An Ignition Torch Based on Photoignition of Carbon Nanotubes at Elevated Pressure

AUTHOR(S)
Alireza Badakhshan, Dave Forliti, Jeff Wegener, Stephen Danczyk, Douglas G. Talley, and Ivett A. Leyva

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory (AFMC)
AFRL/RQRC
10 E. Saturn Blvd.
Edwards AFB, CA 93524-7680

SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory (AFMC)
AFRL/RQ
5 Pollux Drive
Edwards AFB, CA 93524-7048

DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

ABSTRACT
Viewgraph/Briefing Charts

SUBJECT TERMS
N/A

SECURITY CLASSIFICATION OF:
- a. REPORT: Unclassified
- b. ABSTRACT: Unclassified
- c. THIS PAGE: Unclassified

LIMITATION OF ABSTRACT:
SAR

NUMBER OF PAGES:
13

NAME OF RESPONSIBLE PERSON:
D. Talley

TELEPHONE NO:
N/A
An Ignition Torch Based on Photoignition of Carbon Nanotubes at Elevated Pressure

(patent pending)

Alireza Badakhshan*, Dave Forliti%, Jeff Wegener, Stephen Danczyk, Doug Talley, and Ivett Leyva†

*ERC Inc.,
%Sierra Lobo, Inc
†Air Force Research Laboratory

This work has been funded by DoD, through Nano Energetic Research Initiative

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited
Background

• The source of high pressure in most combustion devices is the combustion
 – Ignition occurs at low pressure

• A research project at AFRL required ignition to occur while already at high pressure
 – Conventional spark ignition is unreliable at high pressure
 – Alternatives such as laser ignition were impractical

• The solution was a Photoignition Torch (PITCH)
 – PITCH is also electromagnetically quiet, and doesn’t interfere with instrumentation like spark ignitors do.
Photoignition of Nanostructured Solid Fuels by a Camera Flash

The photoignition torch (PITCH) uses a Xe-flash to create a spray of burning particles for initiation of combustions by utilizing ignition properties of carbon nanotubes (CNT).

Top: The complete hardware of a self-contained PITCH. The ignition capsule contains ~50 mg of solid fuel mixture of CNT and solid rocket propellants. PITCH is based on proven technologies that have been in use for decades in rocket industry.

Right: Photoignition of an encapsulated solid fuel mixture moments after the camera flash fires.

An ignition capsule (22 X7 mm) with ~50 mg of solid fuel mixture

Ignition capsule with ~50 mg of solid fuel

Xe-flash and the driver electronics

2 ms

4 ms

8 ms

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited
Photoignition Torch for Fast, Robust, and Scalable Ignition

TOP: A 15 cm jet of hot particles that last 30-300 ms

LEFT: Snapshots of a photoignition torch as it ignites an RP-2 fuel spray

RIGHT: Movie of a 50 mg ignition torch that is captured at 2000 fps and shown at 20 fps Click to play >>>

Spray has ignited completely

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited
How PITCH Works?

- PITCH takes advantage of photo ignition properties of single wall carbon nanotubes (SWNT) that is only a small fraction of the fluence needed for the laser ignition
- While other materials show photoignition property SWNT shows a low enough minimum ignition energy (MIE) with a good burns temperature
- For a PITCH we use SWNT along with other energetic materials that is referred to as photoignition solid fuel mixture (SFM)

<table>
<thead>
<tr>
<th>Nanoparticle Samples</th>
<th>Particle Size/ Smallest Dimensional Size</th>
<th>Min. ignition Energy/area, Fluence (mJ/cm²)</th>
<th>Ignition/burn Temperature* (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWNT(51% Fe)</td>
<td>< 30 nm</td>
<td>64 ± 8</td>
<td>490 ± 30</td>
</tr>
<tr>
<td>SWNT(18% Fe)</td>
<td>< 30 nm</td>
<td>182 ± 13</td>
<td>420 ± 50</td>
</tr>
<tr>
<td>Graphene Oxide Foam/Nanoplatelets</td>
<td>< 30 nm thick platelets</td>
<td>500 ± 60</td>
<td>370 ± 100</td>
</tr>
<tr>
<td>Al-nanoparticles</td>
<td>~18 nm</td>
<td>290 ± 50</td>
<td>1100 ± 150</td>
</tr>
<tr>
<td>Fe, Carbon coated</td>
<td>~ 40 nm</td>
<td>220 ± 35</td>
<td>250 ± 30</td>
</tr>
<tr>
<td>Fe powder</td>
<td>~ 30 nm</td>
<td>150 ± 25</td>
<td>220 ± 30</td>
</tr>
<tr>
<td>Pd powder</td>
<td>~ 12 nm</td>
<td>530 ± 60</td>
<td>320 ± 40</td>
</tr>
</tbody>
</table>

MIE for different nanostructured materials and their burn temperatures
*Temp. of a focused spot on the surface of the sample that is ~ 2 mm in diameter
Content of Solid Fuel Mixtures

