where $\Gamma = 4\pi \eta L / [\ln(L/2R) + 0.84]$ is the Stokes drag coefficient for a cylinder (26), and η is the effective viscosity of the nematic. The solid lines in Fig. 4B are the results of fits to the solution of this equation

$$\tau(\tau) = \left(z - \frac{\Delta m}{4\pi \kappa C(\partial \omega / \partial z)^2} \right) \left[1 - \exp(-\tau/\tau) \right]$$

(6)

with the time constant, $\tau = \Gamma /[4\pi \kappa C(\partial \omega / \partial z)^2]$, constrained to have the same value, $\tau = 270$ s, in all three fits. These results give clear qualitative support for Eqs. 4 to 6 in describing the levitation. Quantitative comparisons are made difficult by the complicated anisotropy of the nematic’s viscoelasticity (21).

However, selecting characteristic values for 5CB of $\eta = 1$ Poise (27) and $K \approx 5 \times 10^{-7}$ dynes leads to $\tau \approx 140$ s, which is reasonable agreement with the measured value.

This manipulation of wires with director gradients suggests methods for self-assembly using more elaborate spatially dependent director fields. For example, as a straightforward extension of the levitation, a liquid crystal that twists through many orders of magnitude smaller than those required to reorient the nematic director because of its magnetic anisotropy.

We observe a double periodicity of Coulomb charging phenomena, which is consistent with a transparency of the leads can be controlled independently. We extract values of energy-level spacings, capacitances, and interaction energies for this system. This ability to control electron interactions in the quantum regime in a molecular conductor is important for applications such as quantum computation.

Carbon nanotubes have been considered leading candidates for nanoscale electronic applications (1, 2). Previous measurements of nanotube electronics have shown electron confinement (quantum dot) effects such as single-electron charging and energy-level quantization (3–5). Nanotube properties such as long spin lifetimes make them ideal candidates for spin-based quantum computation based on double quantum dots (6) or multiple series quantum dots (7). However, realizing such devices requires independent gate control over multiple charges and spins. This ability has not been achieved in previous measurements, where device properties were controlled with a single global gate such as the doped silicon substrate (8–10). We report the fabrication and measurement of a nanotube-based double quantum dot with multiple, independent gates. The gates are used to manipulate and study single-electron charging as well as charge interactions, and relevant device parameters are extracted directly from transport data.

Local Gate Control of a Carbon Nanotube Double Quantum Dot

N. Mason,*† M. J. Biercuk,* C. M. Marcus†

We have measured carbon nanotube quantum dots with multiple electrostatic gates and used the resulting enhanced control to investigate a nanotube double quantum dot. Transport measurements reveal honeycomb charge stability diagrams as a function of two nearly independent gate voltages. The device can be tuned from weak to strong interdot tunnel-coupling regimes, and the transparency of the leads can be controlled independently. We extract values of energy-level spacings, capacitances, and interaction energies for this system. This ability to control electron interactions in the quantum regime in a molecular conductor is important for applications such as quantum computation.

The device under study consists of a nanotube ~ 2 nm in diameter, of length $L \sim 1.5$ nm between metal contacts, with three top gates (11, 12) and a doped Si backgate (Fig. 1) (13). Room temperature measurements of conductance as a function of any gate voltage indicate either that the nanotube is metallic with a strong resonance or that it is a small band-gap semiconductor. At low temperatures, single-electron charging is observed as Coulomb blockade conductance peaks, measured as a function of applied gate voltages. The observed peak pattern is different for each gate and in some regions shows considerable superstructure, which appears with increasing source-drain voltage, V_{SD}.

We observe a double periodicity of Coulomb charging phenomena, which is consistent with a nanotube quantum dot, defined by tunnel barriers to the leads, that has been split into two dots of roughly equal size by a defect in the middle of the device (14). Structural defects often create tunable tunnel barriers (15–18) and typically appear in nanotubes longer than ~ 200 nm. Although such defects can be controllably fabricated (19), in this case the defect is inherent to the tube. The resulting dots each have a quantized energy level spacing of $\Delta = h v_{F}/2L$. ~ 1 meV (assuming only spin degeneracy), where $v_{F} = 3.1 \times 10^{5}$ m/s is the Fermi velocity for a metallic nanotube (4).

