AWARD NUMBER: W81XWH-14-1-0341

TITLE: Targeting GPR110 in HER2-Overexpressing Breast Cancer

PRINCIPAL INVESTIGATOR: Rachel Schiff

CONTRACTING ORGANIZATION: BAYLOR COLLEGE OF MEDICINE
Houston, TX 77030

REPORT DATE: October 2015

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Identification of drug targets with novel mechanism of actions as well as excellent safety profile is needed to improve the “chemotherapy-sparring” regimen of anti-HER2 drug combination (lapatinib (L) + trastuzumab (T) (L+T)), which is effective in a larger group of patients. Drugs targeting G protein-coupled receptors (GPCRs) have low toxicity because of their high specificity and target-selectivity. In a GPCR expression profiling study and subsequent in vitro studies, we have identified GPR110 as a potential candidate in HER2+ breast cancer. Our overall goals of the proposed research are to investigate the role of GPR110 in tumorigenicity and anti-HER2 drug resistance in HER2+ BC. In the first year of the funded study, we have shown that GPR110 overexpression occurs commonly in various anti-HER2 drug resistant cells and in tumorigenic population using a broad panel of cell line models. We have successfully generated inducible lentiviral plasmids with GPR110 cDNA and cell lines that inducibly overexpress GPR110. Generation of cell lines with lentiviral plasmids containing GPR110 shRNA is ongoing. Using GPR110-overexpression and siRNA-mediated knockdown strategies, we have also demonstrated that GPR110 may contribute to tumorigenicity in HER2+ breast cancer. Further, we have uncovered previously unanticipated role of GPR110 in cell adhesion, invasion, and migration, which may facilitate anti-HER2 drug resistance. In vitro and in vivo experiments proposed in the coming years will further establish a role of GPR110 in HER2+ breast cancer.
Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>2</td>
</tr>
<tr>
<td>2. Keywords</td>
<td>2</td>
</tr>
<tr>
<td>3. Accomplishments</td>
<td>2-8</td>
</tr>
<tr>
<td>4. Impact</td>
<td>8-9</td>
</tr>
<tr>
<td>5. Changes/Problems</td>
<td>9</td>
</tr>
<tr>
<td>6. Products</td>
<td>9-10</td>
</tr>
<tr>
<td>7. Participants & Other Collaborating Organizations</td>
<td>10-11</td>
</tr>
<tr>
<td>8. Special Reporting Requirements</td>
<td>11</td>
</tr>
<tr>
<td>9. Appendices</td>
<td>11-14</td>
</tr>
</tbody>
</table>
1. Introduction
HER2+ breast cancer is treated using the combination of chemotherapy and anti-HER2 drugs. However, chemotherapy is associated with life-threatening toxicities without significantly improving long-term survival. Recently, “chemotherapy-sparring” regimen consisting of only anti-HER2 drug combination (lapatinib (L) + trastuzumab (T) (L+T)) has shown efficacy, albeit in a small group of HER2+ breast cancer patients. Therefore, identification of drug targets with novel mechanism of actions as well as excellent safety profile is needed to further improve the “chemotherapy-sparring” regimen that is effective in a larger group of patients. Drugs targeting G protein-coupled receptors (GPCRs) have low toxicity because of their high specificity and target-selectivity. Indeed, 30-50% FDA-approved drugs target GPCRs or their pathways. In a GPCR expression profiling study and subsequent in vitro studies, we have identified GPR110 as a potential candidate in HER2+ breast cancer. In this research, we proposed to investigate the role of GPR110 in tumorigenicity and anti-HER2 drug resistance in HER2+ breast cancer. In this 1st annual report, we summarize our accomplishments to date and describe challenges and potential solutions to address these challenges.

