Verification of DSMC Simulations Using Spectral Analysis

Title: Verification of DSMC Simulations Using Spectral Analysis

Authors: S. J. Araki and R. S. Martin

Performing Organization: Air Force Research Laboratory (AFMC)
AFRL/RQRS
1 Ara Drive
Edwards AFB, CA 93524-7013

Distribution Statement: Approved for public release; distribution unlimited

Abstract:
Viewgraphs/Briefing Charts

Subject Terms:
N/A

Security Classification:
- **Report:** Unclassified
- **Abstract:** Unclassified
- **This Page:** Unclassified

Limitations:
- **Limitation of Abstract:** SAR
- **Number of Pages:** 18

Performing Organization Name(s) and Address(es):
Air Force Research Laboratory (AFMC)
AFRL/RQRS
1 Ara Drive
Edwards AFB, CA 93524-7013

Sponsoring/Monitoring Agency Name(s) and Address(es):
Air Force Research Laboratory (AFMC)
AFRL/RQR
5 Pollux Drive
Edwards AFB, CA 93524-7048

Supplementary Notes:
For presentation at DSMC15; Kapaa, Kauai, Hawaii; 13-17 Sep 2015
PA Case Number: #15556; Clearance Date: 9/15/2015
Verification of DSMC Simulations Using Spectral Analysis

SAMUEL J. ARAKI AND ROBERT S. MARTIN

ERC INC, AIR FORCE RESEARCH LABORATORY
EDWARDS AIR FORCE BASE, CA USA

DSMC CONFERENCE, KAUAI, HAWAII, USA
SEPTEMBER 13-17, 2015

DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED
AFTC/PA CLEARANCE NO. TBD
Outline

• Introduction

• Test Problem

• Chi-Square Test

• Spectral Analysis

• Conclusion / Future Work
TURF:
Thermodynamics Universal Research Framework

• Unifies multiple research codes from group
 - Models of spacecraft propulsion relevant plasma at different spatial scales (1μm-100m)
 • Single fluid Magnetohydrodynamics (MHD) solver
 • Unstructured multi-fluid solver
 • Vlasov solver
 • Particle-In-Cell (PIC) with DSMC
 - Combined redundant functionality in those codes
 - Unified GPU support
Motivation

• Multiple developers of TURF
 - Changes to core class objects required by one model can break the others.
 - Merging different heads and making sure all the models work properly

• Automated test suites for different models

Objectives

• Set up simple problem for testing DSMC part of TURF
• Development of efficient procedure in verifying the results
Test Problem: 1D Normal Shock

• Standalone DSMC code run on GPU

• Initial State
 - Upstream and downstream flow properties according to Rankine-Hugoniot relations
 - Discontinuous profile at t=0

\[
M_2^2 = \frac{1 + \frac{\gamma - 1}{2} M_1^2}{\frac{\gamma M_1^2 - \frac{\gamma - 1}{2} M_1^2}{2}},
\]

\[
\frac{n_2}{n_1} = \frac{u_1}{u_2} = \frac{(\gamma + 1) M_1^2}{(\gamma - 1) M_1^2 + 2},
\]

\[
\frac{T_2}{T_1} = 1 + \frac{2(\gamma - 1) \frac{\gamma M_1^2 + 1}{M_1^2}}{(\gamma + 1)^2} (M_1^2 - 1)
\]

<table>
<thead>
<tr>
<th></th>
<th>Upstream(_1)</th>
<th>Downstream(_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mach Number, M</td>
<td>1.20</td>
<td>0.85</td>
</tr>
<tr>
<td>Density, n (m(^{-3}))</td>
<td>(1.00 \times 10^{22})</td>
<td>(1.30 \times 10^{22})</td>
</tr>
<tr>
<td>Temperature, T (K)</td>
<td>293.0</td>
<td>350.1</td>
</tr>
</tbody>
</table>
Test Problem: 1D Normal Shock

Requirements

• Fast simulation (at least < 5 hours) – less particles
• Smooth solution – more particles and time-steps

Baseline inputs: (40 mins)
• 8,000,000 Ar particles, 10,000 time-steps, 1,000 sampling cells

How can we systematically accept/reject results?
1. Run the test problem M times with different random number seed