The top gate voltages have differential capacitive coupling to the quantized energy levels of the two dots. Transport measurements ind-
cote that gate G1 predominantly couples to dot 1 and gate G2 to dot 2. In the transconductance, dI/dV_{G1} as a function of V_{G1} and V_{G2} (Fig. 2A), paired regions of large dI/dV_{G1} appear on the vertices of a hexagonal lattice (15). The resulting honeycomb-shaped array of high dI/dV_{G1} can be contrasted with the straight lines that would appear if each applied gate voltage coupled equally to the dots. The observed pattern strongly resembles the charge stability diagram found for weakly tunneling double quantum dot systems (16–18). The expected peak in the transconductance at each applied gate voltage for a single quantum dot would appear if each applied gate voltage coupled equally to the dots. The observed pattern strongly resembles the charge stability diagram found for weakly tunneling double quantum dot systems (16–18). The transconductance is also expected to peak at each applied gate voltage for a single quantum dot; however, the observed pattern strongly resembles the charge stability diagram found for weakly tunneling double quantum dot systems (16–18).

At finite bias, the vertex points expand into triangular regions (Fig. 2B) defined by lines where the energy levels of each dot align with either the top or bottom of the bias window. According to theory, resonant tunneling should occur only along these vertices; finite nonresonant conductance along the edges of the honeycomb cells (Fig. 2, D and E) occurs via cotunneling, which is suppressed in the weak-tunneling regime (20).

Fig. 1. (A) Schematic of top-gated device. (B) Electron micrograph of a representative device. Arrows indicate the embedded nanotube.

Double dot capacitances are obtained by measuring the sizes and separations of the honeycombs and vertices (Fig. 2) (20). The size of the honeycomb in Fig. 2A determines $V_{G1(2)}$, where

$$\Delta V_{G1(2)} = \frac{|e|}{C_{G1(2)}} \left(1 + \Delta E_{C1(2)}\right) \tag{1}$$

with $C_{G1(2)}$ the capacitance of dot 1(2) to gate 1(2) and $E_{C1(2)}$ ~ 2meV the charging energy for dot 1(2). $E_{C1(2)}$ is determined from $|eV_{SD}|$ measured at the apex of a conductance diamond in a plot of conductance as a function of V_{SD} and any gate voltage (not shown). From the size of the finite-bias triangles in Fig. 2B, we determine capacitance ratios using

$$\delta V_{G1(2)} = \frac{C_{1(2)}}{C_{G1(2)}} V_{SD} \tag{2}$$

With the above relationships, we calculate typical dot capacitances of $C_{1(2)}$ ~ 160 aF and $C_{G1(2)}$ ~ 45 aF.

The amount of capacitive coupling and interdot tunneling can be determined from the vertex splitting (27, 28). These couplings cause an energy shift related to the formation of charge polarized, or “bonding,” states between the quantum dots (tunnel coupling is analogous to covalent bonding, and capacitive coupling to ionic bonding). Both coupling parameters can be tuned with gate voltages that open the interdot constriction, so it is difficult to determine their relative contributions to the transconductance.

Fig. 2. Experimental charge stability diagrams for the series double quantum dot as a function of two gate voltages, each shifting the energy levels of a single dot. Voltages V_{G1} and V_{G2} are divided by five before being applied to the gates of the device. (A) Color scale displays dI/dV_{G1} calculated from dc current (I_{G1}) at $V_{SD} = 500$ mV. White lines are guides to the eye showing the honeycomb pattern of peaks in conductance. Vertex pairs correspond to points of degeneracy between the two dots where resonant transport occurs, whereas cotunneling may produce finite conductance along the honeycomb edges. (B) Zoom-in of a vertex pair at $V_{SD} = 500$ mV with lines of constant energy designated by white dashed lines. Color scale displays I_{G1}. Vertex dimensions are indicated on the diagram, as are particular electron configurations on the two dots for different regions of gate space. Note the triangular shape resulting from finite V_{SD} and nonzero off-resonance conductance within the triangles. (C) Level diagrams for a double quantum dot depicting resonant transport with Γ_{int}, the interdot tunnel rate. The bias window is $V_{SD} = (\mu e + \mu h)/e$. (D) and (E) Level diagrams depicting configurations where cotunneling may contribute to transport.
vertex splitting. If we assume the vertex splitting is due to capacitive coupling alone, we find a mutual capacitance between dots $C_m \sim 90 \text{ aF}$, using