2. Keywords
HER2+ Breast Cancer, Lapatinib, Trastuzumab, drug resistance, G protein-coupled receptors, GPR110, tumorigenicity

3. Accomplishments
What were the major goals of the project?
In the proposed research, we hypothesized that GPR110 overexpression activates HER signaling and other survival pathways, resulting in resistance to anti-HER therapy, and GPR110 knockdown can improve efficacy and delay resistance to anti-HER therapy. We also hypothesized that GPR110 is induced in patient tumors that do not respond to anti-HER therapy and that its expression correlates with a lack of response to anti-HER therapy in HER2+ breast cancer patients. Our specific aims were to (1) determine GPR110 expression and its effects on anti-HER therapy efficacy and resistance in preclinical HER2+ breast cancer models; (2) investigate HER-dependent and –independent signaling mechanisms by which GPR110 mediates tumorigenicity and anti-HER therapy resistance; and (3) investigate the predictive value of tumoral GPR110 expression in HER2+ breast cancer patients treated with neoadjuvant L+T regimen.

What was accomplished under these goals?
In the first 12 months we proposed accomplishments of the following major aims and tasks. A detailed summary of what was accomplished is also given below under each task.

Aim 1: Determine GPR110 expression and its effects on anti-HER therapy efficacy and resistance in preclinical HER2+ breast cancer models

Major task 1.1: Measure the expression of GPR110 in parental and anti-HER therapy resistant derivatives of 12 cell line models. 1-6 months
In our preliminary data, we had demonstrated that GPR110 was overexpressed in anti-HER therapy resistant derivatives of 2 HER2+ breast cancer cell line models. To understand whether GPR110 overexpression is a common phenomenon in anti-HER2 therapy resistance, we first interrogated the RNAseq data obtained in various anti-HER2 resistant derivatives in collaboration with Dr. Joe Gray at the Oregon Health and Science University (OHSU). These results showed that GPR110 expression was higher in at least one of the resistant models
(LR, TR, or LTR) in 4 out of 9 models of BT474, SKBR3, HCC1954, and HCC202 models (Figure 1). To confirm these results, we determined the mRNA expression of GPR110 using the Taqman RT-PCR assay in selected resistant models, prioritized based on the RNAseq data. We have found that GPR110 mRNA levels were significantly higher in LR, TR, and LTR derivatives of 3 models (BT474, SKBR3, and UACC812) compared to the parental cells (Figure 2A-C). In the AU565 and HCC202 models, GPR110 mRNA levels were significantly higher only in the LR and TR derivatives, but not in the LTR derivatives (Figure 2D-E). Whereas, in HCC1954, the mRNA expression of GPR110 was not significantly different in the LR, TR, or LTR derivatives compared to the parental cells (Figure 2F). We are in the process of validating these results at the protein level by performing immunohistochemistry using these anti-HER2 resistant models.

Overall, our results suggest that GPR110 is overexpressed in multiple anti-HER resistant derivatives of various HER2+ breast cancer cell line models, confirming that it is a common phenomenon. These results are also in agreement with overexpression of GPR110 in various types of cancers and its possible role as a proto-oncogene (Lum et al., BMC Cancer, 2010; Harvey, Blood, 2010; Espinal-Enriquez et al., BMC Genomics, 2015; Hasan et al., Bioinformation, 2015). Based on the GPR110 expression, 2 cell line models (BT474 and SKBR3) have been selected for generation of stable cell lines capable of inducing GPR110 overexpression and knockdown as described below.

Major task 1.2: Generate stable parental and anti-HER therapy resistant cell lines capable of inducing GPR110 overexpression and knockdown. 3-12 months

Since GPR110 is an orphan GPCR, pharmacological tools to study its role are not available. Furthermore, the cellular function of GPR110 is still unknown. In order to understand the
role of GPR110 in HER2+ breast cancer, we proposed to generate stable cell line models of inducible GPR110 overexpression and knockdown. We have been successful in generation of the lentiviral plasmids containing GPR110 cDNA using the pHAGE system, which includes the HA tag, under the control of inducible Tet-on promoter. The map of pHAGE lentiviral plasmid is shown in Figure 3A. Using this, the BT474 and SKBR3 parental cells were stably infected with the lentiviral plasmid and single cell cloning was performed. A single major band corresponding to the appropriate molecular weight (101kDA + 42kDA for HA tag = 143 kDA) was observed on the western blot. Two clones (clone 2.9 and clone 5.3) were selected for subsequent experiments based on the intermediate level of GPR110 overexpression in presence of doxycycline (+dox) by western blotting (Figure 3B). We have also validated the GPR110 overexpression in both these clones in +dox condition by immunofluorescence (IF) using anti-HA antibodies, which showed a strong cell surface signal (Figure 3C), corresponding with the plasma membrane expression of GPR110. No signal was observed in the dox-untreated (-dox) cells. GPR110-overexpressing SKBR3 cells have also been developed, and we are in the process of amplifying the single cell colonies.

