Title: Laser Diagnostics for Spacecraft Propulsion

Authors: Natalia A. MacDonald-Tenenbaum

Abstract:
Briefing Charts/Viewgraphs

Keywords:
N/A

Security Classification:
Unclassified

Distribution/Availability Statement:
Approved for public release; distribution unlimited.

Sponsor/Monitor:
AFRL/RQ
5 Pollux Drive
Edwards AFB, CA 93524-7048

Sponsor/Monitor's Report Number:
AFRL-RQ-ED-VG-2015-372

Supplementary Notes:
For presentation at Gaseous Electronics Conference 2015; Honolulu, HI; October 13, 2015.
PA Case Number: # 15625; Clearance Date: 10/15/2015.
LASER DIAGNOSTICS FOR SPACECRAFT PROPULSION

Natalia MacDonald-Tenenbaum
In-Space Propulsion Branch
Air Force Research Laboratory
Edwards AFB, CA
natalia.macdonald@us.af.mil

Tuesday, October 13, 2015
Outline

• Motivation

• Monopropellant thrusters
 – Diode Laser Absorption Spectroscopy (DLAS)
 – Wavelength Modulation Spectroscopy (WMS)

• Arcjets

• Hall thrusters/ion engines
 – Laser Induced Fluorescence (LIF)
 – Time resolved LIF Methods

• Recent results from Time-Synchronized LIF
 – Time-Sync Method
 – BHT-600 Results

• Summary

• References
Motivation

• Many satellite propulsion technologies were developed in the 1960s
 – Didn’t have the diagnostics to fully understand how/why they worked
 – Aging workforce causing us to lose knowledge of how the systems were made, recipes for materials, trade secrets, etc.
 – Now having to go back and characterize old systems to lay groundwork for advancements in technologies

• Tunable diode lasers developed in the 1960s
 – Diagnostic techniques have been developed alongside propulsion technologies
 – Simulation of space environment, rarefied gases – facility effects become important
 – Laser diagnostics non intrusive, can survive harsh environments of combustion, plasmas

• New methods of laser diagnostics
 – Provide insight into dynamics of thruster operation
 – Are linked to thruster performance metrics
 – Are critical to validating numerical simulations
Monopropellant Thrusters

Operation
- Monopropellant flows over catalyst bed to initiate exothermic decomposition
- Propellant is expanded and accelerated out of a nozzle
- Developed in 60s, having to now go back and figure out how they work

Diagnostics
- Destructive testing the current standard
 - Intrusive, post-test
 - Cut open thruster to examine catalyst
- Diode Laser Absorption Spectroscopy
 - Non-intrusive, in-situ measurements
 - Temperature, species concentrations
 - Wavelength Modulation Spectroscopy (WMS)
- Other methods such as FTIR, PLIF, emission spectroscopy on combustion/propellants, not on thrusters in operation

Aerojet MR-106
Propellant: Hydrazine
Thrust: 22 N Isp: 235 sec
Beer-Lambert Law

\[I_v(L) = I_v^0 \exp(-k_v L) \]

- \(I_v(L) \): Transmitted spectral intensity after traveling through a distance, \(L \), through the medium [W/cm\(^2\)s\(^{-1}\)]
- \(I_v^0 \): Initial spectral intensity of the laser per unit frequency [W/cm\(^2\)s\(^{-1}\)]
- \(k_v \): Spectral absorption coefficient [cm\(^{-1}\)]

Ramp input to laser
- Modulates intensity and wavelength (modulation frequency up to 1 MHz)
- Baseline fit + Beer-Lambert Law gives absorbance of spectral feature

Species Identification
- \(k_v \) can be related to number densities, partial pressures to detect concentrations of combustion products such as NH\(_3\)
- Presence of different species indicates catalyst health

Temperature
- FWHM of transition indicates temperature (if no pressure broadening)
- Ratio of two nearby transition intensities indicates temperature (pressure independent)
- Lowering temperature indicates degradation of catalyst
Wavelength Modulation Spectroscopy (WMS)

1f-normalized WMS-2f

- Diode laser modulated in wavelength and intensity via:
 - Current injection at frequency = 1f
 - Ramp voltage
- Detector output sent through two lock-in amplifiers
 - Reference frequencies = 1f and 2f
 - Comparison of 2f signal ("WMS-2f") to model of absorption feature indicates temperature and gas concentration

