Nanoscale Optical Emitters for High Density Information Processing using Photonic-Plasmonic Coupling in Coaxial Nanopillars

Luca Dal Negro
TRUSTEES OF BOSTON UNIVERSITY

03/10/2015
Final Report
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to the Department of Defense, Executive Service Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

**PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.**

<table>
<thead>
<tr>
<th>1. REPORT DATE (DD-MM-YYYY)</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED (From - To)</th>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
<th>5b. GRANT NUMBER</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
<th>5d. PROJECT NUMBER</th>
<th>5e. TASK NUMBER</th>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR'S ACRONYM(S)</th>
<th>11. SPONSOR/MONITOR'S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Luca Dal Negro</td>
<td>Trustees of Boston University</td>
<td>NA</td>
<td>Air Force Office of Science and Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Electrical and Computer Engineering</td>
<td>881 Commonwealth Avenue, Boston, MA 02215</td>
<td></td>
<td>875 Randolph Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Saint Mary’s street, Boston University, Boston, 02215 MA</td>
<td></td>
<td></td>
<td>Suite 325 Room 3112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arlington, VA 22203</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
<th>13. SUPPLEMENTARY NOTES</th>
<th>14. ABSTRACT</th>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>In this project we investigated active, Si-compatible linear and nonlinear sources in plasmonic and metamaterials for high-density information processing. The objective of this two-year research program was to design and to engineer scalable, low-threshold, efficient light sources based on sub-wavelength mode confinement and nanoscale photonic-plasmonic coupling in active Si-based nanocavity structures and arrays for high-density integration and information processing. We have demonstrated state-of-the-art nano-ring plasmonic cavities with enhanced emission efficiency, polarization-switchable nano-antennas, broadband hybrid (multi-metal, metal-dielectric, all-dielectric) nanostructured arrays for the generation and control of the optical angular momentum of light, and developed new Si-compatible nonlinear metamaterials. These activities are particularly interesting for the development of “active nano-pixels” with enhanced emission/absorption rates and structured light (i.e., phase engineered) manipulation on a Si chip. Imaging systems, miniaturized photodetector arrays and light sources with specified emission patterns can be developed based on the concepts that we introduced and the results that we demonstrated.</td>
<td>Light sources, plasmonics, high-density integration, metamaterials</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
<th>19b. TELEPHONE NUMBER (Include area code)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>b. ABSTRACT</td>
<td>c. THIS PAGE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISTRIBUTION A: Distribution approved for public release
INSTRUCTIONS FOR COMPLETING SF 298

1. REPORT DATE. Full publication date, including day, month, if available. Must cite at least the year and be Year 2000 compliant, e.g. 30-06-1998; xx-06-1998; xx-xx-1998.

2. REPORT TYPE. State the type of report, such as final, technical, interim, memorandum, master’s thesis, progress, quarterly, research, special, group study, etc.

3. DATES COVERED. Indicate the time during which the work was performed and the report was written, e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996; May - Nov 1998; Nov 1998.

4. TITLE. Enter title and subtitle with volume number and part number, if applicable. On classified documents, enter the title classification in parentheses.

5a. CONTRACT NUMBER. Enter all contract numbers as they appear in the report, e.g. F33615-86-C-5169.

5b. GRANT NUMBER. Enter all grant numbers as they appear in the report, e.g. AFOSR-82-1234.

5c. PROGRAM ELEMENT NUMBER. Enter all program element numbers as they appear in the report, e.g. 61101A.

5d. PROJECT NUMBER. Enter all project numbers as they appear in the report, e.g. 1F665702D1257; ILIR.

5e. TASK NUMBER. Enter all task numbers as they appear in the report, e.g. 05; RF0330201; T4112.

5f. WORK UNIT NUMBER. Enter all work unit numbers as they appear in the report, e.g. 001; AFAPL30480105.

6. AUTHOR(S). Enter name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. The form of entry is the last name, first name, middle initial, and additional qualifiers separated by commas, e.g. Smith, Richard, J, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES). Self-explanatory.

8. PERFORMING ORGANIZATION REPORT NUMBER. Enter all unique alphanumeric report numbers assigned by the performing organization, e.g. BRL-1234; AFWL-TR-85-4017-Vol-21-PT-2.