For the construction of the shRNA GPR110 plasmid, the 4 independent shRNAs we purchased did not effectively knockdown GPR110 as assessed by qRT-PCR (Figure 4A) when transiently transfected in the SKBR3 LTR cells, which has a high GPR110 expression. We are using a new strategy for designing the GPR110 shRNA using the GPR110 siRNA sequences. These siRNAs have been validated by RT-PCR in significantly knocking down the expression of GPR110 in SKBR3 model (Figure 4B, 4C). We are in the process of constructing these inducible GPR110 shRNA plasmids, and will then carry out the infection to generate stable cell lines.

In this major task, we have generated stable cell lines with inducible GPR110 overexpression. The development of cell lines capable of inducible GPR110 knockdown is in progress using a revised strategy to ensure adequate GPR110 knockdown. The generation of these cell lines is critical in understanding the role of GPR110 in HER2+ breast cancer.
In order to understand the effect of GPR110 on the \textit{in vitro} cell growth in response to various anti-HER drugs, we have initiated the testing in BT474 cell line with inducible GPR110 overexpression. In assessing the cell growth in 2-dimension (2D), we found that GPR110 overexpression in BT474 with +dox did not affect cell growth measured by MTT assay (Figure 5A-B) and cell proliferation as detected by BrDU incorporation assay (Figure 5C-D) at baseline or in presence of various lapatinib concentrations when compared to –dox. These data is consistent with our preliminary data using cells with stable overexpression of GPR110, suggesting that GPR110 may not have a role in 2-dimension (2D) cell growth or proliferation in HER2+ breast cancer.

To determine the effect of GPR110 overexpression on mammosphere-forming capability, BT474-GPR110 overexpressing cells were used for mammosphere assay. We found that both of the stably transfected clones had a significantly lower numbers of mammospheres on day 7 (Figure 6A,C) and after the first passage of the mammospheres (data not shown), but an increase in mammosphere diameter (Figure 6B,D). Additional analysis on day 3 has revealed that this may likely occur from aggregation of mammospheres, which was selectively present in GPR110-overexpressing cells with +dox, but not in –dox conditions (Figure 6). Because GPR110 belongs to an adhesion GPCR family, the role of GPR110 in cell-cell adhesion may be possible, which is currently under investigation. Interestingly, knockdown of GPR110 using 3 independent siRNAs selectively inhibited colony formation in the soft agar assay preferentially in the SKBR3 LTR
derivatives but not in SKBR3 parental cells (Figure 6E), suggesting that GPR110 may indeed have a role in 3-dimension cell growth of HER2+ breast cancer cells in the setting of anti-HER resistance. The soft agar experiments using GPR110-overexpressing cells are ongoing.

Ongoing and future experiments include confirmation of these findings in SKBR3 cell line with inducible GPR110 overexpression and also to determine the effects of GPR110 knockdown using the GPR110-shRNA expressing cell lines. In addition, the effects of GPR110 overexpression or knockdown on cell growth in the context of drug resistance will also be determined to understand the possible role of GPR110 in anti-HER2 drug resistance setting.

Major task 1.4: Determine the *in vivo* tumor growth in response to L, T, and L+T when GPR110 gene is overexpressed and/or knocked down in parental and anti-HER therapy resistant xenografts. 12-33 months

In order to understand the effect of *in vivo* tumor growth in response to GPR110 overexpression, we have already obtained the approval of IACUC at Baylor College of Medicine (BCM), where all the proposed animal experiments will be conducted (approval date: June 10, 2015). Necessary documents were also submitted to the USAMRMC Animal Care and Use Review Office (ACURO) on July 10, 2015. We expect to hear from ACURO by the end of October regarding the approval status in order to begin the animal experiment proposed in the project. Since all the proposed animal work will be done at BCM, obtaining IACUC approval at University of Houston (UH) is not necessary.

