerned with programs that create a 
prototype, or prototypes, of a weapons system before production of 
that weapons system begins. More than one type of prototype for a 
weapons system can be created in a given program. 

 
 Concurrency Planned – Binary Variable 

o This variable addresses planned concurrency in a given program prior 
to MS-B. Concurrency is the proportion of RDT&E dollars that are 
authorized during the same years that Procurement appropriations are 
authorized. The planned level of concurrency forces managers to make 
decisions that can lead to [schedule] growth if either too much or too 
little concurrency is accepted for a given program (Birchler et al, 
2011:246). 

 
 1985 or Later for MS-B Start – Binary Variable 

o This variable accounts for a time series trend of programs that started 
their MS-B in 1985 or later. It is shown that programs which began 
development during 1985 or later (considered “contemporary”) expend 
a greater percentage of obligations by their schedule midpoint than the 
earlier pre-1985 programs. We attribute this difference to the 
President’s Blue Ribbon Commission on Defense (commonly called 
the Packard Commission) and the subsequent acquisition reforms. 

 
 MS-B Start Year – Continuous Variable 
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o This variable addresses the year in which MS-B started. Much like the 
“1985 or Later for MS-B Start” predictor variable shown above, the 
actual year in which MS-B started has the probability of significance 
on the schedule duration of a program. 

 
 Air Force – Binary Variable 

o This variable identifies if the lead service on the program was the 
United States Air Force. 

 
 Navy – Binary Variable 

o This variable identifies if the lead service on the program was the 
United States Navy. 

 
 Army – Binary Variable 

o This variable identifies if the lead service on the program was the 
United States Army. 

 
 Marine Corps – Binary Variable 

o This variable identifies if the lead service on the program was the 
United States Marine Corps. 

 
 Aircraft – Binary Variable 

o This variable identifies if the weapons system program is an aircraft 
program, regardless of service it is associated with. The criteria to 
qualify as an aircraft for this variable is any weapons system whose 
primary function is flight; both rotary-wing and fixed-wing programs. 

 
 Fighter Program – Binary Variable 

o This variable identifies if the weapons system program is a fighter 
program, or close variation thereof, regardless of service it is 
associated with. 

 
 Bomber Program – Binary Variable 

o This variable identifies if the weapons system program is a bomber 
program, or close variation thereof, regardless of service it is 
associated with. 

 
 Helo Program – Binary Variable 

o This variable identifies if the weapons system program is a helicopter 
program, or close variation thereof, regardless of service it is 
associated with. 

 
 Cargo Plane Program – Binary Variable 
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o This variable identifies if the weapons system program is a cargo plane 
program, or close variation thereof, regardless of service it is 
associated with. 

 
 Tanker Program – Binary Variable 

o This variable identifies if the weapons system program is a tanker 
plane program, or close variation thereof, regardless of service it is 
associated with. 

 
 Electronic Warfare Program – Binary Variable 

o This variable identifies if the weapons system program is an electronic 
warfare program, or close variation thereof, regardless of service it is 
associated with. An electronic warfare program, as not to be confused 
with an electronic system program, differs greatly in that its main 
function(s). A description from Lockheed Martin makes the distinction 
that it involves the ability to use the electromagnetic spectrum – 
signals such as radio, infrared or radar – to sense, protect, and 
communicate. At the same time, it can be used to deny adversaries the 
ability to either disrupt or use these signals (Electronic Warfare 
Products).  

  
 Trainer Plane Program – Binary Variable 

o This variable identifies if the weapons system program is a trainer 
plane program, or close variation thereof, regardless of service it is 
associated with. 

 
 Missile Program – Binary Variable 

o This variable identifies if the weapons system program is a missile 
program, or close variation thereof, regardless of service it is 
associated with. 

 
 Electronic System Program – Binary Variable 

o This variable identifies if the weapons system program is an electronic 
system program, or close variation thereof, regardless of service it is 
associated with. This differs greatly from the previously described 
electronic warfare variable in that electronic systems programs are 
principally concerned with the electronic user interface of a system, 
avionics controls, or other similar applications that primarily support 
the electronic usability of a system, or system of systems. 

 
 Submarine Program – Binary Variable 

o This variable identifies if the weapons system program is a submarine 
program, or close variation thereof, regardless of service it is 
associated with. 
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 Contractor (Name of Defense Contractor(s)) – Binary Variable 
o This variable identifies the name of the lead defense contractor for a 

given weapons system program. If the effort on a program involved 
more than one contractor, a variable was created with all named 
contractors sharing that variable.  

 ACAT I – Binary Variable 
o This variable makes the distinction if the program is an ACAT I 

program, or not. This is significant in that ACAT I programs deal with 
a much larger dollar amount, and thus are more susceptible to cost and 
schedule growth by way of their large-scale and complexity efforts. 

Validation Pool 

 Once all data is gathered across all 56 programs, we randomly select 20 percent of 

the 56 programs to serve as our validation pool. This means we build our multiple 

regression model with the data of 45 programs, while the other 11 completed programs’ 

data is used to test the multiple regression model against for accuracy of output.  

Exploratory Data Analysis 

Inherent in building a valid, statistically significant multiple regression model is 

the application of various statistical techniques that can further help us to create the most 

robust model possible. It should be noted that a test for independence is not part of our 

exploratory data analysis. Due to the fact we use only one SAR to obtain data for any one 

program, we assume independence is met, although we have no way of statistically 

testing this assumption. 

Variance Inflation Factors 

One of the first analyses done in the exploration of the data involves looking at 

the variance inflation factors (VIF) scores. We seek to display and analyze the VIF scores 

of any predictor variables that prove to be statistically significant. Variance inflation is a 

consequence of multicollinearity and the VIF scores are a common way for detecting 
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such a relationship (Stine, 1995). When an independent variable is nearly a linear 

combination of other independent variables in the model, the affected estimates are 

unstable and exhibit high standard errors. This is due to a linear dependency between two 

or more independent variables where the value of one predictor is dependent upon 

another (Stine, 1995). “A VIF of 10 suggests that it is large enough to indicate a 

problem” (Stine, 1995).  

