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On the Relationships Between Liquid and Solid Fragmentation 

Culbert B. Laney
1
 

Engility Corp., 8211 Terminal Rd, Lorton, VA 22079 U.S.A. 

Abstract. This paper surveys fragment size distributions found in the research literature, 

including specific examples of Weibull, Gamma, and root normal size distributions. This paper 

finds that, in many instances, the solid and liquid fragmentation communities have independently 

discovered the same or similar fragment size distributions. In addition, this paper shows that the 

solid and liquid fragmentation communities have independently discovered nearly the same 

expressions for average fragment sizes. These observations are surprising, given the 

fundamental phenomenological differences between liquid and solid fragmentation.  

 

Keywords: fragment size distribution, Weibull size distribution, Gamma size distribution, Mott-

Linfoot size distribution, Marshall-Palmer size distribution, Simmons size distribution  

 

1. Introduction 

At first glance, it seems that solid and liquid fragmentation have little in common. In typical 

cases, solids are believed to fragment via multiple propagating cracks originating at strain-

induced or pre-existing microstructural flaws. For example, for impact fragmentation of solids, 

Wittel et. al. (2008) say: “The average size of … fragments … is determined by the relationship 

between the rate at which cracks nucleate and the velocity of the stress release wave. The higher 

the strain rate, the higher the crack nucleation rate and the more … cracks are formed.”  

 

By contrast, in typical cases, liquids are believed to fragment due to flows resulting in thin 

surface protrusions such as sheets, ligaments, and so forth. As these surface protrusions stretch, 

hydrodynamic instabilities grow until the troughs penetrate and pinch off fragments. For 

example, for jet atomization, Marmottant & Villermaux (2004b) say: “Liquid destabilization 

proceeds from a two-stage mechanism: a shear instability first forms waves on the liquid. The 

transient acceleration experienced by the liquid suggests that a Rayleigh–Taylor type of 

instability is triggered at the wave crests, producing liquid ligaments which further stretch in the 

air stream and break into droplets.” 

 

In typical cases, liquids experience two-stage fragmentation due to aerodynamic forces, i.e., 

parent droplets created in the primary stage produce smaller children droplets in the secondary 

stage. The basic phenomenology of the second stage is much the same as that of the first stage. 

For example, Hsiang & Faeth (1992) observed: “[children] drops or ligaments are stripped from 

boundary layers … that form near the liquid surface … on the windward side of the [parent] 

droplet.” In some scenarios, solids can also experience multi-stage fragmentation e.g., during 

grinding or milling. However, this is not as common for solids as it is for liquids.  

 

In addition, in typical cases, liquid fragments experience coagulation – the inverse of 

fragmentation – due to random collisions between fragments, e.g., Villermaux et. al. (2004). 

Solid fragments, including small asteroids and dust, may experience something similar due to 

                                                 
1
 E-mail address: Bert.Laney@engilitycorp.com 



 

 
2 

electrostatic or van der Waals forces. However, this is not as common for solids as it is for 

liquids. 

 

Despite the apparent lack of similarity between liquid and solid fragmentation, there is a long 

history of techniques developed for solid fragmentation being used for liquid fragmentation and, 

to a lesser extent, vice versa. For example, while originally developed for solid fragmentation, 

Liu (2000) notes that Rosin-Rammler size distributions are “perhaps the most widely used” size 

distributions for liquid fragmentation; see also Ashgriz (2011). Well-known subsets of Rosin-

Rammler size distributions include Weibull (1939a, b) and Griffith (1943). For example, Mott & 

Linfoot (1943) and Grady & Kipp (1985) use Weibull distributions for solids while Marshall & 

Palmer (1948) and Li & Tankin (1987) use them for liquids. For another example, Grady & Kipp 

(1987) use Griffith distribution for solids while Tishkoff & Law (1977) use them for liquids. 

 

More generally, this paper shows that liquid and solid fragmentation often produce similar 

results, both in terms of average fragment sizes and in terms of the overall fragment size 

distributions. Because liquid fragmentation tends to produce semi-spherical droplets, liquid 

fragmentation is usually described by fragment diameters. Because solid fragmentation tends to 

produce irregular shapes, solid fragmentation is usually described by fragment masses. These 

and other superficial differences often mask similarities between liquid and solid fragmentation. 

Building on Laney (2015a, b), this treatment includes techniques for transforming between mass 

and diameter, and between mass fraction and number fraction.  

 

2. Basic Definitions 

 

Let D be the fragment diameter and let M be the fragment mass. Four common ways of 

expressing fragment size distributions are as follows: 

 

)(DF  [ )(MF ] is the number fraction of fragments with diameters [masses] greater than 

or equal to D [M] 

 

)(DFM [ )(MFM ] is the mass fraction of fragments with diameters [masses] greater than 

or equal to D [M]. 

 

In standard probability theory, )(xF is called a complementary cumulative distribution function 

(CCDF). Notice that )(xF  is monotone decreasing such that 1)0( F  and 0)( F . 

Alternatively, four common ways of expressing fragment size distributions are as follows 

 

)(DfM  [ )(MfM ] is the mass fraction of fragments with diameters [masses] in a range 

dD centered on D divided by dD [dM centered on M divided by dM] 

 

)(Df  [ )(Mf ] is the number fraction of fragments with diameters [masses] in a range 

dD centered on D divided by dD [dM centered on M divided by dM] 

 

In standard probability theory, )(xf  is called a probability density function (PDF). The 

following eight equations may be used to transform between the above eight expressions: 
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mDcM                                                                   (1) 

 

)()( DFMF MM                                                              (2) 

 

)()( DFMF                                                               (3) 

 

)(const.)( DfDDf m

M  ; )(const.)( MMfMfM                               (4) 

 





D

MM dxxfDF )()( ; 
dD

dF
Df M

M )(                                         (5) 

 





M

MM dxxfMF )()( ; 
dM

dF
Mf M

M )(                                      (6) 

 





D

dxxfDF )()( ; 
dD

dF
Df )(                                             (7)                                     

 





M

dxxfMF )()( ; 
dM

dF
Mf )(                                           (8) 

 

where m is the fragment dimension,   is the fragment density, and c  is a constant.  Notice that 

liquids tend to produce spherical fragments with 3m  while solids may produce irregular 

fragments with any 31  m .  

 

Table 1 defines eight possible average fragment sizes in terms of )(xf  and )(xfM .  

Table 1. Eight possible average fragment sizes. Asterisks (*) indicate non-standard terminology. 