$$\Delta V_{\text{G}(2)} = \frac{|e|C_m}{C_{\text{G}(2)C_{\text{G}(2)}}}$$

where $\Delta V_{\text{G}(2)}$ is the horizontal or vertical component of the diagonal splitting measured between vertices (20). A separate determination of the mutual capacitance based on single-dot capacitances (determined above) and the magnitude of the charging energy using the relation

$$E_C = \frac{e^2}{C_{\text{G}(2)}} (1 - C_m^2/C_{\text{G}(1)} C_{\text{G}(2)})^{-1}$$

gives $C_m \sim 100 \text{ aF}$. The similarity between these two values for C_m indicates that the vertex splitting in this region is dominated by capacitive coupling. The interaction energy is then approximately

$$E_m = \frac{e^2}{C_m} (C_m^2/C_{\text{G}(1)} C_{\text{G}(2)} - 1)^{-1} \sim 700 \mu\text{eV}.$$

Opening the interdot constriction is expected to increase the tunnel coupling exponentially faster than the capacitive coupling (27). We can therefore compare the amount of interdot tunnel coupling in different gate configurations using the fractional peak splitting, defined $f = \Delta V_{\text{G}}/\Delta V_p$, where ΔV_p is the diagonal splitting measured between vertices and ΔV_p is the distance between vertex pairs (Fig. 3A) (26). A value of $f = 1$ corresponds to a transparent interdot constriction, while $f = 0$ indicates two isolated dots in the limit of zero mutual capacitance between dots. Changes in f, however, should be dominated by tunnel coupling, so measuring how f changes as a function of gate voltage allows the contribution to the vertex splitting from interdot tunneling to be inferred. We observe an evolution of f by holding the range of V_{G2} fixed and examining different regimes of V_{G1} (Fig. 3, A and B). In Fig. 3A, where honeycomb cells and vertices are well defined, we find that $f \sim 0.3$. This regime can be contrasted with that of Fig. 3B, where an increase in interdot tunnel coupling leads to a smearing of vertices and honeycomb cells. In this regime, vertex splitting grows to a value of $f \sim 0.7$.

In Fig. 3, C to E, we use a combination of V_{G1} and V_{G2} to maintain a fixed electron configuration while tuning tunneling with the backgate. The evolution evident here shows how varying V_{BG} from 250 mV to 375 mV changes our stability diagram from weak to strong cotunneling regimes. The corresponding increase in vertex heights indicates that we are also influencing the total amount of tunneling through the double dot. Because the vertex splitting does not change substantially, it seems that the backgate is primarily tuning the transparency of the tunnel barriers at the source and/or drain electrodes (15).

Increasing temperature increases cotunneling conductance (i.e., conductance on honeycomb edges) by a relation well described by a power law, $G_{\text{cot}} \sim T$, over the range investigated, where η is between 1 and 2 with a typical value of $\eta \sim 1.3$ (Fig. 4, A and C, upper curve). In contrast, resonant vertex peak conductance is roughly independent of temperature, or only slightly increases with increasing temperature (Fig. 4, B and C, lower curve). Power law behavior with $\eta = 2$ has been predicted for cotunneling peaks in the weak interdot tunneling regime ($G_{\text{cot}} \ll e^2/h$) at low temperatures $0/k_B T \ll \Delta$ (29). A power law with $\eta = 1.25$—comparable to what we find—is predicted (29) for intermediate tunnel coupling, and $\Delta \ll k_B T$ (corresponding to temperatures higher than those of our measurements). The nearly temperature-independent behavior we observe for resonant peaks does not appear consistent with predictions of peak height scaling as $1/T$ in the low-temperature regime (28, 30). Given that other measurements of this system correspond relatively well to predicted behavior, it is surprising that the temperature dependence deviates so far from theoretical expectations.