Aim 2: Investigate HER-dependent and –independent signaling mechanisms by which GPR110 mediates tumorigenicity and anti-HER therapy resistance.

Major task 2.1: Measure the expression of GPR110 in ALDH+ vs. ALDH- population of 12 cell line models. 1-6 months

In our preliminary data, we had demonstrated that GPR110 was overexpressed in tumorigenic ALDH+ vs. ALDH- population of 2 HER2+ breast cancer cell line models. To understand whether GPR110 overexpression is a common phenomenon in tumorigenesis, we have measured GPR110 expression in the ALDH+ vs. the ALDH- population of various HER2+ breast cancer cells. For this, we first carried out the flow cytometry analysis to quantify the ALDH positivity in various cell line models. As shown in figures 7A-I, the aldeflur+ population varied (1.1% to 58.4%) in various cell line models, as described before. Based on the aldeflur positivity, only 6 models were chosen for FACS sorting and subsequent RNA extraction for measuring GPR110 mRNA using RT-PCR and protein using IHC. We observed that GPR110 mRNA levels were significantly up-regulated in the aldeflur+ population of cells of BT474, SKBR3, MDA-MB-361 and HCC1569 models (Figure 8A-D). There was no difference in the
conducted a preliminary experiment to determine the effect of GPR110 knockdown using
role in metastasis. W
role in cancer metastasis of which have shown a
GPCR family, members of which have shown a role in cancer metastasis, we also have evaluated whether GPR110 has a role in metastasis. We
Additional experiments demonstrating a role of GPR110 in cancer invasion and migration:
Because GPR110 belongs to adhesion GPCR family, members of which have shown a role in cancer metastasis, we also have evaluated whether GPR110 has a role in metastasis. We conducted a preliminary experiment to determine the effect of GPR110 knockdown using

Major task 2.2: Measure the effects of GPR110 gene-overexpression and -knockdown on tumorigenic potential of HER2+ breast cancer cells and their anti-HER therapy resistant derivatives. Also, determine their HER pathway dependence. 12-36 months
To determine the tumorigenic potential of GPR110, the proposed experiments to test aldeflur-positive population are ongoing.

Aim 3: Investigate the predictive value of tumoral GPR110 expression in HER2+ breast cancer patients treated with neoadjuvant L+T regimen.

Major task 3.1: Evaluate GPR110 expression in tumor biopsies at baseline and in residual disease after neoadjuvant L+T treatment. 12-30 months
The IRB protocol was approved at BCM on November 21, 2014 and renewed without any modification on 8/24/2015. The US Army Medical Research and Materiel Command, Office of Research Protections, Human Research Protection Office (HRPO) has also approved the BCM protocol on January 13, 2015.

The UH IRB has approved the protocol on December 22, 2014. The HRPO has also approved the UH protocol on January 9, 2015. The proposed studies in the human samples will begin in year 2 of the project.
siRNAs on invasion and migration of SKBR3 cells. We found that knockdown of GPR110 using 3 independent siRNAs in SKBR3 parental cells resulted in a significant reduction in the cell invasion (Figure 9A) and migration (Figure 9B), suggesting a role of GPR110 in tumor cell dissemination. These experiments using the GPR110 overexpressing cell lines are ongoing.

What opportunities for training and professional development has the project provided?

A highly qualified postdoctoral fellow, Dr. Debashish Sahay, was recruited in February 2015 for the project, who completed his PhD from INSERM UMR 1033 at Universite Claude Bernard Lyon in France in January 2015. Because his PhD thesis focused on the study of a GPCR (lysophosphatidic acid receptor) in mediating bone metastasis of triple-negative breast cancer, he was considered to be the most qualified candidate to carry out the proposed project. Dr. Sahay’s involvement in this research has provided him opportunities to present the findings at two conferences. The details are provided below under the Products section of this report. Furthermore, the funding from DOD has also facilitated Dr. Trivedi’s career independence and advancement.

How were the results disseminated to communities of interest?