Notation Definition Name Notation Definition Name 

avgD  


0

)( dDDDf  
Count Mean 

Diameter (CMD) avgM  


0

)( dMMMf  
Count Mean 

Mass (CMM) (*) 

M avgD  


0

)( dDDfD M  
Mass Mean 

Diameter 

(MMD) 
M avgM  



0

)( dMMfM M  
Mass Mean Mass 

(MMM) (*) 

avgD  



0

)(

1

dD
D

Df
 Sauter Count 

Mean Diameter 

(SCMD) (*) 
avgM   




0

)(

1

dM
M

Mf
 Sauter Count 

Mean Mass 

(SCMM) (*) 

avgMD  



0

)(

1

dD
D

Df M

 Sauter Mass 

Mean Diameter 

(SMMD) 
avgMM   




0

)(

1

dM
M

Mf M

 Sauter Mass 

Mean Mass 

(SMMM) (*) 
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 Consider the following ratio of averages: 

 

avgM

avgM

M
D

D
R


                                                          (10) 

 

This is a measure of fragment size spread. While traditionally used for liquid fragmentation, it is 

equally valid for solid fragmentation. As an empirical observation, different fragment size 

distributions are often almost the same when MR  is almost the same.  

 

Similarly, consider the following ratio of averages: 

 

m

avg

avg

cD

M
S


                                                            (11) 

 

3. Fragment Size Distributions 

 

This section summarizes some of the key results from Laney (2015a, b).  

 

 3.1 Weibull Size Distributions 

 

Table 2 shows eight different forms of Type I Weibull size distributions. These are also known 

as Rosin-Rammmler-Sperling-Bennett (RRSB) size distributions; see Rosin et. al (1933) and 

Bennett (1936). Table 3 shows eight different forms for Type II Weibull size distributions; see 

Weibull (1939a, b). In either case, the two free parameters are n and an average fragment size. 

Table 4 gives expressions for the remaining parameters, which depend only on the free 

parameter n and the spatial dimension m, and not on the average fragment size. As described by 

Laney (2015b), Type I and II Weibull size distributions are subsets of Rosin-Rammler (1927) 

size distributions. 

 

Laney (2015b) defines Type I, II, III, and IV size distributions as follows: 

 

Type I Type II Type III Type IV 

)(DfM  )(Df  )(MfM  )(Mf  

 

where all four types have the same general form. Equivalently:  

 

Type I Type II Type III Type IV 

)(DFM  )(DF  )(MFM  )(MF  

 

where all four types have the same general form.  

 

With simple parameter adjustments, Type III Weibull size distributions turn out to be essentially 

the same as Type I Weibull size distributions, and Type IV Weibull size distributions turn out to 

be essentially the same as Type II Weibull size distributions.  
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Table 2a. Type I Weibull size distributions expressed in terms of F and f. 









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






















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
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

n
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D

D
b

n

m

DF

n

avg
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,1
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
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
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
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
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avg
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,1
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

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







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


 n

avg

mn

avgavg D

D
b

D

D

AD
Df exp

1
)(

1
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Table 2b. Type I Weibull size distributions expressed in terms of FM and fM. 

])/(exp[)( n

avgM DDbDF   ])/(exp[)( / mn

avgM MMcMF   


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Table 3a. Type II Weibull size distributions expressed in terms of F and f. 

])/(exp[)( n

avgDDbDF   ])/(exp[)( / mn

avgMMcMF   













































 n

avg

n

avgavg D

D
b

D

D

AD
Df exp

1
)(

1

 












































 mn

avg

mn

avgavg M

M
c

M

SM

mAM

S
Mf

/1/

exp)(  

 
Table 3b. Type II Weibull size distributions expressed in terms of FM and fM. 
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M
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Table 4. Parameters for Type I and II Weibull size distributions which ensure the correct Davg and Mavg. 

 I II 

b  n

n

n

m

n

m


















 


1

1
1

 

n

n










1
1  

c  
m

n

n

m










 1  

m

n

n

m






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The research literature usually considers Weibull size distributions to be the same when mn /  is 

the same. For example, by this convention, 1,1  mn  and 2,2  mn  and 3,3  mn  are 

all the same while 1,1  mn  and 2,1  mn  and 3,1  mn  are all different.   

 

Figure 1 compares Type I and II Weibull size distributions to test data from Rosin & Rammler 

(1934). The smallest fragments appear to obey a power law or, equivalently, a negative Weibull 

size distribution while the largest fragments appear to obey a positive Weibull size distribution. 

Brown & Wohletz (1995) suggest that “the data consist of two populations: fines that 

experienced a single fragmentation event and remained unaffected in spaces among larger 

particles that were repeatedly fragmented during milling.” Notice that the Type II Weibull size 

distribution provides a somewhat better fit to the test data than the Type I Weibull size 

distribution. This tends to be true in general. Thus this treatment will rely predominantly on  

Type II Weibull size distributions.  
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Figure 1. Type I and II Weibull size distributions vs. test data for ball-milling of iron from Rosin & Rammler 

(1934). A similar figure appeared earlier in Brown & Wohletz (1995).  

 

 3.2 Gamma Size Distributions 

 

Table 5 shows eight different forms of Type IIB Gamma size distributions; see, e.g., Villermaux 

et. al. (2004). Table 6 shows eight different forms for Type IVB Gamma size distributions; see, 

e.g., Melzak (1953). In either case, the two free parameters are b and an average fragment size. 

Table 7 gives expressions for the remaining parameters, which depend only on the free 

parameter b and the spatial dimension m, and not on the average fragment size. As described by 

Laney (2015b), Type II and IV Weibull size distributions are subsets of Rosin-Rammler (1927) 

size distributions.  

 

It is also possible to define Type I and III Gamma size distributions. Unlike Weibull size 

distributions, Type I, II, III and IV Gamma size distributions are all distinct.  

 

For Type IA, IIA, IIIA, and IVA Gamma size distributions, the independent variable is 

normalized by the mass mean diameter or mass mean mass. Similarly, for Type IB, IIB, IIIB, 

and IVB Gamma size distributions, the independent variable is normalized by the count mean 

diameter or count mean mass. For Weibull size distributions, the parameters are the same 

regardless of normalization; therefore, there is no need to distinguish A from B. However, for 

Gamma size distribution, the parameters change along with the normalization; therefore, it is 

important to distinguish A from B. 
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Table 5a. Type IIB Gamma distributions for expressed in terms of F and f. 
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Table 5b. Type IIB Gamma distributions expressed in terms of FM and fM. 
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Table 6a. Type IVB Gamma distributions for expressed in terms of F and f. 
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Table 6b. Type IVB Gamma distributions expressed in terms of FM and fM. 
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Table 7. Parameters for Type IIB and IVB Gamma size distributions which ensure the correct Davg and Mavg. 
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 3.3 Root Normal Size Distributions 

 

Table 8 shows eight different forms of Type IA root normal size distributions; see Tate & 

Marshall (1953). Table 10 shows eight different forms of Type IIB root normal size 

distributions; see Laney (2015a). In either case, the two free parameters are σ and an average 

fragment size. Tables 9 and 11 give expressions for the remaining parameters, which depend 

only on the free parameter σ and the spatial dimension m, and not on any average fragment size. 

