Award Number: W81XWH-14-1-0350

TITLE: Targeting Quiescent Cancer Cells to Eliminate Tumor Recurrence After Therapy

PRINCIPAL INVESTIGATOR: Daotai Nie

CONTRACTING ORGANIZATION: Southern Illinois University Springfield, IL 62794-9626

REPORT DATE: October 2015

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT:

☑ Approved for public release; distribution unlimited

☐ Distribution limited to U.S. Government agencies only; report contains proprietary information

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Targeting Quiescent Cancer Cells to Eliminate Tumor Recurrence After Therapy

Daotai Nie

Southern Illinois University Springfield, IL 62794
dnie@siumed.edu

US Army Medical Research and Command
Fort Detrick
Maryland 21702-5012

Approved for public release; distribution unlimited

The proposed studies will address the area of emphasis of LCRP to “Understand susceptibility or resistance to treatment”. Tumor resistance to chemotherapy is a major cause of treatment failures in lung cancer. To eradicate chemoresistant tumor cells, it is important to identify the subset of tumor cells that can survive from chemotherapy and determine their roles in tumor recurrence. Innovative reporter gene systems are designed to mark quiescent or proliferating lung cancer cells (Aim 1) and then used to track and trace the dynamics of these two populations during the course of chemotherapy (Aim 2). In studies proposed in Aim 3, a killer switch will be introduced to the reporter systems that can enable selective elimination of quiescent or proliferating tumor cells. Using this system, quiescent or proliferating cells will be selectively eliminated to determine their roles in resistance to cytotoxic therapy and subsequent tumor recurrence. The studies will identify and validate the sub-group of lung cancer cells that are responsible for causing treatment failure and disease relapse. In long term, the studies will provide new strategies to eliminate lung cancer resistance toward treatments and to improve the disease-free survival of lung cancer patients, including service members and their family and beneficiaries who suffer from lung cancer.

Lung cancer, chemoresistance, quiescent tumor cells, proliferating tumor cells
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Body of report</td>
<td>2</td>
</tr>
<tr>
<td>Accomplishment and Reportable Outcomes</td>
<td>7</td>
</tr>
<tr>
<td>Conclusion and significance</td>
<td>8</td>
</tr>
<tr>
<td>Appendices and supporting data</td>
<td>9</td>
</tr>
<tr>
<td>References</td>
<td>9</td>
</tr>
</tbody>
</table>
Introduction

Background: Quiescent tumor cells can pose significant challenges to chemo- or radiotherapy that primarily target proliferating cells. This subset of quiescent lung cancer cells, whether they are pre-existing or formed by reprogramming in responses to treatments, can evade cyto-toxic therapy, leading to the persistence of minimal residual disease. Once chemotherapy is withdrawn, these quiescent cells can switch back to their proliferative state and cause tumor recurrence. Recently it is found that in glioma, a relatively quiescent subset of tumor cells, “with properties similar to those proposed for cancer stem cells, is responsible for sustaining long-term tumor growth through the production of transient populations of highly proliferative cells” after treatment (1). Therefore quiescent cells can be resistant to such anti-proliferative therapy. Interestingly, expression of high levels of quiescence inducing genes has been typically associated with poorer patient survival across multiple cancer types (2). Despite the correlative evidence, not much is known about the exact role of quiescent cancer cells in solid tumor biology, much less their clinical relevance. This pilot study seeks to provide a sound mechanistic insight as to how quiescent lung cancer cells contribute to resistance to chemotherapy, thereby causing disease relapse.

Hypothesis/Rationale/Purpose: Quiescent lung cancer cells, whether they are pre-existing or formed by reprogramming in responses to treatments, can evade cyto-toxic therapy, leading to the persistence of minimal residual disease. Once chemotherapy is withdrawn, these quiescent cells can switch back to their proliferative state and cause tumor recurrence. However, it is a big challenge to track the dynamics of tumor quiescence vs. proliferation during tumor responses toward treatments including chemotherapy and determine the exact roles of quiescent tumor cells in recurrence. Here, innovative reporter gene systems are designed to mark, track, and trace quiescent or proliferating lung cancer cells in vitro and in vivo during chemotherapy. Next a killer switch will be introduced to selectively eliminate quiescent or proliferating tumor cells and determine whether it is quiescent tumor cells that should be targeted to eliminate tumor resistance toward therapy.

