Nanophotonic Devices; Spontaneous Emission Faster than Stimulated Emission

Eli Yablonovitch
REGENTS OF THE UNIVERSITY OF CALIFORNIA THE

02/02/2016
Final Report

DISTRIBUTION A: Distribution approved for public release.
Nanophotonic Devices; Spontaneous Emission Faster than Stimulated Emission

The goal of this project was to show that spontaneous emission could be accelerated by an optical antenna, to the point that it would become faster than stimulated emission. This would require spontaneous emission acceleration by 200x. The project has succeeded, both for optically pumped spontaneous emission, and electrically pumped spontaneous emission. We have observed a speedup of >300x, and we project a speedup of 2500x at an optimal antenna gap spacing, ~10nm. We intend to present a publicity release based on this accomplishment. Actually, a narrower antenna gap would result in further speedup, but at progressively lower efficiency. The reason for this is that an oscillating atomic dipole induces optical frequency currents in the adjacent parts of the metal antenna. These currents are subject to Ohmic losses, cutting the antenna efficiency. Thus we have been encouraging our competitors to place a secondary requirement on spontaneous emission acceleration. It should be accompanied by antenna efficiency of >50%.
Nanophotonic Devices: Spontaneous Emission Faster than Stimulated Emission
FA9550-15-1-0024

The goal of this project was to show that spontaneous emission could be accelerated by an optical antenna, to the point that it would become faster than stimulated emission. This would require spontaneous emission acceleration by 200x. The project has succeeded, both for optically pumped spontaneous emission, and electrically pumped spontaneous emission. We have observed a speedup of >300x, and we project a speedup of 2500x at an optimal antenna gap spacing, ~10nm. We intend to present a publicity release based on this accomplishment.

Actually, a narrower antenna gap would result in further speedup, but at progressively lower efficiency. The reason for this is that an oscillating atomic dipole induces optical frequency currents in the adjacent parts of the metal antenna. These currents are subject to Ohmic losses, cutting the antenna efficiency. Thus we have been encouraging our competitors to place a secondary requirement on spontaneous emission acceleration. It should be accompanied by antenna efficiency of >50%.

We believe that these new types of spontaneous emission optical sources, acting as antenna enhanced Light Emitting Diodes, can enable short distance optical communication, including possibly on-chip optical interconnect. One of the motivations for this is the LED’s, unlike lasers, require no threshold current, and could be much more energy efficient. Another motivation is that the antenna LED can be perhaps 10 times faster than the laser. We are continuing to investigate other aspects of the antenna-LED communications link, from the viewpoint of the optical detector requirements, with the aim of enabling a complete optical communications channel at the nano-scale.

Publications during past year:

Patents during past year:

Invited Presentations during Past Year:
1. Oliver Buckley Condensed Matter Physics Prize, 2015, American Physical Society, for “seminal achievements in solar cells, strained lasers, & photonic crystals.”
2. Present Invited Papers at AVS and OSA Conferences, San Jose, CA, October 2015

DISTRIBUTION A: Distribution approved for public release

Awards Past Year:
1. Isaac Newton Medal & Prize, 2015, the highest award of the UK Institute of Physics, for “his visionary and foundational contributions to photonic nanostructures.”
AFOSR Deliverables Submission Survey

Response ID: 5758

1. Report Type
 Final Report

Primary Contact E-mail
 Contact email if there is a problem with the report.
 eliy@eecs.berkeley.edu

Primary Contact Phone Number
 Contact phone number if there is a problem with the report
 510-642-6821

Organization / Institution name
 The Regents of the University of California

Grant/Contract Title
 The full title of the funded effort.
 Nanophotonic Devices; Spontaneous Emission Faster than Stimulated Emission

Grant/Contract Number
 AFOSR assigned control number. It must begin with "FA9550" or "F49620" or "FA2386".
 FA9550-15-1-0024

Principal Investigator Name
 The full name of the principal investigator on the grant or contract.
 Eli Yablonovitch; Ming Wu

Program Manager
 The AFOSR Program Manager currently assigned to the award
 Harold Weinstock

Reporting Period Start Date
 11/01/2014

Reporting Period End Date
 10/31/2015

Abstract
 The goal of this project was to show that spontaneous emission could be accelerated by an optical antenna, to the point that it would become faster than stimulated emission. This would require spontaneous emission acceleration by 200x. The project has succeeded, both for optically pumped spontaneous emission, and electrically pumped spontaneous emission. We have observed a speedup of >300x, and we project a speedup of 2500x at an optimal antenna gap spacing, ~10nm. We intend to present a publicity release based on this accomplishment.