Most previous treatments let a = 1 and did not attempt to solve the implicit equation for a given 

in Tables 8 and 10. This means that most previous treatments have errors in the average size.  

 
Table 8a. Type IA root normal distributions expressed in terms of F and f. 
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Table 8b. Type IA root normal distributions expressed in terms of FM and fM 













 


2

/
erfc

1
)(

aDD

A
DF

avgM

M  











 


2

)/(
erfc

1
)(

2/1 aMMS

A
MF

m

avgMM

M  

 


22

11
)(

avgM

M
AD

Df  









 2

2
)/(

2

1
exp

/

1
aDD

DD
avgM

avgM


 

 


22

1
)(

avgM

M
M

AmM

S
Mf  


































































2

2

1

2

1
2

1

2

1
exp a

M

MS

M

MS m

avgM

M
m

avgM

M


 



 

 
10 

 

Table 9. Parameters for Type IA root normal size distributions which ensure the correct DM avg and MM avg. 
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Table 10a.  Root normal distributions of Type IIB expressed in terms of F and f. 
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Table 10b. Root normal distributions of Type IIB expressed in terms of FM and fM. 
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Table 11. Parameters for Type IIB root normal size distributions which ensure the correct Davg and Mavg.  
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For Type I root normal size distributions, f and F suffer from a severe (non-integrable) 

singularity at the origin. Thus most prior treatments work exclusively with Mf  and MF , which 

have only a mild (integrable) singularity at the origin. However, a better approach is to substitute 

closely-matched Type II for Type I root normal size distributions, as described by Laney 

(2015a).  

 

For Type IIB root normal size distributions, there are useful analytical expressions for integer m. 

For example, if m = 3 then: 
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4. Solid vs. Liquid: Fragment Size Distributions 

 

Table 12 shows proposed correspondences between various solid and liquid fragment size 

distributions. Appendix A provides additional details for selected cases. While the type varies in 

the original sources, the distributions were converted to Type II or IV in all cases, with the 

original distributions noted in parentheses. While the fragmentation dimension m varies in the 

original sources, the distributions were converted to m = 3 in all cases. After making these two 

conversions, the proposed correspondences were chosen based solely on MR .   

 

Based on Table 12, the same size distribution, or nearly so, may occur for a wide range of 

different fragmentation events. Table 12 is not intended to be a complete listing of all possible 

size distributions. For example, for fragmentation of undulating liquid sheets, Bremond et. al. 

(2007) found a Type II Gamma size distribution with b = 70. Judging by MR , this corresponds to 

a Type II Weibull size distribution with 3/ mn . For another example, for fragmentation of 

metal rings, Moxnes & Børve (2015) found a Type II Weibull size distribution with .4/ mn  

 

In Table 12, the fragment size distributions given in the white cells are approximations based on 

test or computational data, while those given in the grey cells are exact values derived from 

theory. As seen in Appendix A, the three main types of theories used are as follows: 

 Geometry, a.k.a., perfect (void free) packing theory. If adjacent fragments meet at single 

point, the result has an inherently fractal character, e.g., Apollonian sphere packing. If 

adjacent fragments meet along extended lines or surfaces – so that the parts to fit 

together to form the whole like jigsaw puzzle pieces as in Lesh et. al. (2004) – the result 

is known as tessellation or subdivision.  

 Maximum entropy theory. According to Englman (1996), this approach “predicts that the 

‘best’ probability p(s) for the occurrence of the value s for a variable is obtained by 

maximizing the information entropy subject to constraints.”  

 Governing equations including the Population Balance Equation (PBE) and the Discrete 

Element Method (DEM). Both the PBE and DEM concern collections of pre-existing 

particles. The PBE assumes that particle properties change due to discrete events, e.g., 

random collisions. The DEM assumes that particle properties change due to discrete 

events and/or hypothetical interparticle forces. The PBE is simple enough to allow for a 

number of exact analytical solutions. 
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Table 12. Proposed correspondences between solid and liquid fragment size distributions. The white cells are 

approximate values based on test or computation. The grey cells are exact values based on theory. 

Solids Liquids 

Weibull Gamma Weibull Gamma Root Normal 

Zhou et al.  

(2006) 

Type II 

2/ mn  

026.1MR  

Ferenc & 

 Néda (2007) 

Type IVB 

5b  

025.1MR  

  

Chou &  

Faeth (1998) 

Type IIB (IA)  

086.0  (0.081) 

027.1MR  (1.02) 

Cheong et al.  

(2003, 2004) 

Type II (I) 

5.1/ mn  (2.38) 

049.1MR (1.033) 

  

Villermaux  

(2007) 

Type IIB 

17b  

053.1MR  

Sallam et.al.  

(2006) 

Type IIB (IA)  

125.0  (0.11) 

052.1MR  (1.04) 

Grady & Kipp 

(1985) 

Type II 

1/ mn

075.1MR  

 

Li & Tankin 

(1987) 

Type II 

1/ mn  

075.1MR  

Bremond & 

Villermaux (2006) 

Type IIB 

10b   

083.1MR  

 

Grady et.al.  

(2001) 

Type II 

85.0/ mn

094.1MR  

  

Marmottant & 

Villermaux (2004a) 

Type IIB 

1.8b  

125.1MR  

 

Grady et.al.  

(2001) 

Type II 

67.0/ mn

132.1MR  

  

Marmottant & 

Villermaux (2004a) 

Type IIB 

6b  

125.1MR  

Wu et. al.  

(1991) 

Type IIB (IA)  

24.0  (0.17) 

135.1MR  (1.1) 

Grady et.al.  

(2001) 

Type II 

55.0/ mn

171.1MR  

  

Marmottant & 

Villermaux (2004b) 

Type IIB 

8.3b  

172.1MR  

 

Mott & Linfoot 

(1943) 

Type II 

2/1/ mn

194.1MR  

  

Marmottant & 

Villermaux (2004b) 

Type IIB 

81.2b

208.1MR  

Empie et.al.  