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES). Enter the name and address of the organization(s) financially responsible for and monitoring the work.

10. SPONSOR/MONITOR’S ACRONYM(S). Enter, if available, e.g. BRL, ARDEC, NADC.

11. SPONSOR/MONITOR’S REPORT NUMBER(S). Enter report number as assigned by the sponsoring/monitoring agency, if available, e.g. BRL-TR-829; -215.

12. DISTRIBUTION/AVAILABILITY STATEMENT. Use agency-mandated availability statements to indicate the public availability or distribution limitations of the report. If additional limitations/ restrictions or special markings are indicated, follow agency authorization procedures, e.g. RD/FRD, PROPIN, ITAR, etc. Include copyright information.

13. SUPPLEMENTARY NOTES. Enter information not included elsewhere such as: prepared in cooperation with; translation of; report supersedes; old edition number, etc.

14. ABSTRACT. A brief (approximately 200 words) factual summary of the most significant information.

15. SUBJECT TERMS. Key words or phrases identifying major concepts in the report.

16. SECURITY CLASSIFICATION. Enter security classification in accordance with security classification regulations, e.g. U, C, S, etc. If this form contains classified information, stamp classification level on the top and bottom of this page.

17. LIMITATION OF ABSTRACT. This block must be completed to assign a distribution limitation to the abstract. Enter UU (Unclassified Unlimited) or SAR (Same as Report). An entry in this block is necessary if the abstract is to be limited.
Summary of the research: In this project we investigated active, Si-compatible linear and nonlinear sources in plasmonic and metamaterials for high-density information processing. The objective of this two-year research program was to design and to engineer scalable, low-threshold, efficient light sources based on sub-wavelength mode confinement and nanoscale photonic-plasmonic coupling in active Si-based nanocavity structures and arrays for high-density integration and information processing. We have demonstrated state-of-the-art nano-ring plasmonic cavities with enhanced emission efficiency, polarization-switchable nano-antennas, broadband hybrid (multi-metal, metal-dielectric, all-dielectric) nanostructured arrays for the generation and control of the optical angular momentum of light, and developed new Si-compatible nonlinear metamaterials. These activities are particularly interesting for the development of “active nano-pixels” with enhanced emission/absorption rates and structured light (i.e., phase engineered) manipulation on a Si chip. Imaging systems, miniaturized photodetector arrays and light sources with specified emission patterns can be developed based on the concepts that we introduced and the results that we demonstrated.

Major Achievements:

During the first year of this project we have designed and experimentally demonstrated strong radiation rate enhancement and quantum efficiency enhancement in plasmonic ring nanocavities with Er as an active medium. Using full-vector three dimensional finite difference time domain simulations to model electric field confinement and photonic density of states we design ring nanocavities for light emission and gain enhancement at 1.55 μm. Nanocavities are fabricated from Er:SiO₂ and silver using CMOS compatible sputtering, top-down lithography and etching processes. By combining measurements of photoluminescence intensity and decay rate we measure a 25 times increase in radiative emission rate and 2 times increase in quantum efficiency. Using analytical modeling we investigate the possibility of achieving lasing in sub-wavelength plasmonic cavities due to enhancement of stimulated emission rate caused by the increased spontaneous emission rate. In our plasmon nano-cavity device the Purcell enhanced stimulated emission can significantly increase the cavity gain allowing laser action to start in deep sub wavelength active regions with relatively low Q factors or using materials with intrinsically low gain, such as Erbium ions. We find that Purcell enhanced gain can reduce the Q factor needed for Erbium lasing by as much as 250 times. In addition to nanoscale lasers, our proposed plasmonic ring nanocavities are capable of enhancing light emission and absorption at multiple wavelengths, tunable over a broad range, and could be used to realize high density, individually addressable, electrically excited sources or detector arrays with nanoscale pixel sizes for novel light emission/absorption platforms based on Si technology. (N. Lawrence et al., Radiation rate enhancement in sub-wavelength plasmonic ring nanocavities, Nano Lett., 13, 3709, 2013).

In addition, we designed and demonstrated linear and nonlinear plasmonic nanoantennas for high-density integration processing on a Si chip. In particular, our activities focused on the
engineering of multi-wavelength tunable and switchable nonlinear optical plasmonic nanoantenna arrays for applications to nonlinear signal generation and multispectral sources on Si.