Cook’s Distance Test 

To make sure there are no overly influential data points that are creating skewed 

outputs in our model, we look to Cook’s Distance test, commonly referred to as “Cook’s 

D” (Cook, 1977). Cook's D is a commonly used estimate of the influence of data point(s) 

when performing a regression analysis. Cook's D can be used in several ways: to indicate 

data points that are particularly worth investigating for validity, to indicate regions of a 

space where it would be good to be able to obtain more data points, or even removing 

data points that appear to be overly influential in our regression model. All of these uses 

of Cook’s D should be applied on a case by case basis. For the purpose of our research, 

we look to Cook’s D to check for any program data that is overly influential to our model 

using JMP®. Typically, we are justified in removing a data point when the Cook’s D 

value is 0.5 or greater. A Cook’s D value that is greater than 0.5 indicates that an 

influential data point exists (Neter et al., 1996:381). 

Studentized Residuals   

In juxtaposition with Cook’s D, which looks for influential data points, we also 

look at the histogram of  studentized residuals to identify potential outliers. If we detect 

any potential outliers in the studentized residual histogram, we further explore on an 
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individual basis to see if the outlier should be kept in the regression model.  This anomaly 

could indicate a data transcription issue, a rare occurrence, an atypical program, or for a 

host of reasons that cannot be explained. For purposes of our research, we consider any 

program whose studentized residual is either 3 standard deviations above or below then 

standard normal distribution’s mean of zero.  This is in keeping assumption a normal 

distribution of the residuals, which we discuss next. 

Shapiro-Wilk’s Test   

Any multiple regression model that we ultimately settle upon must have its model 

residuals pass the assumption of being normally distributed and possessing constant 

variance.  These two assumptions are needed to satisfy/maintain the validity of the 

models’ p-values.   

The Shapiro-Wilk’s (S-W) goodness of fit test (Neter et al., 1996: 111) addresses 

the normality assumption. The S-W test is a way to statistically determine whether a 

random sample comes from a normal distribution or not. We use a threshold of α = 0.05 

to conduct this test. The null hypothesis for the S-W is that the model residuals possess a 

normal distribution. The alternative hypothesis is that they do not.  If the p-value for the 

S-W is larger than 0.05, then we can satisfy the assumption of normality for the data in 

our model.  

Breusch-Pagan Test  

Following this, we test our final model assumption of constant variance of the 

error term using the Breusch-Pagan (B-P) test (Neter et al., 1996:239). This test for 

constant variance in a regression model is used with the purpose of identifying whether 

heteroscedasticity is present in the model or not. Heteroscedasticity refers to the 
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circumstance in which the variance of an explanatory variable is not constant (unequal) 

across the range of values of a different variable that predicts it. In order to have the most 

robust regression model possible, having as close to equal constant variance as possible is 

most advantageous.  

We conduct the B-P test for our research using Microsoft® Excel after obtaining 

data inputs via JMP®. In order to pass the assumption of constant variance using the B-P 

test, the p-value output from the test must be above 0.05.  Similar to the S-W test, the null 

hypothesis states that our assumption with respect to the model’s residuals (for the B-P 

test, this is constant variance) holds.  

Stepwise Regression 

We use the process of stepwise regression to assist us in determining which 

explanatory variables prove both individually predictive as well collectively predictive. 

The stepwise function in JMP® gives give us a preliminary regression model to work 

with, and all of the aforementioned exploratory data analysis methods will be conducted 

following the output of a preliminary multiple regression model. Thus, chronologically, a 

multiple regression analysis is run first, but it will not be used or considered significant 

until all exploratory data analysis methods are conducted and satisfied. 

We use the mixed direction within the stepwise regression in lieu of the forward 

and backwards option. The purpose of this is to optimize both the fitting routine as well 

as to prevent carrying non-predictive variables once more predictive variables are added 

to the preliminary regression model.   

We use a p-value threshold of 0.05 for an explanatory variable to enter the model 

as well as a value of 0.05 to leave the model.  That is, for an initial explanatory variable 
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to be entered into the regression model, it must have a p-value of less 0.05.  Once within 

the model, if it ever reaches a p-value of greater than 0.05 (once other explanatory 

variables are included) stepwise then removes this variable. 

Multiple Regression Analysis 

 The last step of our model building process involves the ultimate finalization of 

our multiple regression model once stepwise has produced an initial model and we have 

ascertained there are no issues (and tested that) with respect to multicollinearity (VIF 

scores), influential data points (Cook’s D), outliers (studentized residuals) and satisfied 

the assumption of normality (S-W test) and constant variance (B-P).  The structure of the 

finalized model reflects the standard linear multiple regression equation (1). 

																					 0 1 1 2 2 ...i ii k ki iY X X X         	(McClave et al., 2001:557)  										(1) 

Where: 
Yi  - Outcome of Dependent Variable (response) for ith  experimental/sample unit  
Xi  - Level of  Independent (predictor) variable for ith  experimental/sample unit 
 0 1 Xi  - Linear /systematic relation between Yi and Xi  (conditional mean) 
0  - Mean of Y when X=0 (Y-intercept) 
1  - Change in mean of Y when X increases by 1 (slope) 
 i  -  Random error term 

In this finalization, we also seek to make sure that the final model is statistically 

significant at our chosen experimentwise error rate of 0.05, but that we also ensure each 

explanatory variable is significant with respect to its respective comparisonwise error 

rate.  This later requirement is necessary such that we don’t erroneously violate the 

experimentwise error rate for the overall model’s F test while conducting multiple t-tests 

for the individual model parameters. 
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This later step requires us to adopt a procedure to control for the overall Type I 

error rate by adopting a familywise error rate procedure. For this research, we utilize the 

Bonferroni Correction (Bonferroni, 2015). The application of this corrective measure is 

an adjustment made to P-values when several dependent or independent statistical tests 

are being performed simultaneously on a single data set. To perform a Bonferroni 

Correction, divide the P-value (α) by the number of comparisons being made (m). The 

output of this will give us αc which will be the threshold by which each P-value must be 

less than to remain in the model. If an independent variable gets removed from the 

regression model by way of the Bonferroni Correction, a new iteration will be conducted 

with a new value for the number of comparisons (m), which will in turn create a newly 

calculated αc threshold. This is an iterative process and can take multiple iterations, but it 

serves as strong conservative measure to avoid the potential of having a lot of spurious 

positives in the testing of the data set (Bonferroni, 2015). The only way an independent 

variable can remain in the model is if it fails the threshold by only a small margin (and 

small is contextual), and in each case an analysis will be conducted on the importance of 

keeping said independent variable in the model. 

The multiple regression model can only be considered complete and valid upon 

passing all phases of the exploratory data analysis. If at any point the multiple regression 

model fails any phase of the exploratory data analysis, proper remedial measures will be 

taken, and an iterative process will take place until significant results are present in a 

model. 