(1995, 1997) 

Type IIB (IA) 

34.0  (0.20) 

195.1MR  (1.15) 

Cohen (1981) 

Type II 

433.0/ mn  

238.1MR  

  

Mulmule et.al. 

(2010) 

Type IIB 

2.2b  

238.1MR  

Simmons  

(1977) 

Type IIB (IA)  

47.0  (0.238) 

253.1MR  (1.2) 
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Table 12 (continued) 

Solids Liquids 

Weibull Gamma Weibull Gamma Root Normal 

Mott & Linfoot 

(1943) 

Type II 

3/1/ mn

333.1MR  

 

Marshall & 

Palmer (1948) 

Type II (*) 

3/1/ mn

333.1MR  

 

Spielbauer et. al. 

(1989) 

Type IIB (IA) 

72.0  (0.286) 

333.1MR  (~1.5) 

(*) Maximum entropy proof given by Cousin et. al. (1996). 

 

In most cases, the PBE and especially DEM must be solved computationally. For example, 

Wittel et. al. (2004, 2005, 2006) describe a DEM approach for solid shell fragmentation based on 

“pointlike material elements [with] …bonds between nodes … assumed to be springs having 

linear elastic behavior up to failure.” For another example, Carmona et. al. (2008) and Wittell et. 

al. (2008) describe a DEM approach for solid volumetric fragmentation based on “an 

agglomeration of spheres of two different sizes …connected by beam-truss elements that can 

elongate, shear, bend and torque,” including beam breakage due to bending and stretching, and 

“contact forces from sphere-sphere contacts.” Using this approach, Carmona et. al. (2008) and 

Wittell et. al. (2008) found a Weibull size distribution with 2/ mn . 

 

In the third row of Table 12, notice that Grady & Kipp (1985) and Li & Tankin (1987) used the 

same approach – maximum entropy theory – to derive the same fragment size distribution within 

two years of each other. Grady & Kipp (1985) is well-known in the solid fragmentation 

community but essentially unknown in the liquid fragmentation community. Similarly, Li & 

Tankin (1987) is well-known in the liquid fragmentation community but essentially unknown in 

the solid fragmentation community.  

 

In the last row of Table 12, notice that Mott & Linfoot (1943) and Marshall & Palmer (1948) 

used the same approach – curve fits to experimental data – to derive the same fragment size 

distribution within five years of each other. Mott & Linfoot (1943) is considered a classic in the 

weapons effects community; see also Grady (2006). While it is widely used to predict fragments 

sizes for metal-cased high-explosives, it is rarely used for other applications. Similarly, Marshall 

& Palmer (1948) is considered a classic in the meteorological community. While it is widely 

used to predict raindrop sizes, it is rarely used other applications. 

 

Because they are based on curve fits to experiments with finite sample sizes, Weibull exponents 

such as 2/1/ mn  arguably reflect a bias toward simple rational numbers. The actual values 

could be slightly different. This observation is counterbalanced by the fact that at least two such 

rational numbers, 1/ mn  and 3/1/ mn , have been proven to be exactly correct; see 

Appendix A.3 and  A.7. In addition, it is remarkable that different researchers working with 

different families of size distributions have independently arrived at such similar results. This 

includes Gamma and root normal size distributions whose parameters tend not to be simple 

rational numbers. 
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5. Solid vs. Liquid: Average Fragment Sizes 
 

The size distributions seen in Sections 4 and 5 have two free parameters. This section describes a 

method for predicting one of those two free parameters, namely, the average fragment size. For 

an expanding cylindrical solid, Mott & Linfoot (1943) derived the following expression for an 

(unspecified) average fragment size: 

 
3/1

2

224







 

U

R


                                                            (12) 

 

where R  is the initial outer radius measured in units such as cm,   is the surface energy per unit 

area of new fragment surfaces measured in units such as dyne/cm,   is the density measured in 

units such as g/cm
3
, and  U  is the radial expansion speed measured in units such as cm/s. 

 

Building on Mott & Linfoot (1943), Grady (1982) suggested the following: 

 

σ                        (13) 

 

for inviscid liquids where   is the surface tension measured in units such as g/s
2
 and: 

 

2

2

2 s

c

cρ

K
                                                                (14) 

 

for brittle solids where cK  is the fracture toughness measured in units such as g/(cm
1/2

s
2
) and  cs  

is the elastic wave velocity measured in units such as cm/s. 

 

Equation (12) is derived by assuming that kinetic energy in converted to surface energy and, 

optionally, elastic potential energy. The derivation assumes the rate-of-strain is steady, uniform, 

and large. Zhou et. al.  (2006) compares results from several competing theories, which gives a 

sense for how large the rate-of-strain needs to be; see also Grady (1988), Grady & Kipp (1993), 

Grady & Olsen (2003), Grady (2006), and Grady (2015). 

 

For primary breakup of an expanding cylindrical liquid jet, Wu et. al. (1992) and Wu & Faeth 

(1993) found the following expression: 

 
3/2

2/1
const. 
















We

xD avgM
                                             (15) 

 

where: 

 



 


2V
We   
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is a unitless Weber number,   is a “radial integral length scale” comparable to the largest 

turbulent eddies, x  is the streamwise distance along the jet, and V  is the average streamwise 

velocity of the jet. Equation (15) can be simplified as follows: 

 
3/1

2

2

const. 









V

x
D avgM




                                                   (16) 

 

Notice that Equations (12) and (16) are the same provided that σ , the unspecified average in 

Equation (12) is equal to the Sauter mass mean diameter, and: 

 

xR const.  

 

VU const.  

 

Both of these are true for linearly-expanding cylindrical jets.  

 

While Mott & Linfoot (1943) and Grady (1982) are considered to be classics in weapons effects 

community, they are essentially unknown in the liquid fragmentation community. Similarly, 

while Wu et. al. (1992) and Wu & Faeth (1993) are well-known in the atomization and sprays 

community, they are essentially unknown in the solid fragmentation community.  

 

6. Solid vs. Liquid: Most Common Fragment Size Distributions 

 

While Grady’s law can be used to predict one of the free parameters in Weibull, Gamma, and 

root normal size distributions, there is no known method for predicting the other free parameter. 

As a result, fragmentation is a long-term unsolved problem. 

 

The simplest and best-known technique relies on empirical observations. For example, for 

expanding solid cylinders, Mott & Linfoot (1943) suggested that the two most common fragment 

size distributions are Type II Weibull size distributions with: 

 

2/1/ mn  

 

and 

3/1/ mn . 