<table>
<thead>
<tr>
<th></th>
<th>CNT, PI Agent (Wt%)</th>
<th>Fuel AI_NP (Wt%)</th>
<th>Fuel SRF* (Wt%)</th>
<th>Oxidizer B-KNO₃ (Wt%)</th>
<th>Oxidizer KMnO₄ (Wt%)</th>
<th>Observations and Comments On the Relative Effects of Additives</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>~3%</td>
<td>~97%</td>
<td></td>
<td></td>
<td></td>
<td>*solid rocket fuel (SRF) ignition is unreliable due to ignition delays (ratio doesn’t matter)</td>
</tr>
<tr>
<td>2</td>
<td>10%</td>
<td></td>
<td></td>
<td>90%</td>
<td></td>
<td>Reliable ignition only >10 atm with a short burn duration, low gas pressure</td>
</tr>
<tr>
<td>3</td>
<td>10%</td>
<td></td>
<td>90%</td>
<td></td>
<td></td>
<td>Improved ignition reliability & burn Temp. compared to the above</td>
</tr>
<tr>
<td>4</td>
<td>3%</td>
<td>7-12%</td>
<td>85-90%</td>
<td></td>
<td></td>
<td>More reliable ignition, burns at higher Temp. & generates more gas than samples 2 & 3</td>
</tr>
<tr>
<td>5</td>
<td>3%</td>
<td>7%</td>
<td>45%</td>
<td>45%</td>
<td></td>
<td>Less reliable ignition than the above unless the chamber Pres. >10 atm</td>
</tr>
<tr>
<td>6</td>
<td>3%</td>
<td>7%</td>
<td>50%</td>
<td>40%</td>
<td></td>
<td>Improved flash sensitivity & ignition + generate a lot of gas & smoke</td>
</tr>
<tr>
<td>7</td>
<td>1%</td>
<td>9%</td>
<td>80%</td>
<td>10%</td>
<td></td>
<td>Best ignition sensitivity, reliability & burn duration for Cham. Pres. >7 atm</td>
</tr>
<tr>
<td>8</td>
<td>2%</td>
<td>8%</td>
<td>70%</td>
<td>20%</td>
<td></td>
<td>Good for chamber Pres. >15 atm</td>
</tr>
<tr>
<td>9</td>
<td>2%</td>
<td>8%</td>
<td>70%</td>
<td>20%</td>
<td></td>
<td>Improved reliability and burn duration than #8</td>
</tr>
<tr>
<td>10</td>
<td>1%</td>
<td>15%</td>
<td>75%</td>
<td>9%</td>
<td></td>
<td>As good as the above at atmospheric pressure, but burns too fast >15 atm</td>
</tr>
</tbody>
</table>
PITCH for Specific Ignition Applications

PITCH provides certain advantages over spark ignition systems for rocket engines and combustors:

- PITCH operates within a wide range of pressures and its reaction time (<40 ms) decreases with increased pressure
- It produces no electromagnetic interference (EMI)
- PITCH is photo-activated directly or via an optical fiber so it is not affected by EMI or ESD
- It is self-contained and lightweight using one AA battery

PITCH also offers unique ignition capabilities in combustor research and development applications:

- Ignition at target pressure, avoiding potential overheating during pressure ramp-up.

We use PITCH to ignite subscale test rockets at 130 K and ~35 atm (~500 psi) to study potentially destructive CI effects for <3 s, while avoiding overheating.
High Pressure PITCH Applied to a H$_2$O$_2$ Subscale Rocket Injector

Top: a high-pressure chamber for test of subscale rocket injector and its ignition torch

Bottom: Movie of a 140 atm (2000 psi) PITCH (top left corner) emitting burning particles.

A 140 atm (2000 psi) PITCH is coupled to a high-pressure test combustion chamber via a 20 cm extension tube (OD=6 mm)

Click >>>

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited
High Pressure PITCH Applied to an H_2/O_2 Subscale Rocket Injector

Top: A movie of a high-pressure ignition torch igniting a $130\,\text{K}\,\text{H}_2/\text{O}_2$ coaxial jet at 35 atm. The arrow shows the trajectory of the hot particle that causes the ignition.

Right: Snapshots of combustion in H_2/O_2 coaxial jet that was ignited by a PITCH. The combustion was achieved within 25-30 ms after the Xe-flash fires.

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited
High Pressure PITCH With Multiple Ignition Capability

Different configurations for placement of Xe-flashes in a PITCH in high pressure canisters offer multiple ignitions. Burst disks allow each section to operate independently. Use of a honey comb configuration provides multiple ignitions before reloading new capsules.

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited
Conclusion

Specific capabilities of PITCH may present advantages for cold start of combustors and ignition of different turbines:

It provides volumetric ignition by creating a jet of hot gases and burning particles within a wide range of parameters:

- 0.5-100 atm (7-1500 psi) of pressure
- 500-2000°C temperature range
- The ignition delay (10-40 ms) and the burn duration (0.1-2 s) decreases with increased pressure
- Safe and reliable ignition for any combustible fuel mixture
- The low voltage (< 350 v) discharge in PITCH produces no electromagnetic interference and its operation is not affected by EMI or electrostatic discharge
- Use of multiple PITCH igniters greatly enhanced the chance of ignition of turbines
- The connecting tube delivers burning particles directly to the combustion zone, providing big advantages over conventional wall-mounted spark plugs
- PITCH offers a volumetric ignition, unlike point source igniters such as a spark plug, offering an increased chance of ignition for cold start and relight
Possible Areas of Future R&D

Making PITCH work for special application:
• High-pressure ignition of monopropellants, M315E as an example
• Modification of solid fuel mixtures (SFM) for control of ignition energy, burn duration, and burn properties
• Managing ignition transient effects through SFM formulation
• Effects of ambient oxygen on the photoignition process

Use of PITCH as an igniter for space/satellite applications:
• Study of long term stability of different SFM formulations in space environment
• Modification of SFM to prepare PITCH for application in a vacuum
• Control of ignition duration and burn properties for space vehicles
• Ruggedization of PITCH for long time survival in space environment
• A PITCH design with many ignition capsules and a few drive electronics

Photoignition agents as liquid fuel additives:
• Micro encapsulation of SFM in order to use it as an additive for liquid fuels
• Use of the above in specialized fuel injectors in order to achieve distributed ignition in larger rocket engines