Descriptive performance measures we utilize for the multiple regression analysis 

are the R2 and Adjusted R2 outputs. The R2 is a statistical measure of how close the data 
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fit to the regression line. It is also known as the coefficient of determination, or the 

coefficient of multiple determination for multiple regression. An R2 of 0 indicates that the 

model explains none of the variability of the response data around its mean, while R2 

values closer to 1 have a much stronger explanation. Adjusted R2 has been adjusted for 

the number of predictors in the model. The Adjusted R2 increases only if the new term 

improves the model more than would be expected by chance. It decreases when a 

predictor improves the model by less than expected by chance. Adjusted R2 ensures we 

do not arbitrarily add variables to the model that are not predictive.   Adjusted R2 ensures 

we do not arbitrarily add variables to the model that are not predictive.    
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Where: 
n= the number of data points 
k= the number of independent variables in the model 

As seen in (2), the value of Adjusted R2 decreases when we add additional 

variables to the model.  If the added variable increases the explained variance noted in 

R2, Adjusted R2 increases.  Therefore, this counterbalance ensures that we add variables 

whose predictability warrants the additional complexity of the model (McClave et al., 

2001:557). 

Validation of Multiple Regression Model 

 The final model is tested against our validation pool. Our model, consisting of 45 

programs, is tested against our validation pool of 11 programs. Two measures of this 

validation takes place. First, we compute the Absolute Percent Error (APE) for each 

program and then determine the Mean and Median Absolute Percent Error (MAPE and 
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MdAPE) for both sets of data. The APE equals | actual MS-B to IOC (months) minus 

predicted MS-B to IOC (months) | divided by actual MS-B to IOC (months). The 

MdAPE and MAPE measure the average prediction accuracy of each regression model’s 

outputs. We then compare the MdAPE and MAPE to check that they behave the same as 

both the larger sample and smaller sample should exude similar percent errors in their 

characteristics.  

Once the MdAPE and MAPE are compared, we then construct a predicted by 

actuals bivariate plot to compare the regression line of both graphs. Once again, we check 

to see that both the main model and model built from the validation pool behave in a 

similar fashion. If our main model holds up against both measures of the MdAPE and 

MAPE comparison, as well as the bivariate plot, we can combine the original 45 

programs with the 11 programs of the validation pool, and we can create a finalized 

model using all 56 programs.  

Chapter Summary 

 We use the results of our literature review as a foundation for our analytical 

process. This chapter details our foundation by describing our research methodology.  We 

explore the use of SAR data, describe our process of data collection, and explain our 

creation of predictor variables that provide a link to the response variable.  We provide 

reasoning for the use of our methodology and provide a detailed explanation of the 

exploratory data analysis conducted on the data to further help us create the most robust 

model possible. We drive forward into the next chapter to introduce the results of our 

model building process.    
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IV. Results and Analysis 

Chapter Overview 

This chapter provides the results from the methodology outlined in Chapter III. 

First, using our model pool of 45 defense acquisition programs, we run a preliminary 

multiple regression analysis in JMP® using the stepwise function. Second, we conduct 

our data analysis techniques on the preliminary multiple regression model as a means to 

validate assumptions about the model, which gives us a final model. Next, using our 

finalized multiple regression model, we measure, compare, and discuss our statistically 

significant predictor variables. Then we discuss the explanatory power of our model 

overall using the R2 and Adjusted R2 values. Finally, we judge the performance of our 

finalized multiple regression model by testing it against our validation pool of 11 

programs, along with measuring the validation performance as it relates to raw output 

accuracy with respect to the MdAPE and MAPE range.  

Preliminary Multiple Regression Model 

 Applying the stepwise function in JMP® to our data on 45 programs, we arrive at 

the output displayed in Figure 7. This figure shows us that our preliminary model appears 

to display many characteristics that would help us to predict schedule duration to IOC for 

a given program.  

In our preliminary model, we note the presence of many of the predictor variables 

that were detailed in Chapter III. Also detailed in Chapter III, the Bonferroni Correction 

can be applied to the model, as a conservative measure to avoid any potential spurious 

positives from testing the model. 
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Figure 7: Preliminary Multiple Regression Model Output 

 Applying the Bonferroni Correction to this preliminary model requires us to 

calculate αc by accounting for all of the independent variables, except the intercept, and 

dividing that number by the P-value. For this study being exploratory in nature, we use an 

α of 0.05 for this step. This gives us 0.05/4 = 0.0125 as our αc. By this standard, the 

Modification predictor variable would be removed from the model because it is above the 

αc threshold by 0.0125.  

As mentioned in Chapter III, the only way an independent variable can remain in 

the model is if it fails the αc threshold by only a small margin, and in each case an 

analysis will be conducted on the importance of keeping said independent variable in the 

model. In this case, Modification is above the αc by a relatively small enough margin that 

we see value in investigating its potential to remain in the model. At first, we notice the 
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Modification predictor variable has a negative value as the coefficient. Because our 

Modification predictor variable is binary, this tells us that when a defense program is 

characterized as modification that we can expect it to truncate the schedule duration 

output.  

Outside of what the data suggests, this seems reasonable to us because a 

modification to a weapons system that has already been developed and operational could 

indeed have a higher probability of a quicker duration to IOC, as compared with a new 

program that is being developed and tested for the first time. Based on our investigation, 

we decide to keep the Modification in the model for the reasonableness of its predictive 

nature. Also, because the Bonferroni Correction is defined as an additional conservative 

measure, we acknowledge the conservatism associated with it, but choose not to apply it 

in this case (Bonferroni, 2015). 

At this point, because the Bonferroni Correction was not applied, we consider this 

our preliminary model. Working with this preliminary model, we now apply the 

previously described data analysis techniques as a means to seek validation of our 

assumptions in the model. 

Validating Model Assumptions 

 The multiple regression model assumptions will be considered validated upon 

passing all data analysis techniques that are applied to it. If at any time the multiple 

regression model fails any of the data analysis techniques, proper measures will be 

documented and executed, and an iterative process will take place until the deficiency is 

remediated.  
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Please note that if the model fails a particular data analysis technique, we will stop in 

the phase in which it failed, and it will be dealt with and re-analyzed in the current phase 

it is in. This purpose serves to show detailed continuity in the process, without restarting 

the entire process for each failure potentially encountered. 