 

As another example, for expanding cylindrical liquid jets, Simmons (1977) suggested that the 

most common fragment size distribution is a Type IA root normal size distribution with: 

 

238.0  

 

As seen in Table 12, this corresponds to a Type II Weibull size distribution with: 

 

41667.0
2

3/12/1
/ 


mn  
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In other words, the Simmons size distribution for liquid fragmentation is essentially an arithmetic 

average of the two Mott-Linfoot size distributions for solid fragmentation. 

 

The Mott-Linfoot and Simmons size distributions represent large to very large fragment size 

spreads. However, modern designs tend to favor smaller fragment size spreads. For example, for 

explosively-driven metal cylinders, Grady et. al. (2001) obtained four Type II Weibull size 

distributions with mn /  equal to 0.55, 0.67, 0.67, and 0.85. Only the first of these is anything like 

a Mott-Linfoot or Simmons size distribution. For another example, in a literature survey by 

Pimentel et. al. (2010), all of the spray systems tested prior to Simmons (1977) approximately 

obtained the Simmons or Mott-Linfoot size distributions; however, none of the spray systems 

tested afterwards did. In fact, as in seen in Table 13, the more recent the spray system, the 

smaller the size spread tends to be.  (Remember that the size spread increases as   increases and 

decreases as mn /  increases.) The modern trend toward small size spreads has reduced the 

practical value of the Mott-Linfoot and Simmons size distributions. 

 
Table 13a. Parameters n/m in a Type II Weibull and σ in Type IA root normal size distributions for spray 

systems measured before Simmons (1977). Based on a literature survey done by Pimentel et. al. (2010); see 

Laney (2015a). 

mn /    Reference(s) Liquid Spray System No. % 

1/2 0.20 Turner & Moulton (1953) β-naphthol Swirl Jet 4 50% 

0.417 0.238 Tate & Olson (1962) 

Houghton (1941) 

Water 

(unknown) 

Solid, Hollow Cone 

(unknown) 

3 

1 

50% 

 

Table 13b. Parameters n/m in a Type II Weibull and σ in Type IA root normal size distributions for sprays 

systems measured after Simmons (1977). Based on a literature survey done by Pimentel et. al. (2010); see 

Laney (2015a). 

mn /    Reference(s) Liquid Spray System No. % 

2 0.081 Pimentel et. al. (2010) Jet Fuel ‘Delavan’ 3 10% 

3/2 0.11 Pimentel et. al. (2010) 

                 ʺ 

                 ʺ 

Jet Fuel 

ʺ 

ʺ 

‘Bosch’ 

‘BETE’ 

‘Delavan’ 

4 

9 

1 

45% 

 

2/3 0.17 Pimentel et. al. (2010) 

Paloposki & Fagerholm (1986) 

Li & Tankin (1987) 

Tishkoff (1979) 

(unknown) 

Fuel Oil 

Water 

Water 

‘LaVision’ 

Hollow Cone 

Solid Cone 

Hollow Cone 

3 

5 

4 

2 

45% 

 

The Kuz-Ram method provides an empirical expression for n in a Type I Weibull size 

distribution, e.g., Cunningham (2005), Gheibie et. al. (2009). Unfortunately, this empirical 

expression depends on parameters specific to explosive rock mining such as borehole diameters, 

lengths, and spacings. There is no readily apparent extension to other applications.  
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7. Conclusions 

 

In most cases, the vast majority of evidence for any given fragment size distribution is 

experimental. Given factors such as limited sample sizes, measurement errors, and artificial 

minimum fragment sizes, this leads to questions about the accuracy of any proposed fit, e.g., 

Clauset et. al.  (2009). However, within these limitations, solid and liquid fragment size 

distributions often appear to be similar or identical, except possibly for extremely large or small 

fragments. Theories and models provide additional confirmatory evidence in selected cases.  

 

Previous treatments of fragment size distributions often vary two or even three free parameters. 

However, this treatment varies only a single free parameter. Obviously, varying two or three 

parameters leads to significantly better agreement – with test data or with other size distributions 

– than varying only one parameter. However, this agreement comes at a cost, namely, such 

distributions may lack critical transformation and self-similarity properties, as described in 

Laney (2015a,b). It is unfair to compare a fit constrained by transformation and/or self-similarity 

properties against an unconstrained fit. The latter will inevitably appear to perform better, as 

judged by the usual error metrics, than the former.  

 

Solids and liquids tend to fragment in entirely different ways. In particular, solids typically 

fragment via crack propagation while liquids typically fragment via hydrodynamic instability, 

followed by secondary breakup and coagulation. However, this work has shown that the final 

results are often strikingly similar. This implies that it may be unnecessary or even 

counterproductive to use first-principles fragmentation models, i.e., methods that accurately track 

the time-evolution of crack propagation or hydrodynamic instability. Indeed, such approaches 

still have limited predictive capability despite decades of effort. This also implies that increased 

interactions between the solid and liquid fragmentation communities would be mutually 

beneficial, e.g., it might avoid the duplication of effort seen repeatedly in the historical record.  

 

This paper has been mainly observational. Future work will explain why manifestly different 

fragmentation events may produce such similar results.  
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Appendix A: Specific Examples of Solid vs. Liquid Fragment Size Distributions 

 

A.1. Example 1 

 

This example concerns three fragment size distributions with 001.0026.1 MR . These 

distributions are considered to have a very narrow size spread. 

 

1.) Based on a literature survey of experimental results for expanding solid rings with 

,1m  Zhou et. al. (2006) suggested the following fragment size distribution: 
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where minM is a minimum fragment size and refM  is a reference fragment size. If 0min M , then 

by Table 3, this is a Type II Weibull size distribution with:  

 

2/ mn                                                              (A1c) 

 

This particular Weibull size distribution is also known as a Rayleigh distribution. As shown by 

Laney (2015b), Weibull distributions are the same regardless of normalization. In other words, 

2/ mn  regardless of whether refM  is chosen to be avgM , avgMM , or some other average.  

 

Zhou et. al. (2006) drew on four experimental studies. Unfortunately, all four suffered from low 

sample sizes, with the number of fragments varying between 18 and 125, the latter obtained only 

by repeating the same test 11 times. Grady and Olsen (2003) and Grady (2006) provide 

alternative fits, including rare applications of Mott (1947), that may better account for the effects 

of such small sample sizes. 