2. Deviation of results is expected to fall under normal distribution

$$f(x, \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(x - \mu)^2}{2\sigma^2} \right)$$
3. Determine point-wise expected value (μ) and standard deviation (σ) for N cells

$$
\mu_n = \frac{1}{M} \sum_{m=1}^{M} x_{n,m}, \quad \sigma_n = \frac{1}{M-1} \sum_{m=1}^{M} (x_{n,m} - \mu_n)^2
$$

<table>
<thead>
<tr>
<th>% Confidence Level</th>
<th># of σs from Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>99.9</td>
<td>3.2905</td>
</tr>
<tr>
<td>99</td>
<td>2.5758</td>
</tr>
<tr>
<td>95</td>
<td>1.9600</td>
</tr>
<tr>
<td>90</td>
<td>1.6449</td>
</tr>
<tr>
<td>80</td>
<td>1.2816</td>
</tr>
<tr>
<td>70</td>
<td>1.0364</td>
</tr>
<tr>
<td>50</td>
<td>0.6745</td>
</tr>
</tbody>
</table>
Chi-Square Test

4. For a given run, deduce a global parameter (χ) using μ and σ

$$P = \left[\prod_{n=1}^{N} f_n \sigma_n \sqrt{2\pi} \right]^{1/N} = \prod_{n=1}^{N} \exp \left(-\frac{(x_n - \mu_n)^2}{2N\sigma_n^2} \right)$$

$$\Rightarrow -\log P = \frac{1}{2N} \sum_{n=1}^{N} \left(-\frac{(x_n - \mu_n)^2}{\sigma_n^2} \right) = \chi^2 < \chi^2_{\text{ref}}$$

<table>
<thead>
<tr>
<th>VSS Diameter (Angstrom)</th>
<th>χ</th>
<th>ρ</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.11</td>
<td>0.753</td>
<td>1.02</td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>1.10</td>
<td>1.06</td>
<td></td>
</tr>
<tr>
<td>3.90</td>
<td>1.33</td>
<td>1.31</td>
<td></td>
</tr>
<tr>
<td>3.80</td>
<td>2.79</td>
<td>2.64</td>
<td></td>
</tr>
</tbody>
</table>

* All runs performed with the same RNG seed
Chi-Square Test: Result

• Plots of two normal distributions for different VSS diameter
 - The mean of one distribution is larger than the other with larger cross-section, but some portion of it should still overlap

Distribution overlaps…
Could we effectively identify the distribution given a value in the overlapping region?

Remove/reduce statistical noise
• Run more particles and time-steps?
Spectral Analysis: Difference Profiles

Perform analysis in frequency space
- High frequency mode – Purely statistical
- Low frequency mode – Comes from perturbed input

Increasing the degree of perturbation
Spectral Analysis: FFT on Difference Profile

Smaller low mode amplitude as approaches the true input solution

Increasing the degree of perturbation
Spectral Analysis:
Distribution of Low-Mode Amplitude

How do we deal with outliers…?
Spectral Analysis: Boosting

• Need to pass the runs with outliers
 - What is the probability of outliers occurring multiple times on the roll?
 • Probability of one outlier: 1%
 • Probability of outliers three times on the roll: $(1\%)^3$

• Use geometric mean to obtain the global spectral amplitude

$$\tilde{\rho} = \max |\text{FFT}(\rho)|,$$
$$\tilde{T} = \max |\text{FFT}(T)|,$$
$$\Rightarrow \max_{m=1,M} \left[\prod_{i=m,m+N} \sqrt{\tilde{\rho}_i\tilde{T}_i} \right]^{1/N}$$
Conclusions

• **Chi-Square test**
 - Width of distribution is determined by the statistical noise inherent to particle simulations

• **Spectral analysis**
 - Strongly effective in the test problem
 - Essentially removes the effect of statistical noise in the test

Future Work

• Use the methodology in other DSMC problems to study the strength/weakness of the procedure

• Apply the knowledge in smoothing of flow properties
Thank you
Spectral Analysis

1. Perturbing the VSS diameter narrows/widens the shock width

2. Difference profile contains
 1. Low frequency mode from wrong input
 2. High frequency mode from statistical noise

3. Perform Fast Fourier Transformation (FFT) on difference profile

4. Observe the amplitude of low modes

5. Perform boosting