Variance Inflation Factors 

 With respect to our preliminary model in Figure 8, we see that the VIF scores are 

all well under the value of 2. While all VIF scores are under 2, all of the VIF scores 

remaining are actually in the lower range, closer to that of a VIF score of 1. The analysis 

of this tells us that there is no consequence of multicollinearity present in the preliminary 

model. By this, there is no linear dependency between two or more independent variables 

where the value of one predictor is dependent upon another (Stine, 1995).  With all of the 

preliminary model’s VIF scores passing the test, we move onto the Cook’s D test. 

 
Figure 8: Preliminary Model VIF Scores 

Cook’s Distance Test 

 Looking to our preliminary model in Figure 7, we now conduct the Cook’s D test 

on the data of our 45 programs to test the influence of data point(s) when performing our 

multiple regression analysis (Cook, 1977). As noted before, a Cook’s D value that is 

greater than 0.5 indicates that an influential data point exists (Neter et al., 1996:381). 

Influential data points may be removed from the data set upon investigation, justification, 
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and documentation outlining the process by which the decision was made to remove the 

data point. Figure 9 displays the Cook’s D for our model. 

 
Figure 9: Display of Cook’s D Plot 

Our Cook’s D plot displays all data points below the previously defined 0.5 

threshold. This means the Cook’s D test conducted on the 45 programs shows no data 

points that are influential on our preliminary multiple regression model. With the Cook’s 

D test showing no influential data points (Figure 9), we now look for potential outliers in 

the data set. 

Studentized Residuals 

 We generate a histogram (Figure 10) of the studentized residuals to look for 

potential outliers in the data.  Since all studentized residuals lie between 3 and –3 on this 
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graph, there appears no outliers for us to worry about.  Given the relatively normal 

distribution shape, we expect that when we test the assumption of normality on the non-

studentized residuals via the S-W test, that this assumption will be validated. 

 
Figure 10: Studentized Residuals 

Shapiro-Wilk (S-W) and Breusch-Pagan (B-P) Tests 

 As detailed earlier in Chapter III, the S-W goodness of fit test (Neter et al., 1996: 

111) assesses the assumption of normality with respect to the residuals of the multiple 

regression model, while the B-P assesses the assumption of constant variance.  

Since both Figure 11 and Table 4 indicate P-values greater than our established 

criteria of 0.05, we fail to reject the null hypothesis for either test. [Note: Figure 12 

displays the sum of squares for regression (SSR) that we need for the B-P test conducted 

in Excel.]  Therefore, we conclude our multiple regression model passes both model 

residual assumptions.    
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Figure 11: Shapiro-Wilk's Test 

 
Figure 12: ANOVA Output 

Table 5: Breusch-Pagan Test Results 

 
 

Validation of Assumptions 

 The statistical tests that were performed on our preliminary regression model 

from Figure 7 were done so to try to validate our previously mentioned assumptions 

about the model. Because all statistical tests were passed to validate our assumptions, we 
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can consider our preliminary regression model from Figure 7 as our non-preliminary, 

main model for the continuing purpose of our research. 

Analysis of Predictor Variables 

Our statistically significant predictor variables tell us individually something 

about themselves outside of their presence in the validated model. The parameter 

estimates for our model are displayed in Figure 13. We deep dive each individual 

predictor variable, and discuss the estimates associated with each.  

 
Figure 13: Parameter Estimates for Predictor Variables 

The predictor variables that are statistically significant in the validated model are 

listed along with an analysis of each next: 

 RDT&E $(M) at MS-B Start (BY16) – Continuous Variable 
o The parameter estimate associated with this variable is 0.00772 which 

would be multiplied by the raw amount of RDT&E funding in BY16 
dollars (millions) allocated to the program at MS-B start. It should be 
noted that even if the overall RDT&E funding outlay of a program is 
uniformly distributed for the entirety of its RDT&E expenditures, the 
variable only looks at purely the raw amount of BY16 dollars at MS-B 
start. Perhaps the 0.00772 estimate output for this variable is 
associated with the idea that the raw amount of RDT&E dollars 
(BY16) that are present in a program at the time of MS-B start is 
related to “technology” or even “technology maturity”. While there is 
no way to prove that within the scope of our research, the multiple of 
0.0072 seems to account for anticipated complexity of a system in 
predicting schedule duration from MS-B to IOC, as more raw money 
for this variable is an additive factor to schedule output. 
 

 % of RDT&E Funding at MS-B Start (BY16) – Continuous Variable 
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o This variable is the strongest variable with respect to its Standard Beta 
(weight) in Figure 13. The parameter estimate of -86.704 for the 
predictor variable suggests the greater the % of RDT&E funding that 
has been allocated at MS-B, the greater the decrease of schedule 
duration from MS-B to IOC. The idea of this variable can be linked 
back to the purpose of the technology maturation and risk reduction 
(TMRR) phase, which occurs immediately prior to MS-B. According 
to DoDI 5000.02 (USD(AT&L), 2015), the purpose of TMRR “is to 
reduce technology, engineering, integration, and life-cycle risk” before 
program initiation. Based on this definition, we theorize that 
increasing the % of RDT&E funding prior to program initiation (MS-B 
start) is synonymous with increasing technology maturity and reducing 
risk prior to program entry at MS-B. Our finding is supported by the 
Unger et al (2004) study, which finds that program RDT&E budgets 
that can be fit with an increasingly right-skewed Weibull distribution 
encounter less schedule growth, on average.  
 

 Modification – Binary Variable 
o This variable is -19.345 which means that when the program being 

analyzed by our regression model is characterized as a modification 
that it should take away from the overall schedule duration output of 
the model. Because our literature included many studies that alluded to 
the idea that a higher probability of cost and schedule problems raise 
when programs start with technologies at low readiness levels, a 
modification having a shortening effect on schedule output seems 
reasonable to us because a modification to a weapons system that has 
already been developed and operational could indeed have a higher 
probability of a quicker duration to IOC, as compared with a new 
program.  

 
 1985 or Later for MS-B Start – Binary Variable 

o Every program schedule created contemporarily will use a “1” for the 
binary applicability of this predictor variable. The parameter estimate 
of 19.586 suggests that programs after 1985 will actually add time to 
the schedule duration of a program. For some, this may seem 
counterintuitive in that it could be argues that technology gets better as 
time goes on, and therefore program schedule should be shorter as 
time goes on because of this. On the other hand, systems are becoming 
much more complex as time goes on, and the technical maturity of a 
weapons system that needs to meet the demands of 21st century 
warfare could actually take longer with time due to the high-level of 
complexity. Originally, this variable was discovered by Brown et al. 
(2015) in reference to the President’s Blue Ribbon Commission on 
Defense (commonly called the Packard Commission) and the 
subsequent acquisition reforms. In the current environment of tight 
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budgets, heightened acquisition reform, and weapons systems being 
more complex than ever before, it seems completely reasonable that a 
program with an MS-B start after 1985 would add time to the MS-B to 
IOC schedule duration. 