 

2.) Based on computational results for Voronoi tessellation of unitary solid bodies with 

,1m 2, or 3, Ferenc & Néda (2007) suggested the following fragment size distribution: 
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By Table 6, this is a Type IV Gamma size distribution with: 
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2

13 


m
b                                                          (A2b) 

 

For comparison, based on earlier computational results for Voronoi tessellation for unitary solid 

bodies such as asteroids, Kiang (1966) suggested a Type IV Gamma size distribution with: 

 

mb 2                                                                (A3) 

 

Equation (A3) predicts somewhat larger values for b than Equation (A2) when .1m   

 

3.) Based on experimental results for bag-type aerodynamic breakup of water droplets, 

Chou & Faeth (1998) suggested a Type IA root normal size distribution with 02.1MR  or 

equivalently:  

 

081.0 ,   1a                                                       (A4) 

 

Laney (2015a) showed that this is nearly identical to a Type IIB root normal size distribution 

with 027.1MR  or equivalently: 

 

086.0 , 9963.0a                                                   (A5) 

 

Notice that most liquid atomization events produce nearly-spherical droplets with 3m . This is 

true even when the atomizing body is one-dimensional such a ring, ligament, or filament or two-

dimensional such as a bag or sheet.  

  

Figure A.1 shows four different views of the Type II Weibull size distribution given by Equation 

(A1), the Type IIB Gamma size distribution given by Equation (A2), and the Type IIB root 

normal size distribution given by Equation (A5). These three size distributions are compared to 

each other and to experimental data for liquid atomization due to Pimentel et. al. (2010) and 

computational data for solid fragmentation due to Wittell et. al. (2008). In the latter case, Wittell 

et. al. (2008) used a Discrete Element Model (DEM) to simulate 16mm-diameter polymer 

spheres impacting hard frictionless plates; see also Carmona et. al. (2008). The smallest 

fragments in Wittell et. al. (2008) appear to obey a power law. In addition, the largest liquid 

fragments in Pimentel et. al. (2010) appear to obey a power law. In this case, the Weibull size 

distribution appears to obtain somewhat better agreement with the experimental data that the 

Gamma and root normal distribution, which are nearly the same.  
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(a.) f(M) in the log-log plane 

 

 
(b.) f(M) in the linear-linear plane 

 
Figure A.1. Type II Weibull, Gamma, and root normal size distributions vs. experimental data for liquid 

atomization due to Pimentel et. al. (2010) and computational data for solid fragmentation due to Wittell et. al. 

(2008). The Weibull, Gamma, and root normal size distributions all have RM = 1.026±0.001. 
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(c.) F(M) in the log-log plane 

 

 
(d.) F(M) in the linear-linear plane 

 
Figure A.1. (continued) 
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A.2. Example 2 

 

This example concerns three fragment size distributions with 002.0051.1 MR . These 

distributions are considered to have a narrow fragment size spread.  

 

1.) Cheong et. al. (2003, 2004) studied gun-launched soda-lime glass spheres impacting 

thick aluminum oxide blocks. In these tests, fragments originated entirely from the surfaces of 

the spheres, leaving the interiors intact, which implies m = 2. For an impact angle of 60º, they 

obtained the following fragment size distributions: 

 

])/(exp[)( n

refM DDDF                                                   (A6a) 

 

where D is “an equivalent diameter of a circle having the same area as the projected area of 

the corresponding fragment,” Dref  is a reference diameter, and: 

 

%3376.4 n                                                       (A6b) 

 

is an average over four measurements. According to Table 2, this is a Type I Weibull size 

distribution with 38.2/ mn . As shown by Laney (2015b), this is approximately the same as a 

Type II Weibull size distribution with:  

 

5.1/ mn                                                              (A7) 

 

As noted earlier, Weibull distributions are the same regardless of normalization. In other words, 

5.1/ mn  regardless of whether refD  is chosen to be avgD , avgMD , or some other average.   

 

2.) Based on experimental results for fragmentation of liquid sheets, Villermaux (2007) 

suggested a Type IIB Gamma size distribution with: 

 

17b                                                               (A8) 

 

3.) Based on experimental results for round aerated liquid jets, Sallam et. al. (2006) 

suggested a Type IA root normal size distribution with 04.1MR  or equivalently:  

 

11.0 ,   1a                                                       (A9) 

 

Laney (2015a) showed that this is nearly identical to a Type IIB root normal size distribution 

with 049.1MR  or equivalently:  

 

125.0 , 9922.0a                                                   (A10) 

 

Figure A.2 shows four views of the Type II Weibull size distribution given by Equation (A7), the 

Type IIB Gamma size distribution given by Equation (A8), and the Type IIB root normal size 

distribution given by Equation (A10). These three size distributions are compared to each other 
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and to experimental data for liquid atomization due to Pimentel et. al. (2010). The largest liquid 

fragments in Pimentel et. al. (2010) appear to obey a power law. In this case, the Gamma and 

root normal size distributions, which are nearly the same, appear to obtain somewhat better 

agreement with the experimental data than the Weibull size distribution.  
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(a.) f(M) in the log-log plane 

 

 
(b.) f(M) in the linear-linear plane 

 
Figure A.2. Type II Weibull, Gamma, and root normal size distributions vs. experimental data for liquid 

atomization due to Pimentel et. al. (2010). The Weibull, Gamma, and root normal size distributions all have 

RM = 1.051±0.002. 
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(c.) F(M) in the log-log plane 

 

 

 
(d.) F(M) in the linear-linear plane 

 
Figure A.2 (continued) 
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A.3. Example 3 

 

This example concerns fragment size distributions with 005.0080.1 MR . These distributions 

are considered to have a medium-to-narrow size spread  

 

1.) For fragmenting bodies with 1m , Lineau (1936) derived the following size 

distribution: 

 

).constexp()( MMF                                                    (A11a) 

 

By Table 3, this is a Type II Weibull size distribution with: 

 

1/ mn                                                                 (A11b) 

 

As noted earlier, Weibull size distributions are the same regardless of normalization. In other 

words, it makes no difference that Table 3 includes avgM  while Equation (A11) does not.  

 

Grady & Kipp (1985) extended Equation (A11) to solid fragmenting bodies with 2m  and 3. 

As one proof, they used a computational method to determine the size distributions resulting 

from a variety of different two-dimensional subdivisions involving horizontal, vertical, and 

randomly-oriented line segments. In all cases considered, except for Voronoi tessellations, their 

computational results approximately obtained Equation (A11). More recently, Cowan (2010) 

proved that Equation (A11) is exact in the limit of an infinite number of iterative line-segment-

based subdivisions. As another proof, Grady & Kipp (1985) derived Equation (A11) for 2m  

using a maximum entropy approach assuming that “every fragment has equal probability of 

being large or small,” provided only that the total cross-sectional area is correct. 