 Actually, a narrower antenna gap would result in further speedup, but at progressively lower efficiency. The reason for this is that an oscillating atomic dipole induces optical frequency currents in the adjacent parts of the metal antenna. These currents are subject to Ohmic losses, cutting the antenna efficiency. Thus we have been encouraging our competitors to place a secondary requirement on spontaneous emission acceleration. It should be accompanied by antenna efficiency of >50%.

DISTRIBUTION A: Distribution approved for public release
We believe that these new types of spontaneous emission optical sources, acting as antenna enhanced Light Emitting Diodes, can enable short distance optical communication, including possibly on-chip optical interconnect. One of the motivations for this is the LED's, unlike lasers, require no threshold current, and could be much more energy efficient. Another motivation is that the antenna LED can be perhaps 10 times faster than the laser. We are continuing to investigate other aspects of the antenna-LED communications link, from the viewpoint of the optical detector requirements, with the aim of enabling a complete optical communications channel at the nano-scale.

Distribution Statement
This is block 12 on the SF298 form.

Distribution A - Approved for Public Release

Explanation for Distribution Statement
If this is not approved for public release, please provide a short explanation. E.g., contains proprietary information.

SF298 Form
Please attach your SF298 form. A blank SF298 can be found here. Please do not password protect or secure the PDF. The maximum file size for an SF298 is 50MB.

AFD-070820-035.pdf

Upload the Report Document. File must be a PDF. Please do not password protect or secure the PDF. The maximum file size for the Report Document is 50MB.

Upload a Report Document, if any. The maximum file size for the Report Document is 50MB.

Archival Publications (published) during reporting period:

Changes in research objectives (if any):

None

Change in AFOSR Program Manager, if any:

None

Extensions granted or milestones slipped, if any:

None

AFOSR LRIR Number

LRIR Title

Reporting Period

Laboratory Task Manager

Program Officer

Research Objectives

Technical Summary
Funding Summary by Cost Category (by FY, $K)

<table>
<thead>
<tr>
<th></th>
<th>Starting FY</th>
<th>FY+1</th>
<th>FY+2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment/Facilities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Report Document

Report Document - Text Analysis

Appendix Documents

2. Thank You

E-mail user

Jan 29, 2016 19:46:05 Success: Email Sent to: eliy@eecs.berkeley.edu

Response ID: 5758

<table>
<thead>
<tr>
<th>Survey Submitted:</th>
<th>Jan 29, 2016 7:46 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address:</td>
<td>128.32.41.149</td>
</tr>
<tr>
<td>Language:</td>
<td>English (en-US,en;q=0.8)</td>
</tr>
<tr>
<td>User Agent:</td>
<td>Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/48.0.2564.97 Safari/537.36</td>
</tr>
<tr>
<td>Http Referrer:</td>
<td>http://afosr.reports.sgizmo.com/s3/</td>
</tr>
<tr>
<td>Page Path:</td>
<td>1 : (SKU: 1) 2 : Thank You (SKU: 2)</td>
</tr>
<tr>
<td>SessionID:</td>
<td>1454114549_56ac06f59b57c4.87157474</td>
</tr>
</tbody>
</table>

Response Location

<table>
<thead>
<tr>
<th>Country:</th>
<th>United States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region:</td>
<td>CA</td>
</tr>
<tr>
<td>City:</td>
<td>Berkeley</td>
</tr>
<tr>
<td>Postal Code:</td>
<td>94720</td>
</tr>
</tbody>
</table>