- Improved sensitivity and noise-rejection over direct absorption (2 to 100x better SNR)

- 2f signal is related to the original absorption feature by a mathematical transform

\[I_v(L) = I_v^0 H_n(\bar{\nu})L \]

\[H_n(\bar{\nu}) = \frac{2^{1-n}}{n!} \frac{d^n \alpha(\nu)}{d\nu^n} \bigg|_{\nu=F} \]

- \(H_v^n \) = nth Fourier component of modulated absorption coefficient (n=2 for WMS-2f)
- \(\alpha(\nu) \) = absorption coefficient (modeled by Gaussian, Lorentzian, Voigt)
- \(\nu \) = mean modulation frequency

- Normalization of 2f signal by 1f signal eliminates effects of laser intensity drift, scattering, etc.

\[\frac{2f}{1f} = \frac{H_2}{i_0} = \frac{S(T) \cdot P \cdot x_i \cdot L}{i_0 \cdot \pi} \int_{-\pi}^{\pi} \phi(\bar{\nu}_{peak} + a \cos \theta) \cos 2a \delta \theta \]

- \(S(T) \) = Linestrength at temperature = T
- \(x_i \) = species concentration
- \(i_0 \) = incident laser intensity
- \(\phi \) = lineshape function (Gaussian, Lorentzian, Voigt)
- \(a \) = amplitude of frequency modulation
Arcjets

Operation
- Electrothermal thruster
- Heats a gaseous propellant (hydrazine, NH₃, H₂) via electrical arc
- Propellant is expanded and accelerated out of a nozzle similar to chemical thrusters

Diagnostics
- Laser Induced Fluorescence
 - Velocity, temperature measurements
 - Development of LIF techniques
 - Hydrogen plasma
- Raman spectroscopy

Aerojet MR-510 Arcjet
Propellant: Hydrazine
Thrust: 250 mN Isp: 585 sec

DISTRIBUTION A: Approved for public release; distribution unlimited. AFTC/PA Clearance No. XXXX
Ion Engines & Hall Thrusters

Operation

Ion engines and Hall thrusters are electrostatic propulsion devices

Ion Engines
- Propellant is ionized via electron bombardment and then accelerated by high voltage grids
- Thrust, Isp, Propellant: Xenon

Hall thrusters
- Hall thrusters are gridless electrostatic thrusters
- Propellant ionized by electrons trapped in magnetic field
- Ions accelerated by an electric field between anode and electron cloud
- Thrust, Isp, Propellant: Xenon, Krypton

Diagnostics
- Laser Induced Fluorescence
 - Velocity, temperature measurements
- Diode Laser Absorption Spectroscopy
 - Metastable neutrals
Laser Induced Fluorescence

- Laser beam tuned across electronic transition in Xe ions
 - $5d[4]_{7/2} \rightarrow 6p[3]_{5/2}$ at 834.72 nm
- Ions spontaneously emit photons resulting in their relaxation from its excited state to a lower state (fluorescence)
 - $6s[2]_{3/2} \rightarrow 6p[3]_{5/2}$ at 541.92 nm

- Fluorescence excitation spectrum
 - Convolution of ion velocity distribution function (VDF), transition lineshape (inc. hfs, etc.)
 - Shape (broadening/shift) dominated by Doppler effect:
 \[
 \delta v_{12} = \frac{V}{c} v_{12}
 \]

![Diagram of Xe^+ transition levels](image)

Non-resonant fluorescence scheme

DISTRIBUTION A: Approved for public release; distribution unlimited. AFTC/PA Clearance No. XXXX
Measurement of time-averaged velocity vectors
- Non-intrusive measurements in channel and near field plume
- High spatial resolution (~1mm)
- High spectral resolution can resolve multiple velocity populations
- Temporal resolution eliminated by need for long integration times (>100 ms)

Necessary to develop time-resolved LIF velocity measurements
- Resolve oscillatory behavior of thrusters
- Inform M&S for S/C interactions

CW diode lasers required to take time resolved LIF measurements
- Typical linewidth of pulsed laser is larger than desired
- CW Diode Laser: < 300 kHz
- Pulsed Nd:Yag Dye Laser: > 1.5 GHz
- Doppler width of transition: < 2 GHz