 

 2.) Using a maximum entropy approach with 3m , Li & Tankin (1987) derived the 

following aerosol size distribution: 
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By Table 3, this is a Type II Weibull size distribution with 3n  or equivalently: 

 

1/ mn                                                                 (A12b) 

 

As noted earlier, Weibull size distributions are the same regardless of normalization. In other 

words, it makes no difference that Table 3 uses avgD  while Equation (A12) uses refD .  
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3.) For collision-driven fragmentation and coagulation in a pre-existing population of 

liquid droplets, a number of researchers have derived the following aerosol size distribution: 
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By Table 3, this is a Type II Weibull size distribution with: 

 

1/ mn                                                              (A13b) 

 

As noted earlier, it makes no difference that Table 3 uses avgM  while Equation (A13) uses refM .  

 

Equation (A13) is derived by finding the late-time analytic limit of the Population Balance 

Equation (PBE). For example, Mulholland & Baum (1980) and Lehtinen & Zachariah (2001) 

obtained this result for droplet coagulation, while Attarakih et. al. (2004) obtained this result for 

droplet fragmentation. Notice that, since mn /  is the same, Equations (A11), (A12), and (A13) 

are all the same.  

  

4.) Based on experimental results for fragmentation of liquid sheets, Bremond & 

Villermaux (2006) and Villermaux (2007) suggested a Type IIB Gamma size distribution with: 

 

10b                                                               (A14) 

 

Figure A.3 compares the Type II Weibull size distribution given by Equations (A11), (A12), and 

(A3) to the Type II Gamma size distribution given by Equation (A14). In this case, the two size 

distributions are fairly similar except at the extremes. 
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(a.) f(M) in the log-log plane 

 

 
(b.) f(M) in the linear-linear plane 

 
Figure A.3. Type II Weibull vs. Gamma size distributions. Both distributions have RM = 1.08±0.005. 
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(c.) F(M) in the log-log plane 

 

 

 
(d.) F(M) in the linear-linear plane 

 
Figure A.3. (continued) 
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A.4. Example 4 

 

This example concerns fragment size distributions with 005.0130.1 MR . These distributions 

are considered to have a medium-to-wide size spread.  

 

 1.) Based on experimental data for expanding cylindrical steel shells, Grady et. al. (2001) 

suggested the following fragment size distribution: 

])/(exp[)( 67.0

refMMMF                                                (A15a) 

By Table 3, this is a Type II Weibull size distribution with: 

 

3/2/ mn                                                              (A15b) 

 

More specifically, Grady et. al. (2001) tested cylinders with lengths of either 10cm or 20cm. In 

either case, the wall thickness to inner radius ratio was 0.8. For as-received steel, the longer and 

shorter fragmenting cylinders obtained Type II Weibull size distributions with 85.0/ mn  and 

55.0/ mn , respectively. However, after heat treatment, the longer and shorter fragmenting 

cylinders both obtained 67.0/ mn . 

 

2.)  Based on experimental data for fragmentation of stretched ethanol ligaments, 

Marmottant & Villermaux (2004a) suggested a Type IIB Gamma size distribution with: 

 

6b                                                                   (A16) 

 

 3.)  Based on experimental results for round liquid jets in still air, Wu et. al. (1991) 

suggested a Type IA root normal size distribution with 1.1MR  or equivalently:  

 

17.0 ,   1a                                                       (A17) 

 

Laney (2015a) showed that this is approximately equal to a Type IIB root normal size 

distribution with 135.1MR  or equivalently:  

 

24.0 , 9708.0a                                                   (A18) 

 

Figure A.4 shows four views of the Type II Weibull size distribution given by Equation (A15), 

the Type IIB Gamma size distribution given by Equation (A16), and the Type IIB root normal 

size distribution given by Equation (A18). These three size distributions are compared to each 

other and to experimental data for liquid atomization due to Li & Tankin (1987) and 

experimental data for solid fragmentation due to Bewick et.  al. (2015). Bewick et. al. (2015) 

used an explosively-driven 6.5-inch-diameter shock tube to load a ¼-inch-thick glass plate to a 

peak overpressure of approximately 500psi. In this case, the Weibull and root normal size 

distributions, which are nearly the same, appear to obtain somewhat better agreement with the 

experimental data than the Gamma distribution. 
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(a.) f(M) in the log-log plane 

 

 
(b.) f(M) in the linear-linear plane 

 

Figure A.4. Type II Weibull, Gamma, and root normal size distributions vs. experimental data for liquid 

atomization due to Li & Tankin (1987) and experimental data for solid fragmentation due to Bewick et. al. 

(2015). The Weibull, Gamma, and root normal size distributions all have RM = 1.13±0.005. 
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(c.) F(M) in the log-log plane 

 

 
(d.) F(M) in the linear-linear plane 

 
Figure A.4. (continued) 
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A.5 Example 5 

 

This example concerns fragment size distributions with 008.02.1 MR . These distributions are 

considered to have a wide size spread.  

 

 1.) For cylindrical high-explosives detonated inside cylindrical metal shells, Mott & 

Linfoot (1943) suggested the following fragment size distribution: 

 
dM

Md
MMf

)(
const.expconst.)(

2/1
2/1                                (A19a) 

By Table 3, this is a Type II Weibull size distribution with  

2/1/ mn                                                              (A19b) 

 

 2.) Based on experimental data for “atomization of a liquid jet when a fast gas 

stream blows parallel to its surface,” Marmottant & Villermaux (2004b) suggested a Type IIB 

Gamma size distribution with: 

 

81.2b                                                             (A20) 

 

Marmottant & Villermaux (2004b) relate the average fragment size avgD  to the average diameter 

0D  of ligaments on the surface of the jet. More specifically, they say “the number of 

convolutions is, at most, such that the final average diameter avgD  restores 0D  or a fraction of 

0D .” In some cases, they normalize with 0D  rather than with avgD . 