We demonstrated polarization and wavelength control of plasmonic hot-spot as well as optical nano-focusing extending from the visible to the mid-IR spectral range (J. Trevino, et al., *Photonic-Plasmonic coupled Nanoantennas for Polarization-controlled Multispectral Nanofocusing*, *Optics Lett.*, 38, 4861 , 2013), as well as the first Fano-coupled nonlinear Au nanoantennas for efficient and polarization switchable nonlinear signal generation (G. F. Walsh and L. Dal Negro *Enhanced Second Harmonic Generation by Photonic-Plasmonic Fano-type Coupling in Nanoplasmonic Arrays*, *Nano Lett.* 13, 3111, 2013). Device applications to multispectral sensing and energy concentration at the nanoscale are anticipated based on the results demonstrated in our work. These activities will naturally interface with the development of nonlinear plasmonic imaging systems (VIS-IR) and sensor arrays with designed frequency and polarization responses.

During the last 12 months we developed a novel active materials platform based rare-earth doping of transparent conductive oxides for broad band sources, ultrafast electrical modulation, and nonlinear optical signal generation on Si. In particular, we focused on Er doping of ZnO, ITO and AZO materials deposited by magnetron co-sputtering and we engineered their dielectric permittivity by thermal annealing in order to tailor the screened plasma frequency over a controlled wavelength range between 1-2μm, which is relevant to telecom applications. The resulting negative permittivity, metal-free Si materials enable the engineering of sub-wavelength plasmon fields on Si at dramatically reduced optical losses compared to traditional noble metals such as Au and Ag, within the widespread CMOS processing technology. The developed materials platform is ideally suited to fabricate Si-based active (light emitting and nonlinear) metamaterials with strongly enhanced local field concentration and nonlinearity enhancement within Si technology, which is key to high density integration of photonic-plasmonic coupled active devices on a chip. Based on this novel approach, we have been developing low-loss, tunable materials platforms based on conductive transparent oxides (TCOs) and nitrides (TCNs) for the engineering of active (i.e., light emitting, nonlinear) plasmonics and metamaterials devices that are fully compatible with Si technology. We developed fabrication processes and technologies to actively tune the optical dispersion properties (e.g., screened plasma frequency, epsilon-near-zero wavelength, bandgaps, etc) of these novel photonic materials from the visible to the mid-IR spectral range (up to 4microns). These versatile materials feature strongly reduced optical losses compared to traditional plasmonic systems (i.e., made of noble metals), larger nonlinear optical coefficients, increased optical transparency in the VIS and near-IR ranges, electrical conductivity and optical tunability, fast electro-optical modulation, as well as excellent stability and robustness to thermal loads (refractory materials). Many device opportunities in the areas of active optical modulation of linear/nonlinear responses on a silicon chip are anticipated. For instance, novel nanoscale optical sensors and detectors fully-compatible with Si technology or active hyperbolic metamaterials based on Si can be readily fabricated without the need of specialized nanofabrication tools or without involving Au/Ag materials components. Dynamic control of optical emission and scattering processes can be achieved under optical and electrical pumping, enabling completely novel optical functionalities such as low-power metal-dielectric transitions, dynamic beam-shaping and steering, radiation diagram control, and the engineering of perfect absorption and scattering cancellation within integrated optics on Si (i.e., waveguide structures, resonant cavities, planar technology integration).

Currently, we are also working to demonstrate broadband Purcell enhancement of Er and Si quantum dots embedded in hyperbolic metamaterials that do not have any metallic component, as well as to demonstrate gap polariton laser action in sub-wavelength coaxial nano-cavities. This recent work, resulting from this project, is summarized in the paper by Y. Wang et al., Control of local density of states with TiN-based in hyperbolic active metamaterials based on silicon” (to be submitted to APL).