Findings from these studies have been presented at 2 meetings. The details are given below under Products section.

What do you plan to do during the next reporting period to accomplish the goals?

Based on the confirmation of our initial results, we will inject GPR110-overexpressing cells in mice to determine the effect on tumor formation as proposed in the SOW. Furthermore, we will evaluate the role of GPR110 in cell adhesion, invasion, and migration as suggested by our analysis described above. RPPA and/or phospho-proteomic studies will also be undertaken in order to uncover the downstream signaling pathways for GPR110 and its potential involvement in resistance to anti-HER2 drug therapy and tumorigenicity. We will generate stable cell line with the GPR110 shRNAs and carry out functional assays to better understand the role of GPR110 in anti-HER2 resistance and tumorigenesis as proposed in the SOW. We will use these genetically engineered cells to test the effects of GPR110 gene-overexpression and/or -knockdown in the absence or presence of the HER pathway inhibition on tumorigenic potential as well as evaluate the effects on HER and the alternate survival pathways in these preclinical models using *in vitro* and *in vivo* studies as proposed in the SOW. Additional GPCR candidates from our initial screen will also be evaluated for their potential role in tumorigenesis as well as anti-HER2 resistance.

4. Impact

What was the impact on the development of the principal discipline(s) of the project?

This project has allowed the investigation of GPR110 as a potential novel target in improving efficacy and delaying resistance for anti-HER2 therapy. We have shown that GPR110 overexpression occurs commonly in anti-HER2 drug resistant cells and in tumorigenic population using a broad panel of cell line models. In addition, we have demonstrated the role of GPR110 in tumorigenicity, cell adhesion, invasion, and migration, which may facilitate anti-HER2 drug resistance. We have successfully generated inducible lentiviral plasmids with GPR110 cDNA and cell lines that inducibly overexpress GPR110. Generation of cell lines with GPR110 knockdown is ongoing. These tools provide the necessary resources to investigate the role of GPR110 in HER2+ breast cancer as proposed in this research.

What was the impact on other disciplines?
GPR110 belongs to the adhesion GPCR family. The biologic function of this family of receptors is largely unknown, but a few studies indicate their role in promotion of cancer metastasis. To date, there are no reports of the function of GPR110 in physiology or disease. This DOD-funded project has facilitated generation of novel cell lines that overexpress GPR110 or GPR110 shRNA for its knockdown to investigate pharmacology of GPR110, for which we plan to acquire additional funding.

What was the impact on technology transfer?
Nothing to report

What was the impact on society beyond science and technology?
Nothing to report

5. Changes/Problems:

Changes in approach and reasons for change
In addition to our proposed studies, we will investigate the role of GPR110 on cell adhesion, invasion, and metastasis as suggested by our analysis described above. We will also evaluate potential role of additional GPCR candidates in improving the efficacy and delaying resistance to anti-HER2 therapy with the goal of identifying targets or drugs with excellent safety profile.

Actual or anticipated problems or delays and actions or plans to resolve them
For the construction of the shRNA GPR110 plasmids, the 4 independent shRNAs we purchased did not effectively knockdown GPR110 as assessed by qRT-PCR when transiently transfected in the SKBR3 LTR cells, which has a high GPR110 expression (Figure 4A). We are using a new strategy for designing the GPR110 shRNA using the GPR110 siRNA sequence. These siRNAs have been validated by RT-PCR in significantly knocking down the expression of GPR110 in SKBR3 model (Figure 4B,C). We are in the process of constructing the inducible plasmid with these GPR110 shRNA, and will then carry out the infection to generate stable cell lines.