 
The predictor variables that were found to be statistically significant in our regression 

model all give strong contributions to the method of predicting schedule duration to IOC. 

At the most basic level, our predictor variables have a strong logical link to predicting 

schedule duration for a program. Furthermore, all of the predictor variables in our model 

are accessible and available to the cost estimator via data that can be found in the SAR of 

a program.  

Performance of Multiple Regression Model 

We judge the performance of our multiple regression model using the R2 and 

Adjusted R2 values as shown in Figure 17. An R2 of 0.465 indicates that the model 

explains almost 50 percent of the variability associated with predicting time duration 

from MS-B to IOC. Brown et al. (2015) acknowledges that cost and schedule estimates 

are rarely clairvoyant, particularly in the early stages of a program. Because we seek to 

predict program schedule duration to IOC at the very beginning of a program’s life cycle 

(program initiation), an R2 of 0.465 can actually be considered strong when taking into 

account the on-going documented problems with schedule growth from our literature 

review. 

 Our model’s Adjusted R2 is 0.412 and we can also gauge the Adjusted R2 to be 

relatively strong, based on the true lack of clarity regarding a program’s schedule, 

especially in the very beginning of a complex weapons system acquisition. Since 

Adjusted R2 ensures we do not arbitrarily add variables to the model that are not 
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predictive, the distinction should be made that we can highlight the R2 of this model to a 

cost estimator or decision maker as a descriptor of the model’s robustness, but the 

Adjusted R2 of this model is the value that should be focused on when making decisions.  

 
Figure 14: Model R2 and Adjusted R2 Values  

Validation of Multiple Regression Model 

As a matter of testing predictive ability of our finalized model, we compare the 

accuracy of our fitted multiple regression model against programs with information from 

the research validation database. But prior to this, we first mention the range of our 

explanatory variables for which this model can be used. This is to prevent model 

extrapolation. 

We present histograms of the range of values we can input for the continuous 

variables, 1X 	and	 2X 	in Figures 15 and 16.  In our histograms of the RDT&E $(M) at 

MS-B Start (BY16) variable and %	of RDT&E Funding at MS-B Start (BY16) variable, we 

see our ranges are between $13.581M and $5,979.4M (BY16) , and 1.09 percent and 59.2 

percent, respectively.  
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Figure 15: RDT&E $ (M) at MS-B Start (BY16) Quantiles 

 
Figure 16: % RDT&E Funding at MS-B Start (BY16) Quantiles 

Next, we proceed to look the MAPE and MdAPE associated with our model built 

from the 45 original programs. We also look at the MAPE and MdAPE of the 11 

programs from the validation pool, and compare both models. 

In Figure 17, we note that the MAPE is 0.379 and the MdAPE is 0.219 for our 

model built from 45 programs. Of the 45 programs, we also notice 6 outliers in the 

histogram. Of the outlier subset, three are electronics programs, two are missiles 

programs, and one is a bomber program. What we can note about the electronics and 

missiles programs is that they had a relatively low time frame to reach IOC. In the 

missiles programs, one was a modification, and two of the electronics programs were 
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modifications. The lone bomber program (A-10) experienced a relatively low time to 

IOC, probably because the first generation of this aircraft was relatively low in 

complexity.  

In Figure 18, we note that the MAPE is 0.193 and the MdAPE is 0.167 for our 

validation pool of 11 programs. Of the 11 programs, we also notice one outlier in the 

histogram. The outlier is a modification program to a bomber aircraft (B1-B).  

 
Figure 17: MdAPE and MAPE of Final Model 

 
Figure 18: MdAPE and MAPE of Validation Pool 

Due to the great disparity of sample sizes in each of the respective APE and 

MAPE outputs, along with the lack of normality from the distribution of the outputs, we 
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look to the MdAPEs as the much more representative numbers for comparing our sample 

outputs. With the final model having a MdAPE of 0.219 and the validation pool model 

having a MdAPE of 0.167 we can see that they are not far off from one another. This 

gives us some confidence in saying the two models are comparable. However, we can 

gain more confidence if we look to a comparison of actual by predicted plots of both the 

final model and validation pool; this will gives a visual representation of the predictive 

power of each of the models with their respective sample sizes. 

 
Figure 19: Bivariate Plot of Model with 45 Programs 

In Figure 19 we see a relatively good fitted line to our 45 data points. Please note 

that while our line does intersect some of the data points, there still tend to be many 

points that are away from the line, but none so egregious that it causes concern. 
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Therefore, for the intended purpose of predicting schedule duration to IOC, this fitted line 

seems to satisfy our intended use of the model. While confidence intervals are not applied 

to this fitted line on the graph, we speculate that a decision maker would be inclined to 

adjust the predicted schedule duration output based on their experience and knowledge of 

a program. Next, we look to the bivariate plot of our validation pool in Figure 20. 

 
Figure 20: Bivariate Plot of Validation Pool with 11 Programs 

 In Figure 20, we see our fitted line to the validation pool of 11 programs. Notice 

the line is relatively close to seven of the 11 data points, while other points seem to be a 

little bit further away. While confidence intervals are not applied to this fitted line on the 

graph, we propose that as many as two additional data points could make it into the 

predicted output range of the displayed 11 data points.  
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 Overall, due to comparison of the MdAPE and MAPE of both the final model and 

validation pool, along with comparison of the predicted by fitted bivariate outputs, we 

can consider out model valid. Therefore, finally, we compile all the data from the final 

model and the validation pool to just update variable parameters, and this becomes our 

complete final model, thus concluding the validation part of your analysis. When our 45 

programs are combined with the 11 from the validation pool, our final model using 56 

programs is displayed in Figure 21. 

 
Figure 21: Final Model with all 56 Programs 

We can see that final model in Figure 21 with all 56 programs, when compared to 

the preliminary model of 45 programs in Figure 7, holds much of the same validity when 

compared to one another. The R2 and Adjusted R2 are still somewhat relatively the same 

with only a minor change in both, the intercept only went down by one month, all of the 

independent variables remain significant when the Bonferroni Correction is not applied 

as a conservative measure, and the VIF and Stand Betas also hold their same 
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characteristics. This is our full and complete final multiple regression model with the data 

of all 56 defense acquisitions programs. 