 

3.)  Based on experimental results for atomization of black liquor, Empie. al. (1993, 

1995) suggested a Type IA root normal size distribution with: 

 

20.0 ,   1a                                                       (A21) 

 

Laney (2015a) showed that this is approximately equal to a Type IIB root normal size 

distribution with:  

 

34.0 , 9389.0a                                                   (A22) 

 

Figure A.5 shows four views of the Type II Weibull size distribution given by Equation (A19), 

the Type IIB Gamma size distribution given by Equation (A20), and the Type IIB root normal 

size distribution given by Equation (A22). These three size distributions are compared to each 

other and to experimental data for liquid atomization due to Turner & Moulton (1953) and 

experimental data for solid fragmentation due to Bewick et.  al. (2015). Bewick et. al. (2015) 

used an explosively-driven 6.5-inch-diameter shock tube to load a 2-inch-thick precast concrete 

plate to a peak overpressure of approximately 4,000psi. In this case, the three size distributions 

agree with each other and with the experimental data to a rather remarkable degree. 
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(a.) f(M) in the log-log plane 

 

 
(b.) f(M) in the linear-linear plane 

 

Figure A.5. Type II Weibull, Gamma, and root normal size distributions vs. experimental data for liquid 

atomization due to Turner & Moulton (1953) and experimental data for solid fragmentation due to Bewick et. 

al. (2015). The Weibull, Gamma, and root normal size distributions all have RM = 1.2±0.008. 
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(c.) F(M) in the log-log plane 

 

 
(d.) F(M) in the linear-linear plane 

 
Figure A.5. (continued) 
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A.6 Example 6 

 

This example concerns fragment size distributions with 012.025.1 MR . These distributions 

are considered to have a wide-to-very-wide size spread.  

 

1.) For cylindrical high-explosives detonated inside cylindrical metal shells, Cohen 

(1981) suggested a Type II Weibull size distribution with: 

43.0/ mn                                                         (A23) 

2.) Based on experimental results for acoustic breakup of thin liquid sheets, Mulmule 

et.al. (2010) suggested a Gamma size distribution with: 

 

2.2b                                                            (A24) 

 

3.) Based on over 2,000 liquid atomization experiments, Simmons (1977) suggested a 

Type IA root normal size distribution with 2.1MR  or equivalently:  

 

238.0 ,   1a                                                       (A25) 

 

Laney (2015a) showed that this is approximately equal to a Type IIB root normal size 

distribution with 253.1MR  or equivalently: 

 

47.0 , 8650.0a                                                   (A26) 

 

Figure A.6 shows four views of the Type II Weibull size distribution given by Equation (A23), 

Type II Gamma size distributions given by Equation (A24), and the Type IIB root normal size 

distribution given by Equation (A26). These three size distributions are compared to each other 

and to experimental data for liquid atomization due to Tate & Olson (1962) and experimental 

data for solid fragmentation due to Bewick et. al. (2015). Bewick et. al. (2015) used an 

explosively-driven 6.5-inch-diameter shock tube to load a 2-inch-thick precast concrete plate to a 

peak overpressure of approximately 1,500psi. In this case, the three size distributions agree well 

with each other and with the experimental data, except for the power law tail in the solid 

fragmentation data. 
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(a.) f(M) in the log-log plane 

 

 

 
(b.) f(M) in the linear-linear plane 
 

Figure A.6. Type II Weibull, Gamma, and root normal size distributions vs. experimental data for liquid 

atomization due to Tate & Olson (1962) and experimental data for solid fragmentation due to Bewick et. al. 

(2015). The Weibull, Gamma, and root normal size distributions all have RM = 1.25±0.012. 
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(c.) F(M) in the log-log plane 

 

(d.) F(M) in the linear-linear plane 

Figure A.6. (continued) 
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A.7 Example 7 

 

This example concerns fragment size distributions with 333.1MR  exactly. These distributions 

are considered to have a very wide size spread.  

 

1.) Based on test results for cylindrical high-explosives detonated inside cylindrical metal 

shells, Mott & Linfoot (1943) suggested the following fragment size distribution: 

 
dM

Md
MMf

)(
const.expconst.)(

3/1
3/1                                (A27a) 

By Table 3, this is a Type II Weibull size distribution with  

3/1/ mn                                                          (A27b) 

 

 2.) Based on measurements of raindrops with m = 3, Marshall & Palmer (1948) suggested 

the following size distribution: 

 

]exp[const.)( DDf                                                (A28a) 

 

where the constant   depends on the rate of rainfall. By Table 3, this is a Type II Weibull size 

distribution with: 

 

3/1/ mn                                                          (A28b) 

 

Marshall & Palmer (1948) argue that this “distribution … is the type that would obtain if 

growing droplets were in continual danger of disintegration, the likelihood of disintegration 

being proportional to the increment in diameter or in distance of fall.” Building on this remark, 

Villermaux & Bossa (2009) argue that this size distribution can be “understood from the 

fragmentation products of non-interacting, isolated drops.” Notice that since mn /  is the same, 

Equations (A27) and (A28) are the same. 

 

 3.) Using maximum entropy theory with m = 3, Cousin et. al. (1996) derived a two-

parameter family of size distributions. Based on experimental data for pressure-swirl atomizers, 

Cousin et. al. (1996) focused specifically on the following size distribution: 
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By Table 3, this is a Type II Weibull size distribution with: 

 

3/1/ mn                                                         (A29b) 

 

As usual, it makes no difference that Table 3 uses avgD  while Equation (A29) uses refD . 
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Notice that, since mn /  is the same, Equations (A27), (A28), and (A29) are the same. This 

relationship has not been previously observed.  

 

4.)  Based on experimental results for atomization of black liquor, Spielbauer et. al. 

(1989) suggested a Type IA root normal size distribution with: 

 

286.0 ,   1a                                                       (A30) 

 

Laney (2015a) showed that this is approximately equal to a Type IIB root normal size 

distribution with:  

 

72.0 , 5738.0a                                                   (A31) 

 

Figure A.7 shows four views of the Type II Weibull size distribution given by Equations (A27), 

(A28), and (A29) and the Type IIB root normal size distribution given by Equation (A31). These 

size distributions are compared to each other and to experimental data for liquid atomization due 

to Spielbauer et. al. (1989) and experimental data for solid fragmentation due to Mock & Holt 

(1981, 1983). Mock and Holt (1981, 1983) detonated a 2.75kg cylindrical charge of  

Composition B high-explosive inside a 4.5 x 8 inch cylindrical iron shell. In this case, the size 

distributions agree well with each other and with the experimental data. 
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(a.) f(M) in the log-log plane 

 

 
(b.) f(M) in the linear-linear plane 

 
Figure A.7. Type II Weibull and root normal size distributions vs. experimental data for liquid atomization 

due to Spielbauer et. al. (1989) and experimental data for solid fragmentation due to Mock & Holt (1981). 

The Weibull and root normal size distributions have RM = 1.333 exactly. 
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(c.) F(M) in the log-log plane 

 
d.) F(M) in the linear-linear plane 

Figure A.7. (continued) 
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