Changes that had a significant impact on expenditure
Nothing to report

Significant changes in use or care of human subjects, vertebrate animals, biohazards, and/or select agents
Nothing to report

Significant changes in use or care of human subjects
Nothing to report

Significant changes in use or care of vertebrate animals.
Nothing to report

Significant changes in use of biohazards and/or select agents
Nothing to report

6. Products

Publications, conference papers, and presentations
4th Annual Conference on Recent Advances in the Development of Combinatorial Therapies for Cancer

2nd University of Houston Department of Pharmacological and Pharmaceutical Sciences annual symposium

Debashish Sahay, Raksha R. Bhat, Puja Yadav, Ahmed Al-rawi A, Vikas Yadav, Hosu Kim, Pavel Christiny, Sarmistha Nanda, Mario Giuliano, Chad Creighton, C. Kent Osborne, Vihang A. Narkar, Rachel Schiff, Meghan V. Trivedi. Identification of GPR110 as a Novel Target in HER2+ Breast Cancer. August 2015 at University of Houston, Houston, USA. (Oral Presentation)

Website(s) or other internet site(s)
Nothing to report

Technologies or techniques
Nothing to report

Inventions, patent applications, and/or licenses
Nothing to report

Other products
Nothing to report

7. Participants & Other Collaborating Organizations:
What individuals have worked on the project?

<table>
<thead>
<tr>
<th>Name</th>
<th>Rachel Schiff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Role</td>
<td>Partnering principal investigator</td>
</tr>
<tr>
<td>Nearest person month worked</td>
<td>1</td>
</tr>
<tr>
<td>Contribution to project</td>
<td>Dr. Schiff has contributed to planning of experiments, interpretation of data, supervision of Dr. Sahay and Ms. Rajendran, and overall supervision of the project. Specifically, she has provided supervision for the generation of inducible lentiviral plasmids for GPR110 overexpression and knockdown and infection of cell lines with these lentivirus. She is also the PI of IACUC and IRB protocol approved at BCM.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Mahitha Rajendran</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Role</td>
<td>Research assistant</td>
</tr>
<tr>
<td>Nearest person month worked</td>
<td>1</td>
</tr>
<tr>
<td>Contribution to project</td>
<td>Ms. Rajendran has assisted with maintenance of various HER2+ breast cancer cell line models of anti-HER2 drug resistance for the GPR110 expression analysis.</td>
</tr>
<tr>
<td>Name</td>
<td>Lanfang Qin</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Project Role</td>
<td>Research associate</td>
</tr>
<tr>
<td>Nearest person month worked</td>
<td>1</td>
</tr>
<tr>
<td>Contribution to project</td>
<td>Dr. Qin has provided conceptual guidance for the generation of lentiviral plasmids.</td>
</tr>
</tbody>
</table>

Has there been a change in the active other support of the PD/PI(s) or senior/key personnel since the last reporting period?
Nothing to report

What other organizations were involved as partners?
Organization name: University of Houston
Location of organization: Houston, Texas
Partner’s contribution to the project: as an initiating PI
Financial support: None
In-Kind support: None
Facilities: Cell-based assays, molecular analysis
Collaborations: Meghana Trivedi
Personnel exchanges: None

8. Special reporting requirements

Collaborative awards
Nothing to report

Quad charts
Nothing to report

9. Appendices
Abstracts of conferences, poster
Identification of GPR110 as a Novel Target in HER2+ Breast Cancer.

Debashish Sahay1, Raksha R.Bhat1, Puja Yadav1, Ahmed Al-rawi A1, Vikas Yadav2, Hosu Kim1, Pavel Christiny3, Sarmistha Nanda3, Mario Giuliano3, Chad Creighton3, C. Kent Osborne3, Vihang A. Narkar2, Rachel Schiff3, Meghana V. Trivedi1,3.

1Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX.

2Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas, Houston, TX.

3Lester and Sue Smith Breast Center, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX.

Objectives: Human epidermal growth factor receptor-2-overexpressing breast cancer (HER2+ BC) is an aggressive tumor with high rates of anti-HER2 drug resistance. Identification of novel drug targets in HER2+ breast cancer is an unmet clinical need. In this context, G-protein coupled receptors (GPCRs) may be excellent drug targets because they cross-talk with the HER family members. However, the expression and function of the majority of GPCRs are unknown in HER2+ breast cancer. Our goal was to identify novel G-protein coupled receptor (GPCR) targets to improve efficacy and overcome anti-HER2 drug resistance. In preliminary studies, we identified GPR110 as a potential drug target in HER2+ BC. Here, we investigated the role of GPR110 in modulating HER2 signaling and anti-HER2 drug efficacy and resistance in HER2+ BC.