Chapter Summary 

In this chapter, we create a preliminary multiple regression model, validate model 

assumptions, validate the model, and report the results of our finalized multiple 

regression model for predicting schedule duration of a program from MS-B to IOC.  We 

explain some of our findings to include statistical testing applied to the regression model 

built. We continue with a separate, in-depth analysis for each of the predictor variables 

that were found to be statistically significant in the final model. We further solidify our 

belief that our multiple regression model is robust, parsimonious, and statistically sound 

through judgement of our performance measures.  Lastly, in our validation of the model, 

we bring all 56 programs together to create a finalized model multiple regression model 

that is statistically significant. In the next chapter, we conclude our research and present 

some broad discussions and meaning to our analysis. 
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V.  Conclusions and Recommendations 

Chapter Overview 

 This chapter summarizes the quantitatively-focused method in our research that is 

driven by the data of past weapons systems. The major finding in our research was a 

statistically significant multiple regression model, which may be used to predict schedule 

duration to IOC for a program. First, we revisit our initial research questions to validate 

that our research accomplished its intended goal. Additionally, we review the limitations 

of findings, identify areas for future research, and conclude by summarizing the 

significance of this research. 

Research Questions Answered 

1 – Can we accurately predict what the schedule duration of a defense 

acquisition program should be, from MS-B to IOC, using a mathematical model? 

With respect to the final model we created and the available data we were able to 

gather, the answer is yes. Schedule duration to IOC output can be given for any program 

that has available data inputs necessary to populate the model. All of the data necessary 

for the continuous and binary variables can be gathered from the SAR in any given 

program at MS-B, such that our model is statistically significant in predicting MS-B to 

IOC schedule duration using only the data available up to MS-B start. 

2 – Can we statistically show that some independent variables are stronger than 

others when it comes to predicting a future program’s schedule duration?  

As outlined in Chapter IV when we deep dive into the analysis of each predictor 

variable and its effect on the multiple regression model, the answer to this research 

question is yes. In the analysis of the predictor variables, each predictor variable’s 
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parameter estimate gives us a foundation from which we can statistically infer that some 

variables are stronger than others as far as predictive properties are concerned for our 

model.  

Our two strongest predictors of schedule duration were the 1985 or Later at MS-B 

Start variable and the % RDT&E Funding at MS-B Start (BY16) variable. Of the two, the 

% RDT&E Funding at MS-B Start (BY16) variable is the stronger predictor, as noted by 

Standard Beta outputs from JMP®. In Figure 22, we display a pie chart showing the 

percentage contribution for each Standard Beta as it is associated with its independent 

variable. 

 
Figure 22: Pie Chart of Standard Betas 

 Another predictor variable that showed strength in predictive ability was a post-1985 

MS-B start date. This perhaps accounted for the increasing complexity of weapons 

systems over time, along with effects of the Packard Commission, and serves as an 

additive factor to the model. Modification programs were seen as to have a postulated 

schedule efficiency associated with them, considering the binary variable took away from 

the schedule ration output. Finally, we note that is statistically significance in the sheer 
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amount of money a program has at MS-B start. It produces a slight additive factor, as to 

account for cost growth seen in programs that heavier amounts of funding by way of their 

complexity. 

Findings 

 The biggest finding was the % RDT&E Funding at MS-B Start (BY16) variable. 

This is significant because it directly relates to previous studies from Brown et al. (2015) 

and Unger (2001), which found a correlation between front loading RDT&E funding and 

minimized schedule growth. Our % RDT&E Funding at MS-B Start (BY16) variable 

sought to identify the percentage of a front-loaded RDT&E funding profile at MS-B for a 

program if it existed. For the purpose of our model, those programs that apply a more 

front-loaded RDT&E funding profile at MS-B, they should see a lessened schedule 

duration to IOC, as the statistics suggests.  

 Furthermore, there were no significant findings in the planned concurrency of a 

schedule. Planned concurrency did not show to be statistically significant in a positive or 

negative impact to the model. Along with this, the planned quantity of a program’s units, 

specific contractor, and a program that planned prototypes all were not shown to be 

statistically significant in predicting schedule duration to IOC. Finally, the model was 

shown to be service-agnostic, meaning there was no distinguishable schedule 

characteristics in which service the program was for, according to our model.  

Limitations 

We recognize several major limitations of this research, and that could potentially 

limit the application of it in the greater cost analysis community. First and foremost, we 
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must recognize that our model can only be as good as the data that was used for it. The 

availability of pre-MS-B data was perhaps the strongest limitation we encountered. The 

scarcity of available pre-MS-B data was a major proxy that led us to source 56 programs 

for our research database from the original SAR database. Of the data that we originally 

set out to gather based on our highlighted findings in the literature review, we had to 

further narrow the scope of data collection because much of that data was simply not 

available us in the SAR database we used.  

Perhaps the most important pre-MS-B information that was not available to us in 

the SAR database was the TRL of a program. Many of the studies in our literature review 

tested the idea that schedule growth in a program has a strong correlation to the 

technological maturity necessary for the program going into MS-B. More pre-MS-B data 

available on programs would be necessary to highlight more predictor variables, and of 

that necessary data that was not available, prior studies particularly suggest that the TRL 

of a program could potentially have been a statistically significant predictor variable in 

our model. 

Our finalized model was developed using data from 56 different programs, which. 

The total amount of programs used could be another limitation in our model. First, we 

must acknowledge that some of the studies in our literature review used less than 56 

programs in their studies, but other studies in our literature review used more than 56 

programs. Comparison of studies on programs may not be completely analogous due to 

the scope of program types used in a previous study, or the availability of their respective 

data. However, we can postulate a sensitivity analysis on the number of programs used in 
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our model, with the idea that the model could maybe have been more robust if more 

programs were used that had the available and necessary data we used in our model.  

 Finally, we look to the potential accuracy limitations associated with the final 

model output. While we did answer our first research question of creating a statistically 

significant model that can accurately predict schedule duration to IOC, we do recognize 

that rarely does one model fit perfectly for all of its future intended uses. Schedule 

duration to IOC output can be given for any program type that has available data inputs 

necessary to populate the model, but we must also address the adjustment factor for the 

Modification predictor variable. In using the Modification predictor variable for a bomber 

program, it can be hypothesized that our model’s schedule duration output for a 

modification program may be slightly more precise in its accuracy when compared to 

using the model for non-modification programs.   