Objectives:
(1) To construct and validate novel reporter systems for isolation of quiescent and proliferating lung cancer cells.
(2) To track and trace the quiescent and/or proliferating lung cancer cells during chemotherapy.
(3) To identify the subpopulation of lung cancer cells resistant toward chemotherapy and responsible for tumor recurrence by selective elimination of quiescent or proliferating tumor cells.
Scientific portion:

Aim 1: To construct and validate novel reporter systems for isolation of quiescent and proliferating lung cancer cells. (Aim 1).

The biggest challenge to construct reporter systems that reflect cellular quiescence or proliferation is whether the promoter regions cloned can recapitulate its entire promoter activities. To this end, we have amplified and cloned several segments from the promoter regions of RBL2 and CCND1 and are in the process of mapping and validating the regions that recapitulate the endogenous promoter activities.

Aim 2: To track and trace the quiescent and/or proliferating lung cancer cells during chemotherapy (Aim 2).

To determine the dynamics of quiescent / proliferating cells during chemotherapy, first A549 cells were treated with cisplatin (0.2 mg/ml) for 48 hours and RNAs were extracted for analyses of potential changes in expression of genes involved in quiescence.

![Figure 1. Changes in Expressions of Genes after Cisplatin Treatment](image)

As shown in Figure 1, cisplatin treatment did not significantly change in the expression of genes, except that there was about 80% increase in RBL2 RNA level.

Next we determined the dynamics of E2F4 and RBL2, two components of DREAM complex associated with cellular quiescence, in lung cancer cells after chemotherapy. A549 and NCI-H358 cells were treated with cisplatin at different levels for 48 hours. Then the viable cells were
fixed and stained for markers of cellular quiescence. LIN-9, a protein associated with RB protein, was also analyzed.

Figure 2. Dynamics of E2F4 and LIN-9 positive A549 cells after cisplatin treatment

As shown in Figure 2, in untreated group, some cells were highly positive for E2F4 while in some cells there were low levels of E2F4 staining especially in the nuclei. Cisplatin treatment (0.2 mg/ml for 48 hours) selectively enriched the cells positive for E2F4 in the nuclei. LIN-9 expression was minimally present in A549 cells.

Figure 3. RBL2 and LIN-9 levels in A549 cells after cisplatin treatment

As shown in Figure 3, cisplatin treatment (0.2 mg/ml for 48 hours) increased the intensity of RBL2 staining in A549 cells, which is consistent with the increase in RBL2 RNA levels after cisplatin treatment.
Due to the heterogeneity of lung cancer, we examined NCI-H358 cells after cisplatin treatment at different concentrations.

As shown in Figure 4, while most NCI-H358 cells were positive for E2F4, some of them were highly positive as indicated by the intensity of staining (yellow color). Interestingly it was these group cells that selectively survived from cisplatin treatment (50 ~ 200 μg/ml for 48 hours).
As shown in Figure 5, cisplatin treatment (50 ~ 200 µg/ml) of NCI-H358 cells caused increased positivity of RBL2 staining in the surviving fractions. The results were consistent with what we observed in A549 cells.

Tumor quiescence studies are hampered by the lack of reliable markers. The above studies suggest that RBL expression can be stimulated during chemotherapy, which can confound the interpretation of the data. On the other hand, this stimulation of RBL2 can simply reflect the possibility that quiescence can be induced by stressful conditions such as chemotherapy.

Interestingly we observed that there was a greater heterogeneity of E2F4 positivity in lung cancer cells and cells with strong presence of E2F4 in their nuclei had survival advantages during cisplatin treatment. The observations suggest that E2F4 is a better marker for quiescence. Currently we are exploring the possibility of using E2F4 as another marker for quiescence in lung cancer cells.
Aim 3: To identify the subpopulation of lung cancer cells resistant toward chemotherapy and responsible for tumor recurrence by selective elimination of quiescent or proliferating tumor cells. (Aim 3).

To be initiated.
KEY RESEARCH ACCOMPLISHMENT and REPORTABLE OUTCOMES

We have made several original discoveries regarding the different markers of cellular quiescence and stimulation of RBL2 expression by cisplatin treatment. Further studies are needed for a research paper.
Conclusions and significance (So what?):

The studies have found that 1) RBL2 expression can be stimulated in lung cancer cells by cisplatin treatment, 2) Cells with strong positivity of E2F4 in their nuclei can have survival advantages during chemotherapy. The studies laid a foundation for us to develop better markers to track and trace of quiescent cells during chemotherapy. Further studies are needed to determine whether quiescent tumor cells can selectively survive from chemotherapy and cause tumor recurrence.
APPENDICES

N/A

SUPPORTING DATA

Embedded in the reporting body

REFERENCES