Method: The publically available TCGA dataset was interrogated to determine differential mRNA expression of GPR110 in HER2+ and other subtypes of breast cancer. Stable GPR110 overexpression was obtained by lentiviral-mediated delivery of GPR110 cDNA. GPR110 gene knockdown was achieved using target-specific siRNAs. Tumorigenic potential was determined by calculating the % of ALDH+ cells using Aldefluor assay and by evaluating the anchorage-independent cell growth using soft agar assay over 14 days. The influence of GPR110 overexpression on HER signaling pathway was investigated by measuring the levels of phosphorylated (active) and total protein levels of HER1 and HER2 using immunoblotting.

Results: In TCGA dataset, GPR110 expression was significantly higher in HER2+ and basal subtypes of breast cancer compared to ER+ luminal A and B subtypes. Anchorage-independent cell growth was 5-fold higher in GPR110-overexpressing cells compared to control cells. In addition, GPR110-overexpressing cells had a significantly higher % of ALDH+ population compared to control cells. Conversely, GPR110 knockdown reduced tumorigenic potential selectively in drug resistant SKBR3 cells but not in parental cells. Phosphorylated (but not total) HER1 and HER2 protein levels were significantly higher in GPR110-overexpressing cells compared to control cells.

Conclusions: We show for the first time a pro-tumorigenic role of GPR110 in HER2+ BC. GPR110 is a novel pharmacological target, inhibition of which may potentially improve anti-HER2 drug efficacy and delay anti-HER2 drug resistance.

This study has been supported by grants from AACP and DoD and faculty start-up funds.
Identification of GPR110 as a Novel Target in HER2+ Breast Cancer.

Debashish Sahay1, Raksha R.Bhat1, P Yadav1, Vikas Yadav2, Hosu Kim1, Pavel Christiny1, Mario Giuliano3, Chad Creighton3, C. Kent Osborne3, Vihang A.Narkar2, Rachel Schiff3, Meghana V. Trivedi1,3.

1Dept of Pharmacy Practice and Translational Research, UHCOP, Houston, TX.

2Center for Metabolic and Degenerative Diseases, IMM, U of T, Houston, TX.

3Lester and Sue Smith Breast Center, BCM, Houston, TX.

Objectives: HER2+ BC is an aggressive tumor with high rates of anti-HER2 drug resistance. Our goal was to identify novel GPCR targets to improve efficacy and overcome anti-HER2 drug resistance. In preliminary studies, we identified GPR110 as a potential drug target in HER2+ BC. Here, we investigated the role of GPR110 in modulating HER2 signaling and anti-HER2 drug efficacy and resistance. Method: Stable GPR110 overexpression was obtained by lentiviral-mediated delivery of GPR110 cDNA. Tumorigenic potential was determined by Aldefluor assay and soft agar assay. Results: In TCGA dataset, GPR110 expression was significantly higher in HER2+ and basal subtypes of breast cancer compared to ER+ luminal A and B subtypes. Anchorage-independent cell growth was 5-fold higher in GPR110-overexpressing cells compared to control cells. In addition, GPR110-overexpressing cells had a significantly higher % of ALDH+ population compared to control cells. Conversely, GPR110 knockdown reduced tumorigenic potential selectively in drug resistant SKBR3 cells but not in parental cells. Phosphorylated HER1 and HER2 protein levels were significantly higher in GPR110-overexpressing cells compared to control cells. Conclusions: We demonstrate the pro-tumorigenic role of GPR110 in HER2+ BC. GPR110 is a novel pharmacological target, inhibition of which may potentially improve anti-HER2 drug efficacy and delay resistance.
Identification of GPR110 as a novel target in HER2+ breast cancer.

Debashish Sahay, Rakesh Bhat, Puja Yadav, Ahmed Al-rawi, Vikas Yadav, Hosu Kim, Pavel Christiny, Sarmistha Nanda, Mario Giuliano, Chad Creighton, C. Kent Narkar, Rachel Schiff, Meghana Trivedi.