 All of the stated limitations in the research can, in some way, be tied back to the 

availability of the necessary data available to us in our model building process. Our 

model shows that various types of pre-MS-B activity can be predictive characteristics in 

predicting schedule duration of a program. The idea that pre-MS-B data could help 

predict other aspects of a program, such as cost or production, should not completely be 

ignored. Perhaps this could suggest a future push to require pre-MS-B data collection of 

future programs, should that program experience any pre-MS-B activity. 

Recommendations for Future Research 

Recommendations for future research encourage the exploration and use of the 

original SAR database, as well as our modified research database of 56 programs.  

Whereas our research is the first to explore predicting schedule duration using this 
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methodology, we acknowledge that follow-on research and other methodologies used to 

predict schedule duration can be of great value to the great cost community; especially 

when we take into account the upcoming should-schedule initiative being put into place 

by Secretary James.  We highly encourage further exploration into program schedule 

research, as it can directly or indirectly support the new should-schedule initiative.  For 

instance: 

 Collect more SAR data to further populate our research database with more 
pre-MS-B data from programs, and then perform the same methodology we 
used to build a multiple regression model that predicts schedule duration from 
MS-B to IOC. Perhaps more predictor variables could be identified in the 
model, along with new R2 and Adjusted R2 values. 
 

 Employing the SAR database to create numerous multiple regression models 
that do not explicitly rely on pre-MS-B data. The numerous models would be 
used to tell us predicted times for various other points in a program’s 
schedule, i.e. time from MS-C to IOC, time from PDR to CDR, etc. 

 
 Perform sensitivity analyses on our model by varying each of the independent 

variable inputs. 
 

 Add a competition variable to our database and determine if this variable adds 
to the predictability of our model. 

 
 On a live defense acquisition program, use linear and non-linear programming 

to optimize the timeliness of a program’s schedule with respect to the 
program’s already predicted schedule. The linear and non-linear programming 
model(s) could serve as the actual should-schedule value(s) for the program. 

Chapter Summary 

Accurately predicting the most realistic schedule for a program, especially at the 

official initiation of a program, is an extremely difficult task considering the inherent risk 

and uncertainties that are present in the early stages of a program. Programs that decide to 

use an unnecessarily lengthy schedule as a program strategy run the risk of delaying the 

level of technological advancement that may be critical to national safety. However, 
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accelerated program schedules increase the risks of unscheduled delays and expensive 

rework and retooling costs, especially if a problem is found later in the accelerated 

program schedule (Drezner and Smith, 1990: iii). Our research creates a mitigation tool 

against both elongated and aggressive schedule durations by quantitatively predicting a 

schedule duration outcome based on historical program data. 

The most noted difference between our research and previous research on 

schedule is our use of a multiple regression analysis to predict the schedule duration of a 

defense acquisition program. We recommend the use of a multiple regression model as a 

top-level management tool to aid in identifying the duration of a program schedule at 

program initiation.  We believe the previously untapped resource of using a multiple 

regression analysis to predict schedule duration provides a valuable tool, and merits a 

great deal of utility, to both cost estimators and decision makers alike.  

In addition to providing predicted schedule duration as an output, our model could 

add value by serving as a cross-check to a program that already has created a schedule 

estimate to IOC. Furthermore, our model also provides the cost estimator with a schedule 

benchmark that they can use to try to employ operational efficiencies in a program as to 

try to deliver a program’s capability quicker than what the historical data suggests; 

application in this form directly supports Secretary James’ should-schedule strategy. 
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Appendix A: List of Acronyms 

ACAT – Acquisition Category 
AFCAA – Air Force Cost Analysis Agency 
AFIT – Air Force Institute of Technology 
AFRL – Air Force Research Laboratory 
ANOVA – Analysis of Variance 
APE – Absolute Percent Error 
B-P – Breusch-Pagan Test 
BY – Base Year 
CDR – Critical Design Review 
CER – Cost Estimating Relationship 
CPR – Cost Performance Report  
DAU – Defense Acquisition University 
DoD – Department of Defense 
EMD – Engineering and Manufacturing Development 
FSD – Full Scale Development  
FUE – First Unit Equipped 
GAO – Government Accountability Office 
IDA – Institute for Defense Analyses 
IOC – Initial Operating Capability 
IOT&E – Initial Operational Test and Evaluation  
LRIP – Low Rate Initial Production 
MAPE – Mean Absolute Percent Error 
MdAPE – Median Absolute Percent Error 
MS – Milestone  
NASA – National Aeronautics and Space Administration 
OSD – Office of the Secretary of Defense  
P&D – Production and Deployment 
PCA – Production Contract Award 
PDR – Preliminary Design Review 
RAND – Research and Development Corporation 
RDT&E – Research Development Test & Evaluation  
SAR – Selected Acquisition Report 
SECAF – Secretary of the Air Force 
S-W – Shapiro-Wilk’s Test 
SECM – Systems Engineering Concept Tool and Method 
SME – Subject Matter Expert 
TMRR – Technology Maturation and Risk Reduction 
TRL – Technology Readiness Level 
VIF – Variance Inflation Factor 
 

 



75 

  



76 

Appendix B: Implementation of Will-Cost and Should-Cost Management 
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Appendix C: List of 56 Programs in Research Database 