References and Notes

Fig. 3. (A) Experimental charge stability diagram demonstrating weak interdot tunnel coupling. $V_{\text{BG}} = 500 \mu\text{V}$. Vertex peak splitting (ΔV_p) and honeycomb cell dimensions (ΔV_S) indicated on the plot. (B) Moving to a different region of V_{G1} changes the tunnel coupling between dots, producing a smeared charge stability diagram. (C to E) Experimental stability diagrams for fixed charge configuration at various V_{G2}. $V_{\text{G2}} = 800 \mu\text{V}$. The capacitive coupling of the back-gate to the two dots requires that slightly different ranges of V_{G1} and V_{G2} be used to cover the same charge configurations at different V_{BG} values.

Fig. 4. Temperature dependence of peak heights for two different regimes of transport. One-dimensional sweeps taken in V_{G2} with $V_{\text{G1}} = -1800 \text{ mV}$. Representative cotunneling peak (A), denoted "Cot," and vertex peaks (B), denoted "Res.," at temperatures between $T = 350 \text{ mK}$ and 915 mK. (C) Peak height as a function of temperature on a log-log plot. Peaks are sorted by type (resonant or cotunneling) into two distinct groups and have all been offset to collapse approximately onto a single curve for each group. The black line shows the average power law behavior, $T^{1.3}$, for cotunneling peaks. Peaks shown in (A) and (B) are shown in red. (Inset) Representative honeycomb cell in the region of measurement.
An ab Initio Molecular Dynamics Study of the Aqueous Liquid-Vapor Interface

I-Feng W. Kuo and Christopher J. Mundy

We present an ab initio molecular dynamics simulation of the aqueous liquid-vapor interface. Having successfully stabilized a region of bulk water in the center of a water slab, we were able to reproduce and further quantify the experimentally observed abundance of surface “acceptor-only” (19%) and “single-donor” (66%) moieties as well as substantial surface relaxation approaching the liquid-vapor interface. Examination of the orientational dynamics points to a faster relaxation in the interfacial region. Furthermore, the average value of the dipole decreases and the average value of the highest occupied molecular orbital for each water molecule increases approaching the liquid-vapor interface. Our results support the idea that the surface contains, on average, far more reactive states than the bulk.

Although the nature of bulk liquid water itself remains incompletely understood, there is a more pressing need to characterize water in more complex environments. In particular, the interfaces between liquid water and hydrophobic material or air engender important phenomena in biology (1–5) and atmospheric science (6, 7), respectively. These two interfaces seem to have much in common (1), and both are currently the subject of intense scrutiny.

Experimentalists have led the way in characterizing the aqueous liquid-vapor interface. Measurements of the aqueous liquid-vapor interface have provided proof of dangling OH bonds present at the surface (8, 9). Recent x-ray experiments on the aqueous liquid-vapor interface have provided strong evidence for surface relaxation (10) and for new structural moieties in which both hydrogens (called “acceptor-only”) of a surface water molecule are dangling (11, 12). To date, theoretical models have not captured all these surface phenomena, presumably because the models were fitted to reproduce properties of the homogeneous bulk phases. Ab initio simulations lend themselves well to these studies because they present an unbiased representation of water in different environments and are thus ideal candidates for elucidating surface phenomena. Here, we used Car-Parrinello molecular dynamics (CPMD) (13, 14) to investigate the properties of the aqueous liquid-vapor interface (15, 16).

The shortest distance from the aqueous liquid-vapor interface at which one can observe bulk liquid behavior is ~10 Å (17). Due to the computational demands of ab initio methods, we needed to determine the smallest system one can simulate that will produce a stable interface. A recent ab initio study of the aqueous liquid-vapor interface using 32 waters produced interesting results regarding dangling bonds but...