1. UT Health Science Center at Houston, Texas, 2. University of Texas Health Science Center at Houston, Texas, 3. Baylor College of Medicine, Houston, TX.

ABSTRACT

Objective: HER2+ breast cancer (HER2+ BC) is an aggressive tumor with high rates of anti-HER2 drug resistance. Identification of novel drug targets in HER2+ breast cancer is an urgent clinical need. In this context, G-protein coupled receptors (GPCRs) may be excellent drug targets because they cross-talk with the HER family members. However, the expression and function of the majority of GPCRs are unknown in HER2+ breast cancer. Our goal was to identify novel G-protein coupled receptor (GPCR) targets to improve efficacy and overcome anti-HER2 drug resistance.

Methods: The pubatically available TCGA dataset was interrogated to determine levels of HER1 and HER2 using immunoblotting. HER2+ BC. GPR110 is a novel pharmacological target, inhibition of which unmet clinical need. In this context, G-protein coupled receptors (GPCRs) may ligand-binding pocket, & availability of assays for drug screening.

Results: I: TCGA dataset, GPR110 expression was significantly higher in HER2+ and basal subtype of breast cancer compared to ER+ luminal A and B subtypes. II: GPR110 knockdown in GPR110 overexpressing cells compared to control cells. III: GPR110 knockdown reduced tamoxifen potential selectively in drug resistant SKBR3 cells but not in parental cells. Phosphorylated (measured total) HER1 and HER2 protein levels were significantly higher in GPR110 overexpressing cells compared to control cells.

Conclusions: We show for the first time a pro-tumorigenic role of GPR110 in HER2+ BC. GPR110 is a novel pharmacological target, inhibition of which may potentially improve anti-HER2 drug efficacy and delay anti-HER2 drug resistance.

METHODS

Total HER2* levels of HER1 and HER2 using immunoblotting. The publically available TCGA dataset was interrogated to determine levels of HER1 and HER2 using immunoblotting. HER2+ BC. GPR110 is a novel pharmacological target, inhibition of which unmet clinical need. In this context, G-protein coupled receptors (GPCRs) may ligand-binding pocket, & availability of assays for drug screening.

To validate candidate genes from the array, the cDNA (from 0.5 μg of RNA, TaqMan Gene Expression Master mix, the TaqMan gene expression assay for each of the genes of interest, and iMAX-Plus mixture kit) according to manufacturer’s instructions. * indicates p < 0.05, Student’s t-test, N=6.

GPR110 gene knockdown was achieved by lentiviral-mediated delivery of GPR110 shRNA. GPR110 knockdown reduced tamoxifen potential selectively in drug resistant SKBR3 cells but not in parental cells. mRNA expression was measured by q-RT-PCR as a fold change over control.

Non-targeting siRNA
GPR110 (ii) siRNA
GPR110 (i) siRNA
GPR110 (iii) siRNA

Figure 5. GPR110 expression in BT474 cells infected with lentivirus containing GPR110 construct.

RESULTS

Figure 1. Number of GPCRs with different C1 values in (A) ALDH and ALDH+ BT474 cells and in (B) parental, TR, and LTR derivatives of BT474 cells.

Figure 2. Two fold or more up-regulated GPCRs in ALDH+ vs. ALDH- cells and in at least one resistant line vs. parental cells.

Figure 3. GPR110 mRNA expression in HER2+ and other subtypes of breast cancer using the publicly available TCGA data.

Figure 4. Differential expression of GPR110 in ALDH+ vs. ALDH- cells and in anti-HER2 therapy resistant derivatives vs. parental cell lines of HER2+ BC cells.

Figure 6. Effects of GPR110 overexpression on anchorage-independent growth in HER2+ BC cells.

Figure 7. Effects of GPR110 genetic modulation on anchorage-independent growth in HER2+ BC cells.

Figure 8. Effects of GPR110 overexpression on HER2 signaling in HER2+ BC cells.

CONCLUSIONS

We demonstrate a previously unknown pro-tumorigenic role of GPR110 in HER2+ BC. GPR110 is a novel pharmacological target, inhibition of which may potentially improve anti-HER2 drug efficacy and delay anti-HER2 drug resistance.

REFERENCES