Laser Induced Fluorescence Velocimetry

Hargus, IEEE (2011)
Experimental Apparatus

- New Focus Vortex TLB-6917 tunable diode laser used to seed a TA-7600 VAMP tapered amplifier
 - 60 mW output power
 - Xenon ion (Xe II) transition at 834.72 nm probed \((5d[4]_{7/2} - 6p[3]_{5/2})\)
 - Non-resonant fluorescence collected at 541.92 nm \((6s[2]_{3/2} - 6p[3]_{5/2})\)

- Stationary xenon neutral (Xe I) reference
 - 9.03 GHz distant \(6p'[3/2]_1 - 8s'[3/2]_1\)

- Parallelized sample-hold method of time-synchronization
 - 6 time points taken simultaneously

- 9x improvement in data acquisition efficiency
 - Better signal-to-noise
 - Faster data acquisition
1. Take simultaneous measurements of AC discharge current, emission + fluorescence

2. AC current from the discharge is fed into a comparator to find zero point crossings (reference point for time = t_0)

3. Raw emission + fluorescence trace and comparator signal sent into sample-hold circuit (samples at t_0 trigger, holds value)

4. Sample-hold repeats at t_0 points along entire scan

5. Pass sample-held signal through lock-in amplifier

 Fluorescence excitation lineshape for t_0

6. Repeat for t_1, t_2, etc.

 Lineshapes for t_0, t_1, t_2
BHT-600 Specifications

- **BHT-600**
 - 600 W annular Hall thruster
 - Manufactured by Busek Co.
- **Tested in Chamber 6 at AFRL**
 - Background pressure 1.2×10^{-5} Torr

Nominal Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anode Flow</td>
<td>2.45 mg/s Xe (20.5 sccm)</td>
</tr>
<tr>
<td>Cathode Flow</td>
<td>197 μg/s Xe (1.5 sccm)</td>
</tr>
<tr>
<td>Anode Potential</td>
<td>300 V</td>
</tr>
<tr>
<td>Anode Current</td>
<td>2.05 A</td>
</tr>
<tr>
<td>Magnet 1 Current</td>
<td>2.0 A</td>
</tr>
<tr>
<td>Magnet 2 Current</td>
<td>2.0 A</td>
</tr>
</tbody>
</table>

DISTRIBUTION A: Approved for public release; distribution unlimited. AFTC/PA Clearance No.
Velocity and Intensity Trends

- Peak lineshape intensity
 - In phase with current
 - Intensity increases with growth of ion population
- Most probable ion velocity
 - 90° phase lag relative to current
 - Max velocity after point of peak ionization

Breathing mode cycle

Most probable ion velocity and peak lineshape intensities for IVDFs measured along centerline of discharge channel (R = 28 mm, Z = -2 mm)

Average of individual time-synchronized velocity distribution function matches well with measured time-averaged velocity distribution
Channel IVDFs

- Minimal radial variations in channel

- **Z = -8 mm (near anode)**
 - Slight negative velocity
 - Gradient-driven field reversal

- **Z = -6 mm**
 - Accelerating potential begins
 - Broader IVDFs

- **Z = -4 mm**
 - Significant broadening of IVDFs
 - Large temporal variations (5-13 km/s)
 - Spatial extent of propellant ionization and local potential drop fluctuate

- **Z = -2 mm, Z = 0 mm**
 - IVDFs narrow
 - More even acceleration in time
Near-Field Plume Measurements

- Time-sync axial IVDFs obtained throughout near-field plume
- Secondary ion velocity population
 - Appears near centerline of thruster
 - Low velocity dominates at current minimum
 - Primarily caused by geometric effects
 - Other causes:
 - Charge exchange collisions w/ neutrals
 - Residual ionization downstream of main potential drop

- Upcoming radial IVDF measurements
 - Elucidate fluctuations in plume divergence
 - Ion velocity vectors compared to numerical models in HPHall, emission data
Summary

• Laser diagnostic techniques have been developed alongside propulsion technologies

• Allow us to better understand propulsion technologies that were previously ‘black boxes’

• In-situ, time-resolved diagnostics are becoming more important for understanding spacecraft interactions, pushing towards predictive modeling & simulation efforts
Thank You!

Dr. Bill Hargus – Air Force Research Laboratory

Chris Young, Dr. Andrea Lucca-Fabris, Prof. Mark Cappelli – Stanford University

Amanda Makowiecki, Torrey Hayden, Prof. Greg Rieker – U. of Colorado, Boulder