1 A-10 (SAR date at MS-B, March 1973) (BY70)

2 AWACS (SAR date at MS-B, July 1970) (BY70)

3 C-17 (SAR date at MS-B, Dec 1985) (BY81)

4 F-22 (SAR date at MS-B, Aug 1991) (BY85)

5 AH-64 (SAR date at MS-B, Dec 1976) (BY72)

6 B-1B CMUP-Computer (SAR date at MS-B, May 1996) (BY95) 
7 C-5 RERP (SAR date at MS-B, Dec 2001) (BY00)

8 F-15 (SAR date at MS-B, Jan 1970) (BY70)

9 B-1B JDAM (SAR date at MS-B, Mar 1995) (BY95)

10 KC-135R (SAR date at MS-B, Jan 1980) (BY81)

11 B-1B Defense System Upgrade (SAR date at MS-B, Jun 1997) (BY96) 
12 FA-18 A/B (SAR date at MS-B, Jan 1976) (BY75)

13 AV-8B Harrier (SAR date at MS-B, Aug 1980) (BY79)

14 S-3A (SAR date at MS-B,  Aug 1969) (BY68)

15 P-8 Poseidon (SAR date at MS-B, June 2004) (BY04)

16 V-22 Osprey (SAR date at MS-B, May 1986) (BY84)

17 E-2C Hawkeye (SAR date at MS-B, May 1969) (BY68)

18 F-35 JSF (SAR date at MS-B, Oct 2001) (BY94)

19 CH-47D Chinook (SAR date at MS-B, June 1976) (BY75)

20 E-8A JSTARS (SAR date at MS-B, Sept 1985) (BY83)

21 AGM-65A Missile (SAR date at MS-B, July 1968) (BY68)

22 ALCM Missile (SAR date at MS-B, Oct 1977) (BY77)

23 AMRAAM Missile (SAR date at MS-B, Dec 1981) (BY78)

24 CSRL (SAR date at MS-B, June 1983) (BY82)

25 JASSM Missile (SAR at MS-B, Nov 1998) (BY95)

26 JDAM (SAR at MS-B, Oct 1995) (BY93)

27 JPATS T-6A (SAR at MS-B, Feb 1996) (BY95)

28 MARK XV Identification FoF (SAR at MS-B, Feb 1989) (BY82) 
29 Microwave Landing System [MLS] (SAR at MS-B, Aug 1988) (BY82) 
30 OTH-B (SAR at MS-B, June 1982) (BY82)

31 LGM-118 Peacekeeper (SAR at MS-B, Sept 1979) (BY82)

32 GBU-39 SDB-I (SAR at MS-B, Oct 2003) (BY01)

33 MGM-134 SICBM (SAR at MS-B, Dec 1986) (BY84)

34 SRAM-II Missile (SAR at MS-B, Aug 1987) (BY83)

35 National Aerospace System (SAR at MS-B, July 1995) (BY90) 
36 ADS (SAR at MS-B, Sep 2004) (BY05)

37 AGM-88 HARM (SAR at MS-B, Aug 1978) (BY78)

38 AIM-9X Block 1 (SAT at MS-B, Dec 1996) (BY92)
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39 AN/BSY-1 (SAR at MS-B, Dec 1983) (BY84)

40 ASDS (SAR at MS-B, Sep 1994) (BY03)

41 COBRA Judy Replacement (SAR at MS-B, Dec 2003) (BY03) 
42 Harpoon Missile (SAR at MS-B, June 1971) (BY70)

43 JSOW-BL (SAR at MS-B, June 1992) (BY90)

44 NATBMD (SAR at MS-B, Sep 1997) (BY94)

45 NMT (SAR at MS-B, May 2007) (BY02)

46 SH-60B (SAR at MS-B, Jan 1978) (BY76)

47 UGM-96A Trident I Missile (SAR at MS-B, Aug 1974) (BY74) 
48 SSN 774 (Virginia Class Sub) (SAR at MS-B, Jan 1996) (BY94) 
49 T-45TS (SAR at MS-B, Oct 1984)(BY1984)

50 YAL-1 (SAR at MS-B, March, 1996) (BY97)

51 UGM-109 Tomahawk (SAR at MS-B, Jan 1977) (BY77)

52 SSBN 726 Sub (SAR at MS-B, July 1974) (BY74)

53 AGM-114A Hellfire Missile (SAR at MS-B, Oct 1976) (BY75) 
54 OH-58D Helicopter (SAR at MS-B, Sep 1981) (BY82)

55 AAWS-M Javelin (SAR at MS-B, June 1989) (BY90)

56 SSN 21 Sub (SAR at MS-B, Jan 1989) (BY85)
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Appendix D: Contractors in Research Database 

C1 Fairchild 

C2 Rockwell 

C3 McDonnel Douglas 

C4 General Dynamics 

C5 Lockheed Martin 

C6 Lockheed and Boeing 

C7 Beech Aircraft Corp 

C8 Boeing 

C9 Boeing and Bell 

C10 Northrop Grumman 

C11 Hughes 

C12 Hughes and Raytheon 

C13 Allied Corp 

C14 Textron 

C15 General Electric 

C16 Texas Instruments 

C17 IBM and GE 

C18 Raytheon 

C19 IBM Federal Systems 

C20 Bell-Textron 

C21 Newport 
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Appendix E: Data for 56 Programs in Research Database 
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Appendix F: Response and Predictor Variables 

Response Variable: 

 MS-B to IOC (Months) [Regression Output] 
 
Predictor Variables: 
 

 MS-A to MS-B Duration (Months) – Continuous Variable 
 

 Quantity Expected at MS-B – Continuous Variable  
 

 RDT&E $ (M) at MS-B Start (BY16) – Continuous Variable 
 

 % of RDT&E Funding at MS-B Start (BY16) – Continuous Variable 
 

 Modification – Binary Variable 
 

 Prototype – Binary Variable 
 

 Concurrency Planned – Binary Variable 
 

 1985 or Later for MS-B Start – Binary Variable 
 

 MS-B Start Year – Continuous Variable 
 

 Air Force – Binary Variable 
 

 Navy – Binary Variable 
 

 Army – Binary Variable 
 

 Marine Corps – Binary Variable 
 

 Aircraft – Binary Variable 
 

 Fighter Program – Binary Variable 
 

 Bomber Program – Binary Variable 
 

 Helo Program – Binary Variable 
 

 Cargo Plane Program – Binary Variable 
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 Tanker Program – Binary Variable 
 

 Electronic Warfare Program – Binary Variable 
 

 Trainer Plane Program – Binary Variable 
 

 Missile Program – Binary Variable 
 

 Electronic System Program – Binary Variable 
 
 Submarine Program – Binary Variable 

 
 Contractor (Name of Defense Contractor(s)) – Binary Variable 

 
 ACAT I – Binary Variable 
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Appendix G: Validation Pool of 11 Programs 

1 AWACS (SAR date at MS-B, July 1970) (BY70) 

2 B-1B CMUP-Computer (SAR date at MS-B, May 1996) (BY95) 

3 C-5 RERP (SAR date at MS-B, Dec 2001) (BY00) 

4 V-22 Osprey (SAR date at MS-B, May 1986) (BY84) 

5 CH-47D Chinook (SAR date at MS-B, June 1976) (BY75) 

6 ALCM Missile (SAR date at MS-B, Oct 1977) (BY77) 

7 OTH-B (SAR at MS-B, June 1982) (BY82) 

8 Harpoon Missile (SAR at MS-B, June 1971) (BY70) 

9 T-45TS (SAR at MS-B, Oct 1984)(BY1984) 

10 YAL-1 (SAR at MS-B, March, 1996) (BY97) 

11 SSN 21 Sub (SAR at MS-B, Jan 1989) (BY85) 
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Appendix H: Preliminary/Main Model with 45 Programs 
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Appendix I: Validated/Final Model with 56 Programs 
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