Finally, during this project, in collaboration with the group of Prof. Anna Fontcuberta y Morral at EPFL (Switzerland), we have demonstrated the first plasmonic antenna-coupled semiconductor nanowires using scalable nanolithography and etching. Based on this novel platform, we have been able to tune the nanoantennas and make them resonate with the single NWs absorption spectrum to dramatically increase their nonlinear optical generation as well as absorption rates for both transverse and longitudinal polarization. In particular, we have demonstrated that a hybrid structure formed by GaAs nanowires with a highly dense array of bow-tie antennas is able to modify the polarization response of a nanowire. As a result, the increase in light absorption for transverse polarized light changes the nanowire polarization response, including the polarization response inversion. This work will open a new path towards the widespread implementation of nanowires applications such as in photodetection, solar energy harvesting and light emission. These activities are described in two high impact publications that resulted directly from the funding of this project (A. Casadei et al, Polarization response of nanowires à la carte, Scientific Reports, 5, 7651, 2015 and A. Casadei, et al., Photonic–Plasmonic Coupling of GaAs Single Nanowires to Optical Nanoantennas, Nano Lett., 14, 2271,2014).
1. Report Type
   Final Report

Primary Contact E-mail
Contact email if there is a problem with the report.
   dalnegro@bu.edu

Primary Contact Phone Number
Contact phone number if there is a problem with the report
   6173582627

Organization / Institution name
Boston University

Grant/Contract Title
The full title of the funded effort.
   Nanoscale Optical Emitters for High Density Information Processing

Grant/Contract Number
AFOSR assigned control number. It must begin with "FA9550" or "F49620" or "FA2386".
   FA9550-13-1-0011

Principal Investigator Name
The full name of the principal investigator on the grant or contract.
   Luca Dal Negro

Program Manager
The AFOSR Program Manager currently assigned to the award
   Gernot Pomrenke

Reporting Period Start Date
   01/01/2013

Reporting Period End Date
   12/31/2014

Abstract
In this project we investigated active, Si-compatible linear and nonlinear sources for plasmonic and metamaterials. The objective of this two-year research program was to design and to engineer scalable, low-threshold, efficient light sources based on sub-wavelength mode confinement and nanoscale photonic-plasmonic coupling in active Si-based coaxial nanocavity structures and arrays for high-density integration and information processing. We have demonstrated state-of-the-art nano-ring plasmonic cavities with enhanced emission efficiency, polarization-switchable nano-antennas, broadband hybrid (multi-metal, metal-dielectric, all-dielectric) nanostructured arrays for the generation and control of the optical angular momentum of light, and developed new Si-compatible nonlinear metamaterials. These activities are particularly interesting for the development of “active nano-pixels” with enhanced emission/absorption rates and structured light (i.e., phase engineered) manipulation on a Si chip. Imaging systems, miniaturized photodetector arrays and light sources with specified emission patterns can be developed based on the concepts that we introduced ant the results that we demonstrated.

DISTRIBUTION A: Distribution approved for public release.
Distribution Statement
This is block 12 on the SF298 form.

Distribution A - Approved for Public Release

Explanation for Distribution Statement
If this is not approved for public release, please provide a short explanation. E.g., contains proprietary information.

SF298 Form
Please attach your SF298 form. A blank SF298 can be found here. Please do not password protect or secure the PDF. The maximum file size for an SF298 is 50MB.

AFD-070820-035.pdf

Upload the Report Document. File must be a PDF. Please do not password protect or secure the PDF. The maximum file size for the Report Document is 50MB.

AFOSR_DalNegro_final_report.pdf

Upload a Report Document, if any. The maximum file size for the Report Document is 50MB.

Archival Publications (published) during reporting period:


DISTRIBUTION A: Distribution approved for public release.


Books


L. Dal Negro “Optics of Aperiodic Media: Fundamentals and Device Applications”, Cambridge University Press, expected publication date: September 2015 (developed mostly during the reporting period)

Book Chapters


DISTRIBUTION A: Distribution approved for public release.
Changes in research objectives (if any):

NA

Change in AFOSR Program Manager, if any:

NA

Extensions granted or milestones slipped, if any:

AFOSR LRIR Number

LRIR Title

Reporting Period

Laboratory Task Manager

Program Officer

Research Objectives

Technical Summary

Funding Summary by Cost Category (by FY, $K)

<table>
<thead>
<tr>
<th></th>
<th>Starting FY</th>
<th>FY+1</th>
<th>FY+2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment/Facilities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Report Document

Report Document - Text Analysis

Appendix Documents

2. Thank You

E-mail user

Mar 03, 2015 15:29:02 Success: Email Sent to: dalnegro@bu.edu